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A B S T R A C T

Melatonin is the major product both synthesized and secreted by the pineal gland during the night period and it
is the principal chronobiotic hormone that regulates the circadian rhythms and seasonal changes in vertebrate
biology. Moreover, melatonin shows both a broad distribution along the phylogenetically distant organisms and
a high functional versatility. At the present time, a significant amount of experimental evidence has been re-
ported in scientific literature and has clearly shown a functional relationship between the endocrine, nervous,
and immune systems. The biochemistry basis of the functional communication between these systems is the
utilization of a common chemicals signals. In this framework, at present melatonin is considered to be a relevant
member of the so-called neuro-endocrine-immunological network. Thus, both in vivo and in vitro investigations
conducted in both experimental animals and humans, have clearly documented that melatonin has an important
immunomodulatory role. However, most of the published results refer to information on T lymphocytes, i.e., cell-
mediated immunity. On the contrary, fewer studies have been carried out on B lymphocytes, the cells responsible
for the so-called humoral immunity. In this review, we have focused on the biological role of melatonin in the
humoral immunity. More precisely, we report the actions of melatonin on B lymphocytes biology and on the
production of different types of antibodies.

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) was discovered and iso-
lated from bovine pineal gland in 1958 by Lerner and co-workers [1].
Melatonin is the main product synthesized and secreted to blood cir-
culation by the pineal gland during the nocturnal period and is the main
chronobiotic hormone responsible for regulating circadian and seasonal
rhythms in vertebrate biology [2,3]. Its biosynthesis is carried out
starting from the essential amino acid tryptophan and involves four
intracellular steps catalyzed by tryptophan hydroxylase (EC 1.14.16.4,
TPH), aromatic amino acid decarboxylase (EC 4.1.1.28, AADC),
arylalkylamine-N-acetyltransferase (EC 2.3.1.87, AA-NAT), and
hydroxyndole-O-methyltransferase (EC 2.1.1.4, HIOMT) [4]. Although
melatonin was originally discovered in the pineal gland, further research
showed that this molecule appeared very early during evolution. Thus,
melatonin has been found in bacteria, unicellular eukaryotes, inverte-
brate and vertebrates, algae, fungi and plants and even in various edi-
bles, such as herbs, fruit, vegetable and seeds [5,6]. In mammals, it has
been communicated that melatonin is synthesized in many organs and

tissues, such as respiratory, gastrointestinal, genitourinary, immune
systems, and skin [7–12]. Moreover, melatonin shows great functional
versatility exhibiting antioxidant [13–16], oncostatic [17,18], antiaging
[19,20], and immunomodulatory [10,11,21] effects. The biochemical
mechanisms involved in all of these actions of melatonin involves both
receptor-dependents [22,23] and receptor-independents mechanisms
[24–26].

A broad body of evidence has shown a relationship between endo-
crine, nervous, and immune systems and, at the present time, it is very
clear that these systems use a common biochemical language for intra-
and inter-system communication [27]. In this context,
pineal-synthesized melatonin is currently considered one of the com-
ponents of the complex neuro-endocrine-immunological network and
the existence of a bidirectional communication between the pineal gland
and the immune system is now fully accepted [28,29]. In this context,
many in vivo and in vitro investigations have clearly shown that mela-
tonin has a fundamental role in the function of both innate and adap-
tative immune systems [10,11] and a clear correlation between
melatonin production and the circadian and seasonal rhythms in the
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immune system has also been reported [21,30,31]. Conversely, immu-
nological signals produced by the immune system cells are received by
the pineal gland and provides a feedback regulation of pineal function
[32,33].

The molecular basis for the neuroimmunomodulatory effect of
melatonin on the immune system is supported by the existence of spe-
cific melatonin receptors in immune organs as well as immunocompe-
tent cells [10,11,23,34]. These melatonin receptors are located in
plasma membrane of the immune cells. Using the melatonin agonist
2-[125I]-iodomelatonin, specific binding sites for melatonin have been
located and characterized in plasma membranes of the several types of
immunocompetent cells of different species including birds [35–37],
rodents [23,38–41], and human lymphocytes [23,42,43]. Moreover,
both in rodents and human lymphocytes, functional studies have shown
that several second messengers such as cyclic AMP (cAMP), cyclic GMP
(cGMP), and diacylglycerol have been involved in the signaling of
melatonin in these cells [39,40,42,43]. In this context, it is important to
indicate that the classification and denomination of plasma membrane
melatonin receptors have been realized by using the official nomencla-
ture suggested by the IUPHAR committee [44]. Thus, the so-called
Mel1a receptors were renamed mt1 and more recently MT1 and the
Mel1b receptors were renamed mt2 and after MT2. The expression of
both MT1 and MT2 plasma membrane melatonin receptors have been
reported in both organs and immune cells of different species including
human [45–48]. Moreover, the so-called Mel2 receptors were renamed
MT3, and it is now known that this so-called receptor is currently
considered the binding of melatonin to an enzymatic molecule, more
specifically to quinone reductase 2 (QN2), and is often referred as
cMT3/QN2 complex [49]. Finally, it should be noted that the so-called
Mel1c receptor is expressed in non-mammalian organisms such as
birds, fish and amphibians [50]

Inside the mechanism of action of melatonin, it is important to note
the interaction between melatonin and nuclear receptors as the basis for
the so-called melatonin nuclear receptors. These nuclear receptors
belong to the RZR/RORα subfamily of nuclear receptors and includes
three splicing variants of RORα (RORα1, RORα2 and RORα3) [51]. This
possible nuclear receptor for melatonin is a controversial issue that is
currently not fully clarified. Thus, recent both crystallography data and
functional data show that RORα is a receptor for cholesterol, sterols and
secosteroids [52–54]. However, other studies postulate that melatonin
interacts with RORα and modulates its activity [55,56]. Therefore, the
existence or not of a nuclear receptor for melatonin is a biological
subject that needs to be fully clarified [57]. In this context and in rela-
tion to the cells of the immune system, it is important to indicate that the
existence of RORα has been described in different cell lines and sub-
populations of human lymphocytes [48,58–60] and in mouse thymus
and spleen [46]. Moreover, a specific binding of melatonin to the nu-
cleus of different immune cells has been reported in several species,
including humans [41,61].

Most of the data published to date on the mechanism of action and
biological effects of melatonin on lymphocytes have been mostly per-
formed on T lymphocytes, which are responsible for the so-called cell-
mediated immunity [45,48,60,62,63]. However, few studies have been
conducted regarding the biological effects and biochemical mechanisms
utilized by melatonin on B lymphocytes, which are responsible for hu-
moral immunity. B lymphocytes, after antigen-specific recognition, they
undergo differentiation into plasma cells which produce antibodies
specific for the antigenic molecule that primarily activated the B
lymphocyte [64,65]. Thus, humoral immunity is carried out by anti-
bodies synthesized by plasma cells, and its physiologic function is de-
fense against both extracellular microbes and microbial toxins [66,67].
The types of microorganisms that are combated by humoral immune
system are extracellular bacteria, fungi, and even obligate intracellular
microbes, such as viruses, which are targets of antibody molecules
before they infect cells or when they are released from infected cells
[68–70]. Humoral immunity is the form of adaptive immunity that can

be transferred from immunized to naive individuals through serum that
contains antibodies [71].

This review is focused on the role of melatonin on B Lymphocytes,
the protagonist cells of humoral immunity.

2. Melatonin receptors and B lymphocytes

One of the first molecular requirements to be analyzed for a bio-
logical action of melatonin on B lymphocytes is whether these lym-
phocytes express specific membrane receptors for melatonin. In this
context, in a pioneering research was reported the presence of high-
affinity binding sites for melatonin in human circulating T lympho-
cytes, but not in B lymphocytes [62]. However, and in this same paper,
the authors stated that a binding of melatonin by B lymphocytes cannot
be discarded [62]. Later, the same research group showed by RT-PCR
the presence of a subtype of melatonin membrane receptor (Mel1a) in
different lymphocytes subpopulations from rat thymus (CD4 positive,
CD8 positive, double positive, double negative, and B cells) and spleen
[45] and also the genetic expression of the subtype of melatonin mem-
brane receptor MT1 in human B lymphocytes (CD19+ cells) [48]. On the
other hand, pharmacologic investigations in chickens have shown that
melatonin mediates the cell division of B lymphocytes in response to
greenmonochromatic light through the so-calledmembrane receptors of
the type Mel1a and Mel1c [72,73]. In addition, it has been showed
expression of both MT1 and MT2 receptors in B lymphocytes from
murine spleen and this expression in influenced by circadian time and
lighting conditions [74]. With respect to the so-called nuclear melatonin
receptors (RZR/RORα), it has been reported the expression of the
so-called melatonin nuclear receptor RZR/RORα in different sub-
populations of human immune cells [48]. Thus, in this research the
expression of RZRα and the three isoforms of the RORα (RORα1, RORα2
and RORα3) was studied in B lymphocytes (CD19+ cells), T helper
lymphocytes (CD14− CD14+ cells), cytotoxic T lymphocytes (CD56−

CD8+ cells), monocytes (CD14+ cells), and natural killer (NK) lympho-
cytes (CD56+ cells). As far as B lymphocytes are concerned, both RZRα
and RORα2 expression was observed [48]. Besides, in the lymphoid
organs (spleen and thymus) of the tropical squirrels Funambulus pennati
the expression of RORα has also been described and it has been shown
that this expression is regulated by photoperiod [75]. Finally, and
through a pharmacological approach, has been reported the presence of
RORα in chicken B lymphocytes [72]. Therefore, there are experimental
data that support the existence of receptors for melatonin in B lym-
phocytes and this would be a biochemical basis for the action of mela-
tonin in these lymphocytes.

3. Biological actions of melatonin on B lymphocytes

A first approach to study the actions of melatonin on humoral im-
mune system is to study the effects of pinealectomy on the humoral
immunity. Thus, it has been reported that the abolishment of the pineal
function reduces both the humoral and cellular immune response in the
rodents (Siberian hamster and Funambulus pennanti) [76,77] and in the
birds (chicks and Japanese quail) [78,79].

Another approach in the study of the actions of melatonin on hu-
moral immune system is to investigate the actions of melatonin
administration in immunosuppressed animals by different mechanisms.
Thus, although the administration of pineal gland extracts increased
both the number of antibody-forming cells produced and the biological
response against sheep red blood cells (SRBC) immunization in mice
spleen [80,81], other researchers have found no effect of melatonin in
mice [82] or Syrian hamsters [83]. However, Maestroni and co-workers
have reported in immunosuppressed mice by propranolol or corticoids
that melatonin counteracts the decrease on primary antibody response
to SRBC and the reduction reactivity against antigens in spleen [84,85].

In addition to the aforementioned experimental approaches, other
studies have described different biological actions of melatonin on B
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lymphocytes. Thus, different in vivo studies in chickens have been
demonstrated that exogen administration of melatonin is able to stim-
ulate the proliferation of B lymphocytes [72,86]. Similar results in birds
have been obtained in studios conducted in vitro [73,87]. In the case of
mice, it has also been shown that melatonin is able to stimulate the
proliferation of B lymphocytes [88]. In humans, it has been demon-
strated in cultured tonsil lymphocytes from patients with recurrent
acute tonsillitis and analysed by flow cytometry that the administration
of melatonin increases the amount of B lymphocytes [89]. Furthermore,
in human B lymphocytes it has been shown that melatonin, through the
specific binding of the nuclear receptor RZR/RORα to the promoter of
5-lipoxygenase, inhibits the expression of the gene for this enzyme [90].
Since 5-lipoxygenase is a key enzyme in the biosynthesis of leukotrienes,
which are involved in inflammatory and allergic processes, melatonin
may be involved in these immunological reactions [90].

Another well-studied biological effect has been the role of melatonin
in B-lymphocyte apoptosis. Thus, a study of mice given melatonin in
their drinking water has shown that melatonin inhibited bonemarrow B-
cell apoptosis and this effect was limited mainly to the earliest stages of
B-cell differentiation [91]. Similar results were shown by Lu et al., in
mouse bone marrow B lymphocytes, where they observed that mela-
tonin inhibited pre-B cell apoptosis probably through stimulation of
stromal cells [92]. Therefore, melatonin can be a checkpoint regulator in
early B-cell development and can also contribute to the diurnal rhythm
in bone marrow B-lymphocyte production. Although this effect could be
considered as a potentiation of humoral immunity, it should be taken
into account that an increased production of B-lymphocytes could allow
genetically aberrant B-lymphocytes to evade the normal deletion pro-
cess, and this is a clear potential risk factor for the development of B-cell
lymphoma. In this context, it is important to indicate that melatonin can
inhibit apoptosis in the BL41 Burkitt lymphoma cell line [93]. However,
despite all the above mentioned, the role of melatonin in B lymphocyte
apoptosis is not fully clarified since it has been demonstrated that
melatonin stimulates caspase activation and apoptosis in different
human malignant B lymphocyte cell lines and that this effect is inde-
pendent of both MT1 and MT2 receptors [94].

4. Melatonin and IgG

Several studies focusing exclusively on the immunomodulatory role
of melatonin on IgG production has been published. Thus, in a pre-
liminary study was reported that melatonin increased the production of
IgG1 antibody and reduced IgG2a isotype in female BALB/c mice [95].
While another study showed that melatonin tended to decrease IgG
plasma levels in mink [96]. Moreover, in male golden hamster it has
been reported that photoperiod can modulate the plasma melatonin
levels to improve several immune parameters including an increase in
the IgG production [97]. in studies with another experimental approach,
it has been well established the immunoenhancing properties of mela-
tonin on the immunocompromised status induced by glucocorticoid.
Thus, it has been showed that melatonin increases IgG production in
dexamethasone-treated tropical rodent Funambulus pennanti [98] and in
male golden hamster [99]. Moreover, melatonin inhibited the increase
in IgG production produced by LPS-stimulated mouse mammary tissue
in vitro [100]. On the other hand, it has been shown that melatonin
improves the colostrum quality based on IgG concentration [101]. In
addition, prenatal melatonin treatment of pregnant ewes has been re-
ported to increase the plasma IgG levels of their infected offspring with
Eimeria species [102]. Finally, it has been reported that melatonin
treatment improves colonic homeostasis in ageing gerbils by reducing
inflammation, regulating the intestinal microbiota and reducing serum
IgG and TNFα levels [103].

On the signaling pathway used by melatonin to exert its effects on
IgG production, it has been showed that melatonin receptor subtype
MT2 but not MT1 receptor is involved in the melatonin-induced
enhancement of both cell-mediated and humoral immunity [104].

5. Melatonin and IgM

Several studies have been shown an effect of melatonin on IgM
production (and in some of them also on IgG). In a preliminary study was
reported that melatonin administered in the evening enhances both IgG
and IgM antibodies in vivo according to a dose-response manner and
that the opioid receptors blocker naltrexone antagonizes this effect
[105]. Subsequently, it has been investigated the effects of melatonin
administration on humoral immune responses of young and aged rats.
Thus, was communicated that melatonin increased the levels of IgG1
and IgM in aged rats. In the young rats, the IgG1 control group levels
were significantly higher than that of the melatonin treated group, while
IgM levels were not significantly different [106]. In another study has
been reported that melatonin mediated photoperiod control of both
endocrine adaptations and humoral immune response in male Siberian
hamsters [107]. In an interesting research has been investigated the
effect of suppressed melatonin synthesis on the production of different
antibody in BALB/c mice immunized with both T-cell-independent (TD)
and T-cell-dependent (TI) antigens and kept under normal lighting,
constant exposure to light and exposed to constant light and treated
daily with melatonin [108]. The results found showed melatonin
modulated both TD and TI antibody production. Thus, abolished mela-
tonin synthesis increased the production of IGM, IgG1, IgG2b and IgG3
after immunization with TI antigen. Moreover, the levels of TD anti-
bodies IgM, IgG2a, IgG2b and IgG3 also increased, while the levels of
IgG1 significantly decreased in mice exposed to light. The diary mela-
tonin treatment returned the antibody level back to normal. Further-
more, the antibodies concentration in the blood of mice kept at normal
lighting condition was significantly higher when the immunizations
were performed in the evening. Finally, and also in this paper, it was
shown both in vitro and in vivo an action of melatonin on B lymphocytes
via MT2 receptor [108].

On the other hand, it has been shown that melatonin increases both
the plasma IgM and IgG levels both in aging laying hens [109] and in
goldfish Carassius auratus exposed to water at elevated temperature
induced stress [110].

In addition to these physiological studies, also it has been studied the
effect of melatonin on humoral immunity in experimental models of
lupus. Thus, in MRL/Mpj-Fas(Ipr) mice, which develop spontaneously
an autoimmune disease that has many features resembling human sys-
temic lupus erythematosus, it has been reported that female mice treated
with melatonin showed a diminution of titers of total serum IgG and
IgM. However, in male mice treatment with melatonin exhibited the
opposite effect. Similar effects were observed in cultured lymphocytes
from lymph nodes and spleen [111]. The authors proposed that mela-
tonin observed effects in MRL/Mpj-Fas(Ipr) mice are gender dependent,
probably through modulation and inhibition of sex hormones [111].
This hypothesis was confirmed in a further study by the same group
[112]. Similar effects of melatonin on IgM levels were observed in a
pristane-induced lupus mice model [113].

6. Melatonin and IgA

Several studies have been conducted on the role of melatonin on IgA
production. Thus, it has been shown in humans that melatonin is able to
increase IgA levels in saliva [114]. In addition, it has been reported that
the melatonin administration in humans 30 minutes before intense
physical exercise increases serum IgA levels after exercise [115]. On the
other hand, it has been reported that exposure to bright light during the
daytime affects circadian rhythms of melatonin excretion in urine and
salivary IgA levels. Thus, urinary melatonin excretion was significantly
higher during the night-time after the bright light condition than during
the dim light condition. Moreover, both the concentration and the
quantity of salivary IgA tended to be higher in the condition of bright
light that in the dim light condition [116]. In relation to the above
described, also it has been shown a circadian and homeostatic
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sleep-wake regulation of secretory IgA [117]. On the other hand, it has
been reported that the decrease of IgA production in duodenum in a
chicken model of intestinal inflammation produced by lipopolysaccha-
ride was attenuated by melatonin [118]. It has been shown that mela-
tonin is able to increase the plasma IgA levels in aging laying hens [109].
Finally, it has been described that prepartum supplementation with
tryptophan in Holstein cows increases plasma melatonin levels and in-
creases colostrum IgA levels [119].

7. Melatonin and IgE and IgD

To date, very few studies have been conducted about the effects of
melatonin on the IgE production and most of the existing data derive
from studies realized in experimental models of atopic dermatitis. Thus,
different experimental data indicate that melatonin is able to inhibit the
development of atopic eczema and reduces serum total IgE [21,120].
Moreover, in in a rat model of ovalbumin-induced allergic rhinitis, it has
been demonstrated that melatonin reduced serum ovalbumin-specific
IgE concentrations [121]. On the other hand, in studies conducted in
LPS-treated RAW264.7-line cell, the administration of melatonin-loaded
extracellular vesicle-mimetic nanovesicles effectively suppressed serum
IgE levels [122]. Moreover, melatonin treatment restored 2,4-dinitro-
fluorobenzene (DNFB)-induced skin microbiota dysbiosis in a mouse
model of atopic dermatitis. More specifically, melatonin improved
lesion size, different inflammatory parameters (mast cells, IgE, IL-4 and
IL-13) and skin microbiota imbalance [123].

The immunological role of IgE is closely related to the biology of
mast cells. Mast cells are one of the main effector cells with a protective
role against parasitic and bacterial infections [124]. It is interesting to
note that mast cells activation and distribution are associated with the
circadian clock, and it should not be forgotten that the main mediator
involved in the circadian rhythm is melatonin [125]. In this context, it is
important to indicate that it has been demonstrated the both synthesis
and release of melatonin by mast cells (RBL-2H3 cells) and the existence
of both MT1 and MT2 melatonin receptors in these cells [34], which
provides a molecular basis for a possible regulatory effect of melatonin
on inflammatory reactions mediated by these cells [34]. Thus, it has
been shown that the anti-inflammatory actions of melatonin would be
carried out through the NF-κB factor inhibition [126]. Finally, it is
interesting to note that melatonin shows a protective role both con-
centration and time-dependent against mast cells cytotoxicity mediated
by phorbo12-myristate 13-acetate plus calcium ionophore A23187 [26].

Regarding the effects of melatonin on the production of IgD, there is
no experimental data to date.

8. Melatonin and vaccination: an emerging area

One of the fields in which melatonin has an interesting biomedical
potential is the area of vaccines. Vaccines have been developed and used
to generalize or enhance immunity against a given disease. The ability of
a vaccine to promote immune protection is determined not only by the
antigen used in the creation of the vaccine, but also by the adjuvant
substances capable of promoting and generalizing an efficient immune
response against the infectious agent of interest. Based on the immu-
noregulatory properties of melatonin, its use in vaccination processes
has been investigated. Thus, it has been shown that melatonin increases
the humoral responses in sheep vaccinated against the strains A1 and C
of Dichelobacter nodosus, which is the bacteria that causes ovine footrot,
which is the main cause of lameness in sheep [127]. In this study, the
administration of subcutaneous slow-release melatonin implants
increased antibody levels against the two serotypes of Dichelobacter
nodosus. in synergy with aluminum hydroxide. More specifically,
melatonin administration increased serum IgG levels and also increased
the number of T lymphocytes CD4+ and B lymphocytes IgG+ in pe-
ripheral blood [128,129]. On the other hand, the beneficial of melatonin
on the immune response to vaccination against Clostridium perfringens

type D in sheep have also been described [130]. Interestingly in this
study it was observed that the highest increases in melatonin-induced
serum antibody levels were obtained when vaccination took place in
the prepartum period, suggesting that the timing of immunization plays
an important role in the effects of melatonin on the immune response.
These beneficial effects of melatonin in vaccination could be explained
by two mechanisms: melatonin could stimulate antibody production by
increasing antigenic presentation or melatonin could increase the pro-
duction of cytokines involved in stimulating the humoral immune
response [11,12,131]. Another investigation has demonstrated the
potentiating effect of melatonin on the efficacy of vaccination against
Schistosoma mansoni antigens in hamsters [132]. Interestingly, in this
study it was shown that the effect of melatonin was accompanied by
significantly higher GSH concentrations. In this context, it is necessary
to comment that, based on its antioxidant properties, melatonin pro-
tected against inflammation associated with Aβ vaccination via direct
and indirect mechanisms [133], suggesting that melatonin could also be
an effective molecule adjuvant in vaccines developed for immuno-
therapy of Alzheimeŕs disease. Thus, it is well known that the functions
of the immune cells are strongly influenced by the oxidant/antioxidant
balance and the antioxidant status play an important role in the physi-
ology of these cells, protecting them of oxidative stress and preserving
the cellular function. These antioxidant properties of melatonin were
also observed in an open-field vaccination procedure in sheep against
Dichelobacter nodosus [134] it being noted that the co-administration of
melatonin with footrot vaccine neutralized the increase of serum nitric
oxide (NO) found in vaccinated animals. This effect could be explained
by the direct action of melatonin on NO or by the inhibition of iNOS
activity [135]. Finally, it is important to indicate the interesting role of
melatonin in the recent pandemic caused by the coronavirus disease
virus 2019 (COVID-19). COVID-19 is a life-threatening infectious res-
piratory disease caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) and it has caused morbidities and deaths
worldwide. This pandemic revealed the urgent need to find pharmaco-
logical agents and/or vaccines. In this context, melatonin has been
postulated as a possible and effective adjuvant therapeutic agent to be
considered in the treatment of this disease [136–138].

9. Concluding remarks

A large amount of experimental evidence has been reported sug-
gesting a direct link between the pineal gland/melatonin and the im-
mune system; this evidence indicates a bidirectional communication
where melatonin influences immune system while immune signals also
affect pineal function. However, most of the published data refer to
studies performed with lymphocytes, and more specifically, with T
lymphocytes. Therefore, it is information on the immunomodulatory
role of melatonin in cellular immunity [10,23,60,62,63]. However,
there are few studies concerning the effects of melatonin on B lympho-
cytes, which are the cells responsible for the so-called humoral immu-
nity. B lymphocytes, after activation by antigen-specific recognition,
differentiate into plasma cells, which are responsible for the synthesis
and secretion of antibodies [64,65]. Therefore, humoral immunity is
mediated by antibodies secreted by plasma cells, and its physiologic
function is defense mainly against extracellular microbes and microbial
toxins [66,67]. In this review, we have focused on the role of melatonin
on B Lymphocytes, the cells involved in humoral immunity (Fig. 1). The
data collected in this review, together with all the existing information
on the immunomodulatory effects of melatonin, reinforce the postulate
of the important role of melatonin in both the physiology and patho-
physiology of the immune system (Fig. 2).
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