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Communication
Spectral MoM NUFFT-Based Formulation for the Efficient Analysis of

High-Order Bandpass FSSs With Tightly Packed Nonresonant
Elements in Skewed Grid

Juan Córcoles and Rafael R. Boix

Abstract— This communication presents a formulation of the
spectral-domain Method of Moments (spectral MoM) for the analysis of
periodic multilayered structures with a number of metallized interfaces
alternating patches and apertures. Edge singularity entire-domain basis
functions are used to model the electric currents on the patches
and the tangential electric fields in the apertures. The formulation
is especially suitable to characterize high-order bandpass frequency
selective surfaces (FSSs) made up of nonresonant elements. Also in
this communication, the nonuniform fast Fourier transform (NUFFT)
is used in the spectral MoM to cover the case of unit cells in skewed
grids, which enables the analysis of nonrectangular periodic lattices
with tightly packed elements. Numerical examples of the design of
third-order and fifth-order bandpass FSSs are presented. The FSSs are
made up of hexagonal patches and apertures arranged in an equilateral
triangular lattice. Results are cross-checked against commercial software
CST Microwave Studio (CST MWS), and excellent agreement is found,
our in-house software being more than one order of magnitude faster
than CST MWS. This CPU time saving makes the proposed formulation
very convenient for full-wave optimization and design.

Index Terms— Fourier transforms, frequency selective surfaces (FSSs),
moment methods, multilayered media, periodic structures.

I. INTRODUCTION

The spectral-domain Method of Moments (spectral MoM) is a
long-known, widely used technique to analyze planar frequency selec-
tive surfaces (FSSs) [1]–[3]. In this method, with the objective of alle-
viating the computational burden, entire-domain basis functions [2]
with edge singularities [1], [4] are employed in the spatial domain
to approximate electric/magnetic currents inside conducting/aperture
elements with canonical shape. This ensures a fast convergence of
the spectral MoM with respect to the number of basis functions [4].
One successful strategy for the extension of edge-singularity basis
functions to more complex shapes is presented in [5]. However,
closed forms for the Fourier transforms of these basis functions are
not available, in general, and numerical procedures are required to
compute their spectral counterpart. Recently, the nonuniform fast
Fourier transform (NUFFT) has been introduced as a numerical
tool for the determination of these Fourier transforms in periodic
structures with rectangular unit cells [6]. The NUFFT allows an
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adaptive sampling within the conducting/aperture geometry, which
is more accurate than the standard rectangular sampling provided by
the regular FFT.

Solid-interior type conducting/aperture FSS elements usually
exhibit a nonresonant behavior (as opposed to loop type elements,
which are resonant) [3]. Therefore, they are usually referred to as
capacitive patches and inductive apertures because of their analogous
circuital response. Although solid-interior type elements have not
traditionally been among the top choices to implement bandpass
FSSs, a few years ago Al-Joumayly and Behdad reported the design
of high-order bandpass FSSs made up of a multilayered structure
where capacitive patches alternate with inductive apertures [7]. These
FSSs have the advantage that they are electrically thin and their
periodicities are a small fraction of the free-space wavelength, which
makes the FSSs quite insensitive to changes in the polarization
and angle of the incident electromagnetic (EM) waves. Although
the application of the spectral MoM to analyze arrays of stacked
patches [8] or coupled apertures [5] embedded in a multilayered
structure is of common practice, works where apertures mix with
patches are usually limited to one or two layers, mostly based on the
pioneer formulation found in [9].

This communication first proposes a specific formulation for the
spectral MoM analysis of a periodic multilayered structure with an
arbitrary number of alternating patches and apertures. The formula-
tion is based on the transverse propagation matrix relating electric
currents and electric fields at the interfaces [10], and it can be
considered to be a generalization of [9]. Because of the alternating
nature of patches and apertures, the formulation is especially indi-
cated for the analysis of multilayered bandpass FSSs made up of
nonresonant elements [7]. Also in the communication, the NUFFT
for the spectral MoM [6] is extended to analyze the case of skewed
grids. This follows the recommendations of Munk, who suggests
that a way to relieve the impact of solid-interior type elements on
FSS design is their arrangement in nonrectangular lattices to tightly
pack them [3]. Finally, as a practical application of the proposed
formulation, we present numerical examples of design of third-order
and fifth-order bandpass FSSs made up of hexagonal patches and
apertures, which are arranged in an equilateral triangular lattice.
These particular examples show that the formulation proposed in the
communication has potential use in full-wave optimization and design
of FSSs owing to its computational efficiency.

II. PROPOSED FORMULATION

In the following, {·} and [·] will denote, respectively, column
vectors and matrices. As particular cases, �· will denote a 2-D column
vector whose entries account for the x and y component of a
transverse (to z) geometrical vector, while ·̃ will denote a 2 × 2
dyadic tensor which relates two 2-D vectors. Straight bold fonts
will denote quantities in the discrete 2-D Fourier transform domain,
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Fig. 1. Side view of the multilayered structure to be analyzed.

which depend on the two discrete Fourier variables (kmn
x , kmn

y ). This
spectral domain dependence will be usually dropped and implicitly
assumed. Italic bold fonts will denote quantities in the spatial
domain, which depend on the two variables (x, y). Again, this spatial
domain dependence will be usually dropped and implicitly assumed.
A time dependence of the type e jωt will be assumed and suppressed
throughout.

A. Spectral MoM for Arbitrary Number of Alternating Patches and
Apertures Embedded in Multilayered Dielectric Media

A side view of the periodic structure to be analyzed is shown
in Fig. 1. It consists of Q metallizations levels placed at the interfaces
of a multilayered dielectric medium perpendicular to the z-axis,
which is assumed to be infinite in the x- and y-directions. The
metallizations are assumed to be perfect electric conductors (PECs) of
negligible thickness. Each dielectric layer has a complex permittivity
εq = ε0εrq (1 − j tan δq ) and a thickness hq (the magnetic perme-
ability is considered to be μ0 in all space). Within the unit cell, along
the z-axis, each patch is followed by an aperture and each aperture is
followed by a patch. Without loss of generality, the structure in Fig. 1
considers that both the first and the last (Qth) metallization levels are
made of patches, thus resulting in Q being an odd number. This way,
the qth metallization level is a patch if q ∈ O or an aperture if q ∈ E,
where O and E stand for the set of, respectively, the odd and even
natural numbers. Please note that the following analysis is valid for
other different cases of first and last metallization levels, as long as
patches alternate with apertures along the z-axis.

Let us assume an EM plane wave with propagation direction
(θinc, φinc) impinges on the multilayered structure from the z > 0
half-space. Assuming an operation frequency that ensures the absence
of grating lobes, the periodic structure of Fig. 1 will generate an
EM reflected plane wave propagating toward the z > 0 half-space
in the specular reflection direction, and an EM transmitted plane
wave propagating toward the z < − ∑Q−1

q=1 hq half-space in the
direction of the incident wave. The objective of the application of the
spectral MoM is the computation of the reflection power coefficient,

R00, as the ratio between the power carried by the reflected wave
and that carried by the incident wave, and also the computation
of the transmission power coefficient, T00, as the ratio between the
power carried by the transmitted wave and that carried by the incident
wave [11].

In the spectral domain, the structure of Fig. 1 can be characterized
in matrix form through (1), as shown at the bottom of the page, (see
[10, eq. 5]), where every 2×2 matrix L̃q,p relates the electric current
�Jq and the tangential electric field �Ep at, respectively, the qth and
pth metallized interfaces by assuming the rest of metallized interfaces
are substituted by PEC planes. This transverse propagation matrix can
be computed by means of the recurrent algorithm described in [10].
For the sake of clarity, Fig. 1 only shows one dielectric medium
between metallizations, though the inclusion of an arbitrary number
of dielectric layers between two consecutive metallization levels can
be easily accomplished within this algorithm.

The approximation of �Eq in (1) with basis functions, followed by
Galerkin’s method, would lead to the application of the spectral MoM
for multilayered arrays of coupled apertures [5]. In a similar manner,
by taking the inverse of the matrix system in (1), the so-called spectral
dyadic Green’s function can be readily computed [10], and in this case
the approximation of �Jq with basis functions will eventually lead to
the spectral MoM for multilayered arrays of stacked patches [8].
However, for the application of the spectral MoM to the structure
shown in Fig. 1, it is convenient to approximate �Jq for q ∈ O

(patches) and �Eq for q ∈ E (apertures), thus requiring a matrix
relation in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�EQ�JQ−1
...

�Jq+1�Eq
�Jq−1

...
�J2�E1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃Q,Q · · · �̃Q,1
...

. . .
...

...
. . .

...
... �̃q,q

...
...

. . .
...

...
. . .

...

�̃2,Q · · · �̃2,1
�̃1,Q · · · �̃1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�JQ�EQ−1
...

�Eq+1�Jq
�Eq−1

...
�E2�J1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2)

To compute the matrix entries in (2), we solve from (1) for the
required relations between all �Eq and �Jq in (2). After some simple
but careful algebraic operations, we can arrive at

�Eq = −L̃−1
q,q L̃q,q−1 �Eq−1 + L̃−1

q,q
�Jq − L̃−1

q,q L̃q,q+1 �Eq+1, q ∈ O

(3)
�Jq = −L̃q,q−1L̃−1

q−1,q−1L̃q−1,q−2 �Eq−2 + L̃q,q−1L̃−1
q−1,q−1

�Jq−1

+(
L̃q,q − L̃q,q−1L̃−1

q−1,q−1L̃q−1,q

− L̃q,q+1L̃−1
q+1,q+1L̃q+1,q

)�Eq

+ L̃q,q+1L̃−1
q+1,q+1

�Jq+1

− L̃q,q+1L̃−1
q+1,q+1L̃q+1,q+2 �Eq+2, q ∈ E (4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�JQ
...

�Jq
...

�J2�J1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̃Q,Q L̃Q,Q−1 0̃ · · · 0̃ 0̃ 0̃ 0̃ 0̃ · · · 0̃ 0̃ 0̃
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

0̃ 0̃ 0̃ · · · 0̃ L̃q,q+1 L̃q,q L̃q,q−1 0̃ · · · 0̃ 0̃ 0̃
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

0̃ 0̃ 0̃ · · · 0̃ 0̃ 0̃ 0̃ 0̃ · · · L̃2,3 L̃2,2 L̃2,1
0̃ 0̃ 0̃ · · · 0̃ 0̃ 0̃ 0̃ 0̃ · · · 0̃ L̃1,2 L̃1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�EQ
...

�Eq
...

�E2�E1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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where the terms with q ± 1 and q ± 2 are not actually present when
their values are lower than 1 or higher than Q (i.e., the cases q =
1, 2, Q −1, Q). Direct inspection of (2)–(4) provide the values �̃p,q
in (2), where, as expected from the structure in Fig. 1, it should be
remarked that �̃p,q = 0̃ for p < q − 1 and p > q + 1 if q ∈ O,
while �̃p,q = 0̃ for p < q − 2 and p > q + 2 if q ∈ E.

In order to determine the reflection and transmission power coef-
ficients, R00 and T00, for the structure of Fig. 1, the quantities �Jq
(q ∈ O) and �Eq (q ∈ E) have to be approximated in terms of known
basis functions �fq,nq and corresponding degrees of freedom (d.o.f.)
dq,nq as

�Jq =
Nq∑

nq=1

dq,nq
�fq,nq , q ∈ O, �Eq =

Nq∑
nq=1

dq,nq
�fq,nq , q ∈ E (5)

where Nq stands for the total number of basis functions used at the
qth metallization level.

Then, the final spectral MoM system of linear equations
[�]{d} = {e} is built, {d} being a vector containing all d.o.f. in the
problem. For that purpose, we introduce (5) into (2) and apply
Galerkin’s method in the spectral domain [1] to arrive at (the
dependence of (kmn

x , kmn
y ) is now explicitly stated)

�
p,n p
q,nq =

+∞∑
m=−∞

+∞∑
n=−∞

�fp,n p

(
kmn

x , kmn
y

)
· �̃p,q

(
kmn

x , kmn
y

)�fq,nq

(
kmn

x , kmn
y

)
(6)

ep,n p = −�fp,n p

(
k00

x , k00
y

) ·
⎧⎨
⎩

�E0,ab
p , p ∈ O

�J0,ab
p , p ∈ E.

(7)

In (6) and (7), the superscript p, n p of �
p,n p
q,nq corresponds to row

index n p + ∑p−1
p�=1 Np� in [�] and {e}, respectively, while a similar

rationale applies to the subscript q, nq of �
p,n p
q,nq for the column index

in [�]. In (6) and (7), · stands for the scalar product between two
C2 vectors (i.e., including the complex conjugate for the first one).
Finally, in (7), �E0,ab

p and �J0,ab
p stand for the complex amplitude of,

respectively, the electric field and the electric current, in the situation
where patches and apertures are absent (i.e., no metal for p ∈ O and
all metal for p ∈ E).

Once the MoM system of equations is solved for a given incident
EM plane wave, electric fields of the reflected and transmitted plane
waves in the absence of grating lobes can be straightforwardly
computed, respectively, in terms of the first and the last row in (2)
by using (5). Then, R00 and T00 can be readily obtained in terms of
these reflected and transmitted electric fields (see [11, Sec. II-B] for
details).

B. NUFFT of Basis Functions in Skewed Grids

Let us assume the unit cell of the periodic structure of Fig. 1 is an
arbitrary parallelogram belonging to a generic skewed grid, as shown
in red in Fig. 2(a). The lower-left corner of the parallelogram is
placed at (x, y) = (0, 0), with sides a and b forming an angle of,
respectively, α1 and α2 upward with the x-axis. For this type of
lattice, the spectral variables (kmn

x , kmn
y ) introduced in (6) and (7)

take the form [2]

kmn
x = kx0 + m

2πb

A
sin α2 − n

2πa

A
sin α1 (8)

kmn
y = ky0 − m

2πb

A
cos α2 + n

2πa

A
cos α1 (9)

Fig. 2. (a) Nonrectangular unit cell for a generic skewed grid (red) and
contour (blue) of the element (patch or aperture) inside the unit cell at the
qth metallization level. (b) Arrangement of alternating hexagonal patches
(dashed green) and apertures (solid blue) and corresponding unit cells (dotted
red) for a lattice made of equilateral triangles.

where kx0 = k0 sin θinc cos φinc, ky0 = k0 sin θinc cos φinc, k0 is the
free-space wavenumber and A is the unit cell area, given by

A = ab sin(α2 − α1). (10)

The contour of a patch for q ∈ O or an aperture for q ∈ E

is shown in blue in Fig. 2(a). This contour is bounded at y�
q =

±Lq for the local coordinate system (x �
q , y�

q ) whose origin is set
to (x, y) = (xcq , ycq ). The leftmost and rightmost boundaries are
defined, respectively, by parametrization functions x �

q = l1q(y�
q) and

x �
q = l2q (y�

q). Without loss of generality, there can be more than
one patch/aperture in the unit cell [6], though we will restrain our
exposition to the case where only one patch/aperture is present.

To approximate �Jq (x, y) inside patches for q ∈ O and �Eq (x, y)

inside apertures for q ∈ E within the region bounded by this
contour, we make use of the auxiliary functions �ζ q,nq (x �

q , y�
q) (nq =

1, . . . , Nq ) defined below

�ζ q,i
(
x �

q , y�
q
)

= 1

l−q
(
y�

q
) Tr1−1(χq )√

1 − χ2
q

Us1−1(ϕq )

√
1 − ϕ2

q

×
(

x̂

(
χq

dl−q
(
y�

q
)

dy�
q

+ dl+q
(
y�

q
)

dy�
q

)
+ ŷ

)
(11)

�ζ q, j+N1r
q N1s

q

(
x �

q , y�
q
)

= 1

Lq
Ur2−1(χq)

√
1 − χ2

q
Ts2−1(ϕq )√

1 − ϕ2
q

x̂ (12)

χq = x �
q − l+q

(
y�

q
)

l−q
(
y�

q
) , ϕq = y�

q

Lq
, l±q

(
y�

q
) = l1q

(
y�

q
) ± l2q

(
y�

q
)

2

− Lq ≤ y�
q ≤ Lq , l1q

(
y�

q
) ≤ x �

q ≤ l2q
(
y�

q
)

(13)

where Tn and Un stand for nth order Cheybychev polynomials of
first and second kind, respectively, and where r1 = 1, . . . , N1r

q , s1 =
1, . . . , N1s

q , r2 = 1, . . . , N2r
q , s2 = 1, . . . , N2s

q , i = 1, . . . , N1r
q N1s

q ,
j = 1, . . . , N2r

q N2s
q and Nq = N1r

q N1s
q + N2r

q N2s
q . The basis

functions of (11) and (12) were introduced in [5] to model magnetic
currents on apertures because they account for the singularities of
the magnetic currents at the edges of the apertures. Bearing in mind
that the edge singularities of the electric currents on the patches are
the same as those of the magnetic currents on the apertures, and
taking the definition of magnetic currents on apertures into account,
the basis functions for �Jq and �Eq (see the spectral counterpart in
(5)) are chosen as

�f q,nq
= �ζ q,nq

, q ∈ O, �f q,nq
= ẑ × �ζ q,nq

, q ∈ E. (14)
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The functions �f q,nq
(x, y) are defined as �f q,nq

(x �
q , y�

q) if −Lq ≤
y�

q ≤ Lq and l1q (y�
q) < x �

q < l2q (y�
q), and �0 elsewhere. The Fourier

transforms take the form

�fq,nq

(
kmn

x , kmn
y

) = 1

A

∫∫
A

�f q,nq (x, y)e− j
(
kmn

x x+kmn
y y

)
dxdy. (15)

By carrying out a change of variable (x �
q , y�

q ) = (x, y) − (xcq , ycq)

and using (8) and (9), we can arrive after some operations at the
following expression for (15):
�fq,nq

(
kmn

x , kmn
y

)
= e− j (kx0xcq+ky0 ycq )

A

∫ Lq

−Lq

×
[ ∫ l2q

(
y�

q

)
l1q

(
y�

q

) �f q,nq

(
x �

q , y�
q
)
e− j

(
kx0 x �

q+ky0 y�
q

)

× e
− j

(
m 2πb

A

[(
x �

q+xcq

)
sin α2−

(
y�

q+ycq

)
cos α2

])

× e
− j

(
n 2πa

A

[(
y�

q+ycq

)
cos α1−

(
x �

q+xcq

)
sin α1

])
dx �

q

]
dy�

q . (16)

Numerical computation of (16) through the NUFFT requires its
discretization in the canonical NUFFT form [12]

�fq,nq ≈
NS−1∑
k=0

�δq,ke− j (mμq,k+nνq,k ), −M ≤ m, n < M (17)

where the truncation of m, n for the double infinite sum in (6) is now
exposed.

Assuming −Lq ≤ y� ≤ Lq is sampled in Ny points and l1q (y�
q) <

x �
q < l2q (y�

q) is sampled in Nx points, the sampling values are

y�
q,i =−Lq + (2i + 1)Lq/Ny , x �

q, j i =lq1
(
y�

q,i
)+(2 j + 1)l−q

(
y�

q,i
)

(18)

where i = 0, . . . , Ny − 1 and j = 0, . . . , Nx − 1. The total number
of sampling points is NS = Nx Ny , and the global index k can be
computed as k = i+ j Ny . By close inspection of (16)–(18), the values
in (17) for the direct computation of �fq,nq through the NUFFT can
be derived as

�δq,k = 4Lqe− j
(
kx0 xcq+ky0 ycq )

Nx Ny A
l−q

(
y�

q,i
) �f q,nq

(
x �

q, j i , y�
q,i

)
× e− j

(
kx0 x �

q, j i +ky0 y�
q,i

)
(19)

μq,k = 2πb

A

[(
x �

q, j i + xcq
)

sin α2 − (
y�

q,i + ycq
)

cos α2

]
(20)

νq,k = 2πa

A

[(
y�

q,i + ycq
)

cos α1 − (
x �

q, j i + xcq
)

sin α1

]
. (21)

III. NUMERICAL APPLICATION EXAMPLES

Although the formulation presented in Section II is quite general
and can be applied to a wide variety of FSSs alternating patches and
apertures [6], for practical purposes we have chosen a geometrical
shape that can yield a tightly packed FSS thanks to its inclusion
in a skewed grid: the regular hexagon arranged in an equilateral
triangular lattice. Fig. 2(b) shows a 2-D schematic of the proposed
configuration, where hexagonal capacitive patches (in dashed green
lines) are separated sq for q ∈ O, while inductive wire grids,
generated by hexagonal apertures (in solid blue lines), have a width
wq for q ∈ E. The corresponding unit cell is shown in the dotted
red line, and it can easily be seen that a = b, α1 = π/6
and α2 = π/2. Please note that aperture centers are shifted with
respect to patch centers (i.e., wire grid centers coincide with patch
centers). This topology stems from [7], where squared patches and

Fig. 3. Topology of the FSS equivalent circuit for bandpass filter responses.

shifted squared apertures are alternated in a squared lattice. Since
the objective of this work is to prove the efficiency and accuracy
of the proposed formulation rather than a design procedure, most
of the initial design steps (especially those regarding the reference
circuit and the choice of design frequencies and materials) are taken
from [7]. Thus, the dielectric material used for all the FSS layers
is the Cer-10 material from Taconic corporation, with a relative
permittivity of εr = 10 and a loss tangent of tan δ = 0.0035 in
the employed frequency band. One important advantage of the FSS
topology introduced in Fig. 2(b) over that reported in [7] is that the
total area of the unit cell is reduced by a factor sin(π/3) = 0.866
(86.6%), according to (10), if the same values of a and b are used.
This means the overall size of the FSS can be eventually reduced if
a similar response is achieved. To accomplish this goal, we have set
a = b = 3.5 mm as in [7].

Fig. 3 shows the topology of the reference equivalent circuit
used as the initial design step of the FSS. The response of this
circuit (lossless) will be used to check the response of the final FSS
designed. The topology of Fig. 3 is meant for an N th order filter,
so that the number of nonresonant elements amounts to Q = 2N −1.
In all considered cases, Z0 is the free space impedance and the
normalized source and load impedances are r1 = rN = 1 since
an odd value of N has always been used. For the design of the
FSS, we follow the procedure described in [7] starting from an
N th order bandpass coupled resonator filter. Normalized values for
quality factors of the first and last resonator as well as the coupling
coefficients between the resonators can be found in [13].

In order to prove the efficiency of the formulation proposed in
this communication, we have made a comparison between the CPU
time required by our in-house software and that required by the
general-purpose commercial software CST Microwave Studio (CST
MWS), specifically with the use of its frequency solver. To estimate
the CPU time required by CST MWS, we have considered the
average time taken by each discrete frequency point once the mesh
adaptation process is finished (i.e., the time taken by each discrete
frequency point for the final mesh which ensures convergence).
The implementation of our formulation has been coded in Fortran.
All simulations are performed in a desktop computer with Intel
Core i7-7700 CPU at 3.6 GHz with 32 GB RAM (and Microsoft
Windows 10).

A. Third-Order Bandpass FSS

The first design considered is a third-order bandpass FSS with a
0.1 dB ripple Chebychev response, a center frequency of 10.82 GHz,
and a fractional bandwidth of 21.7%. These specifications are found
in [7], where, as said, the steps to calculate the equivalent circuit
parameters shown in Table I are described. The thickness of each
Taconic Cer-10 layer is chosen as 0.64 mm among the commercial
available values.

For the analysis of the structure, the double summations in (6) are
truncated to 8100 terms (corresponding to setting M = 45 in (17)),
the same as the total number of sampling points for the NUFFT. In all
metallizations levels (q = 1, . . . , 5) the number of basis functions is
set to Nq = 32 (corresponding to N1r

q = N1s
q = N2r

q = N2s
q = 4).

Regarding the design, the initial parameters for the FSS are set to
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TABLE I
THIRD-ORDER BANDPASS CIRCUITAL AND FSS PARAMETERS

Fig. 4. T00 and R00 of the third-order bandpass FSS for normal incidence.

s1 = s3 = s5 = 0.5 mm and w2 = w4 = 1.3 mm. With these
values, the transmission and reflection responses of the FSS for
normal incidence (θinc = 0◦), coincident for T Mz and T Ez , are
shown in dashed-dotted magenta line in Fig. 4. As can be seen,
it is far away from the desired circuital response, shown in the
dashed-dotted black line in Fig. 4. From these initial design values,
a simple design strategy is followed which consists of varying the
values of the geometrical parameters s1, w2, s3, w4, and s5 until
the three poles of the full-wave FSS reflection response for normal
incidence match those of the circuital response, which are located
at 9.992, 10.82, and 11.47 GHz. For that purpose, we include the
MoM analysis inside an optimization routine, namely the BOBYQA
algorithm [14], to minimize the sum of the magnitude of the reflection
at those frequencies. We would like to point out that this full-wave
optimization is possible because of the efficiency of the proposed
spectral MoM NUFFT-based formulation, which only requires around
8.1 s for the evaluation of one cost function. The optimization
algorithm just takes 86 cost function evaluations to yield the values
for s1, w2, s3, w4, and s5 shown in Table I. The overall response
of the FSS is shown in the red solid line in Fig. 4. To crosscheck
the obtained results, a simulation of the final structure has been
carried out in CST MWS. The result is shown in the dashed blue
line in Fig. 4.

To further cross-check the capabilities of the proposed method,
the designed FSS is simulated at an oblique incidence angle of θinc =
45◦. The transmission and reflection responses (equal for φinc = 0◦
and 90◦), together with those achieved by CST MWS, are shown
in Fig. 5 for both T Mz and T Ez incidence. As demonstrated in [7] for
squared lattices, the small overall profile and the small unit cell size
of this FSS make it possible to keep the filtering response for oblique
incidence (in this particular case, also without cross-coupling between
T Mz and T Ez fields in the two main planes φinc = 0◦ and 90◦).

Figs. 4 and 5 show a high level of agreement between the results of
our in-house software and those of CST MWS. However, the CPU
time per frequency point required by our proposed formulation is
roughly 2.7 s, which is on average 36 times shorter than that required
by CST MWS.

B. Fifth-Order Bandpass FSS

An FSS showing a fifth-order Chebychev response with 0.1 dB rip-
ple and 37% fractional bandwidth at 12 GHz has also been designed

Fig. 5. T00 and R00 of the third-order bandpass FSS for θinc = 45◦.

TABLE II
FIFTH-ORDER BANDPASS CIRCUITAL AND FSS PARAMETERS

Fig. 6. T00 and R00 of the fifth-order bandpass FSS for normal incidence.

to prove that the proposed formulation can handle a high number
of layers. The reference lumped-element values for this fifth-order
response are shown in Table II. These values generate an ideal
circuital response shown in the dashed-dotted black line in Fig. 6. The
FSS to be designed has a total of nine layers for the corresponding
nine nonresonant elements. In this case, fine-tuning manual steps
have been combined with the aforementioned optimization routine to
estimate the geometrical parameters that match the frequency poles
of the circuit response for normal incidence. In the initial iterations
of the optimization process, the thickness of dielectric layers have
also been considered as design variables, and then fixed to the
closest available commercial thicknesses. Overall, several hundreds
of evaluations of the cost function have been performed to yield
the values shown in Table II. The achieved FSS transmission and
reflection responses for normal incidence are shown in solid red line
in Fig. 6, together with that provided by CST MWS (dashed blue
line). Good agreement is found between the two sets of results.
It can be seen that our simulation results for the FSS response
share the frequency poles of the circuital response. Interestingly,
the computational demand for the analysis of this fifth-order FSS with
both our software and CST MWS is lower than in the case of the
previously described third-order FSS. This can be explained by the
fact that nonresonant elements are further away from each other, and
thus the requirements to accurately model EM interactions between
them are diminished. Specifically, although in all metallization levels
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(q = 1, . . . , 9) the number of basis functions has also been set
to Nq = 32 (as in the previous example), in this case the double
summation in (6) is truncated to 3600 terms (corresponding to setting
M = 30 in (17)). With these settings, our proposed implementation
takes an average time of 2.16 s per frequency point, which is about
13 times shorter than the average time taken per frequency point by
CST MWS. As previously stated, meshing operations of CST MWS
have not been considered in this comparison, but for this particular
structure the meshing time is not negligible, and should be considered
when facing a design of this type with CST MWS.

IV. CONCLUSION

A specific formulation is developed for the application of the
spectral MoM to the efficient analysis of multilayered periodic
structures alternating patches and apertures. The formulation is espe-
cially useful for the design of high-order bandpass FSSs made up
of solid-interior type nonresonant elements. With the objective of
analyzing arrangements with tightly packed complex shaped elements
within reasonable CPU times, edge-singularity basis functions are
used to approximate the electric currents/tangential electric fields
on the patches/apertures in the case where the grid of the periodic
structures can be skewed. Since the Fourier transforms of the basis
functions cannot be obtained in closed form, these Fourier transforms
are computed by means of the NUFFT, which is adapted to deal with
the particular case of skewed grids treated in this communication.
As a practical application of the software implemented, a four-layer
FSS and an eight-layer FSS made up of alternating hexagonal patches
and apertures arranged in a triangular lattice have been designed to
synthesize, respectively, a third-order and a fifth-order Chebychev
bandpass response. For validation purposes, the designed FSSs have
been analyzed with both our in-house software and commercial soft-
ware CST MWS, and good agreement has been found. Although the
formulation presented in this communication for a specific problem
may be more cumbersome to implement than the use of commercial
software, the results indicate that the developed software can provide
the design of sophisticated FSSs, including many dielectric layers
and metallization levels with both patches and apertures, within a
few hours in a personal computer, whereas it may take a few days
with commercial software. This speedup factor compensates for the

effort carried out, thus paving the way to use the proposed formulation
in future complex FSS designs with stringent specifications.
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