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Abstract

A cooperative game consists of a set of players and a characteristic function determining the max-

imal gain or minimal cost that every subset of players can achieve when they decide to cooperate,

regardless of the actions that the other players take. The relationships of closeness among the

players should modify the bargaining among them and therefore their payo↵s. The first models

that have studied this closeness used a priori unions or undirected graphs. In the a priori union

model a partition of the big coalition is supposed. Each element of the partition represents a group

of players with the same interests. The groups negotiate among them to form the grand coalition

and later, inside each one, players bargain among them. Now we propose to use proximity relations

to represent leveled closeness of the interests among the players and extending the a priori unions

model.

Keywords: cooperative game, fuzzy relations, proximity relations, Choquet integral,
Shapley value, Owen value

1. Introduction

Cooperative game theory studies situations where a set of agents (players) bargain for a

fair allocation of a common profit resulting from their collaboration, namely a vector with

the payo↵ of each player as coordinates (a payo↵ vector). In order to establish this allocation

a number is known for each subset (coalition) of players representing the profit obtained by

them and the mapping that assigns these numbers is named the characteristic function of the

game. The Shapley value, Shapley (1953), is one of the point solutions for cooperative games

mostly used and studied. It is a function obtaining a payo↵ vector for each game based in a

set of reasonable conditions (axioms) which allow us to decide whether this value is or not

the best solution for the problem. Several variations of the Shapley value have been proposed

for situations where some additional information about the agents is known. Aumann and

Dreze (1974) introduced coalition structures. A coalition structure is a partition of the set

of players representing the di↵erent coalitions obtained at the end of game. Hence there
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should be no side payment between these final coalitions. This way has been improved

by Myerson (1977) considering communication structures. A communication structure is a

graph representing the bilateral cooperation possibilities among the agents. In this case the

final coalition structure is the set of connected components in the graph but we can also use

the information given by the graph about the internal structure of these coalitions. Owen

(1977) proposed a di↵erent model from that of Aumann and Dreze based in a di↵erent

interpretation of the coalition structures. He considered that the coalition structure is a

partition of the set of players in a priori unions based in the relations among the agents.

But these unions are not considered as a final structure but as a starting point for further

negotiations. Thus, as in the original Shapley model, the grand coalition is the final coalition

structure. This paper focuses on the Owen variation. So, a coalition of players forms a union

if they have the same (or close) interests in the game. Owen obtained a Shapley-type solution

(the Owen value) taking into account this information to get a fair allocation of the profit

of the grand coalition. Later Casajus (2007) proposed a modification of the Owen model in

the Myerson sense. That is, we have an a priori union structure and we know how these

unions are formed by means of a connected graph in each group. This graph explains the

relation of closeness existing among their players. But closeness is usually a leveled property.

For instance, political groups can be organized in a priori ideological unions. Considering

equal every ideological closeness between two political parties is actually a simplification of

the situation. Aubin (1981), Butnariu (1980) and Mares (2001) introduced fuzzy sets to

describe leveled participation of the players in the coalitions (fuzzy coalitions) or fuzziness

in the worth of the coalitions given by the characteristic function (fuzzy payo↵s). The

Choquet integral, Choquet (1953), is a powerful tool from the decision theory which is a

way of measuring the expected utility of an uncertain event. Tsurumi et al. (2001) used

the Choquet integral for fuzzy sets in order to define a Shapley-type solution of a family of

games with fuzzy coalitions. Jiménez-Losada et al. (2010), (2013), Gallego et al. (2014) and

Gallardo et al. (2014) proposed to use fuzzy structures as an additional information for a

cooperative game. Particularly, they considered a fuzzy graph to study fuzzy communication

structures in the Myerson way. Meng et al. (2012) analyzed games on fuzzy coalitions with

a priori unions.
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Now, we propose a more realistic version of the Owen situation. Following Owen (1977)

and Casajus (2007) we consider a fuzzy graph where the fuzzy set of links defines the ob-

jective bilateral closeness of interests among the players. This structure is actually a known

fuzzy binary relation called proximity relation. This fuzzy relation also establishes unions

among the agents but these are not disjoint and each union is represented by a communi-

cation structure, thus players are asymmetric in them. While Meng et al. (2012) considered

fuzzy coalitions but common a priori unions, we will take usual games but leveled closeness.

Preliminaries introduce the needed aspects from cooperative games, a priori unions, com-

munication structures and fuzzy sets to understand the paper. Section 3 analyzes the value

introduced by Casajus (2007) in a di↵erent way, obtaining an axiomatization comparable to

the one of the Owen value. In section 4 we introduce several ways to reduce a proximity

relation which are used later. Section 5 defines an Owen-type value for proximity situations,

the prox-Owen value and finally in section 6 we propose an axiomatization of the new value

with reasonable axioms in this context.

2. Preliminaries

2.1. Cooperative TU-games.

A cooperative game with transferable utility, a game since now, is a pair (N, v) where N

is a finite set of elements and v : 2N ! R is a mapping satisfying v(;) = 0. The elements

of N are named players, the subsets of N are said coalitions and v is the characteristic

function of the game. We denote as G the set of games. If (N, v) 2 G and S ✓ N then

(S, v) = (S, vS) 2 G is a new game where vS is the restriction of the characteristic function v

to 2S. An example of a game is the unanimity game (N, uT ), with T ✓ N and T 6= ;, defined

as uT (S) = 1 if T ✓ S and uT (S) = 0 otherwise. If we fix N , the family {uT : T ✓ N} is a

basis of the games over N , that is for every (N, v) there are coe�cients cT such that

v =
X

{T✓N :T 6=;}

cTuT . (1)

An allocation rule is a function  over G which determines for each (N, v) a vector

 (N, v) 2 RN interpreted as a payo↵ vector. The Shapley value is an allocation rule defined
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for every (N, v) 2 G and i 2 N as

�i(N, v) =
X

{S⇢N :i/2S}

(|N |� |S|� 1)!|S|!
|N |! [v(S [ {i})� v(S)]. (2)

This allocation rule satisfies e�ciency, that is
P

i2N �i(N, v) = v(N). The Shapley value is

also linear namely if (N, v1), (N, v2) 2 G and a, b 2 R then �(N, av1 + bv2) = a�(N, v1) +

b�(N, v2). A null player i 2 N for a game (N, v) satisfies v(S [ {i}) = v(S) for all S ✓

N \ {i}. The Shapley value satisfies the null player axiom i.e. if i is a null player for (N, v)

then �i(N, v) = 0. It is said that i, j 2 N are substitutable players in a game (N, v) if

v(S [ {i}) = v(S [ {j}) for all S ✓ N \ {i, j}. The equal treatment axiom says that if

i, j 2 N are substitutable players in (N, v) then �i(N, v) = �j(N, v). It is known that the

Shapley value is the only allocation rule over G satisfying e�ciency, linearity, null player and

equal treatment. Moreover these axioms are not redundant.

2.2. A priori unions.

A game with a priori unions is a triple (N, v, P ) where (N, v) 2 G and P = {N1, ..., Nm}

is a partition of N . Players in Nk for each k have similar interests in the game and they use

the union in the bargaining to get a fair payo↵. The set of games with a priori unions is

denoted as GU .

The Owen value ! is an allocation rule over GU . It is supposed that players are interested

in the grand coalition N but considering the a priori unions as bargaining elements. Let

(N, v, P ) 2 GU with P = {N1, ...., Nm}. The quotient game (M, v
P ) with set of players

M = {1, ...,m} is defined as

v
P (Q) = v

 
[

q2Q

Nq

!
, 8Q ✓ M. (3)

Let k 2 M . For each S ⇢ Nk the partition PS of N \ (Nk \ S) is to replace Nk with S. We

define (Nk, vk) as vk(S) = �k

�
M, v

PS
�
, 8S ✓ Nk. Finally we solve the game in every group

using also the Shapley value. So, for each i 2 N if k(i) is such that i 2 Nk(i) then the Owen

value is

!i(N, v, P ) = �i

�
Nk(i), vk(i)

�
. (4)
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The Owen value satisfies e�ciency, linearity and null player (the same definitions in GU

than in G). It also satisfies equal treatment in a union, namely if i, j 2 Nk for k 2 M

are substitutable in (N, v) then !i(N, v, P ) = !j(N, v, P ). Moreover ! satisfies a similar

condition with the unions, the coalitional symmetry : if k1, k2 2 M satisfy that v(Nk1 [
S

q2Q Nq) = v(Nk2 [
S

q2Q Nq) for every Q ✓ M \ {k1, k2} then

X

i2Nk1

!i(N, v, P ) =
X

j2Nk2

!j(N, v, P ).

Owen (1977) showed that ! is the only allocation rule over GU satisfying e�ciency, linearity,

null player, equal treatment in each union and coalitional symmetry. 1

2.3. Communication structures.

Let LN = {{i, j} : i, j 2 N and i 6= j} be the set of unordered pairs of elements in a

finite set N . We will use ij = {i, j} from now on. A communication structure for N is

a graph (N,L) where the set of vertices is N and the set of edges L ✓ LN is the set of

feasible communications among them. Hence we identify a communication structure for N

with the set of links L. A game with communication structure is a triple (N, v, L) where

(N, v) 2 G and L is a communication structure for N . A cooperative game (N, v) can be

identified with the game with communication structure (N, v, LN). The family of games

with communication structure is denoted as GC. Let (N, v, L) 2 GC be a game with

communication structure. A coalition S ✓ N whose vertices are connected by the links in L

is called connected. The maximal connected coalitions correspond to the sets of vertices of

the connected components of the graph (N,L) and they are denoted as N/L. This family

N/L is actually a partition of N . If S ✓ N is a coalition then LS = {ij 2 L : i, j 2 S}

and (S, v, LS) 2 GC represents the restriction to S of the game and the communication

structure. We use S/L = S/LS. Following Myerson (1977), in a communication structure

the final coalition structure is formed by the connected components of the graph, and they

can not get beneficial collaborations among them.

The Myerson value is an allocation rule for games with communication structure. Given

1
Owen (1977) used symmetry in each union instead of equal treatment in each union, but both axioms

are equivalent in a context with e�ciency, linearity and null player.
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(N, v, L) 2 GC Myerson defines a new game (N, v/L) 2 G incorporating the information of

the communication structure,

v/L(S) =
X

T2S/L

v(T ) 8S ✓ N. (5)

The Myerson value is defined as

µ(N, v, L) = � (N, v/L) . (6)

The Myerson value is e�cient by components, namely
P

i2S µi(N, v, L) = v(S) for each

S 2 N/L but it is not e�cient. Moreover, this allocation rule satisfies decomposability in the

sense that µi(N, v, L) = µi(S, v, LS) for all S 2 N/L and i 2 S. This value also satisfies the

fairness axiom, i.e. for each ij 2 L we have:

µi(N, v, L)� µi(N, v, L \ {ij}) = µj(N, v, L)� µj(N, v, L \ {ij}).

The Myerson value is the only allocation rule satisfying e�ciency by components and fairness.

2.4. Fuzzy sets and proximity relations.

We will use _,^ for the operators maximum and minimum in hereafter.

A fuzzy set of a finite set K is a function ⌧ : K ! [0, 1]. The support of ⌧ is supp(⌧) =

{i 2 K : ⌧(i) 6= 0}. The image of ⌧ is the ordered set im(⌧) = {�1 < · · · < �p} = {� 2

(0, 1] : 9i 2 K, ⌧(i) = �}. Two fuzzy sets ⌧ , ⌧ 0 are comonotone if for all i, j 2 K it holds

(⌧(i)� ⌧(j))(⌧ 0(i)� ⌧
0(j)) � 0. Comonotony is a transitive property. For each t 2 (0, 1] the

t-cut of ⌧ is

[⌧ ]t = {i 2 K : ⌧(i) � t}. (7)

The Choquet integral was introduced by Choquet (1953) for capacities and it was extended

for all the set functions in Schmeidler (1986) and De Waegenaere and Wakker (2001). Given

f : 2K ! R and ⌧ a fuzzy set over K, the (signed) Choquet integral of ⌧ with respect to f is

Z
⌧ df =

pX

k=1

(�k � �k�1) f ([⌧ ]�k
) , (8)
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where im (⌧) = {�1 < · · · < �p} and �0 = 0. The following properties of the Choquet integral

are known:

(C1)
R
e
S
df = f (S), for all S ✓ K, and e

S(i) = 1 if i 2 S and e
S(i) = 0 otherwise.

(C2)
R
t⌧ df = t

R
⌧ df , for all t 2 [0, 1] .

(C3)
R
⌧ d (a1f1 + a2f2) = a1

R
⌧ df1 + a2

R
⌧ df2, when a1, a2 2 R.

(C4)
R
(⌧ + ⌧

0) df =
R
⌧ df +

R
⌧
0
df, when ⌧ + ⌧

0  e
K and ⌧ , ⌧ 0 are comonotone.

(C5)
R
⌧ df = A

W
i2N ⌧(i) if f([⌧ ]t) = A for all t 2 im(⌧).

A bilateral fuzzy relation, see Mordeson and Nair (2000), overK is a function ⇢ : K⇥K !

[0, 1] satisfying the condition ⇢(i, j)  ⇢(i, i)^⇢(j, j). A proximity relation over K, is a fuzzy

relation ⇢ satisfying: (Reflexivity) ⇢(i, i) = 1 for all i 2 K, and (Symmetry) ⇢(i, j) = ⇢(j, i)

for all i, j 2 K. Similarity relations are particular fuzzy versions of equivalence relations. A

similarity relation over K is a proximity relation ⇢ satisfying besides: (Transitivity) ⇢(i, j) �

⇢(i, k) ^ ⇢(k, j) for all i, j, k 2 K.

3. A priori unions with communication structure.

In the Owen model players are organized in a priori unions but there is not information

about the inner structure of these unions. Casajus (2007) proposed another allocation rule

for games with communication structure following the sense of the Owen value that we name

here the Myerson-Owen value. Given a game with communication structure (N, v, L) 2 GC

we consider the partition of N by its connected components N/L. Therefore N/L is a set of

a priori unions for the players in N but the links in L establish how these unions are formed.

We use again the quotient game (3) with the partition N/L = {N1, ..., Nm} and now for all

k 2 M with M = {1, ...,m} the game (Nk, vk),

vk(S) = �k

�
M, v

(N/L)S
�
, 8S ✓ Nk. (9)

Definition 1. (Casajus (2007)) The Myerson-Owen value is an allocation rule over GC

defined for each (N, v, L) with N/L = {N1, ..., Nm} and i 2 N as

⇠i(N, v, L) = µi

⇣
Nk(i), vk(i), LNk(i)

⌘
,
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where k(i) is such that i 2 Nk(i).

The Myerson-Owen value satisfies the following coincidences.

(a) If (N, v, L) 2 GC satisfies that N is connected by L then ⇠(N, v, L) = µ(N, v, L).

(b) If (N, v, L) 2 GC satisfies that LS = LS for all S 2 N/L then we identify (N, v, L) with

(N, v,N/L) 2 GU and ⇠(N, v, L) = !(N, v,N/L).

(c) If (N, v, L) 2 GC with L = LN then ⇠(N, v, L) = �(N, v).

Casajus (2007) obtained an axiomatization of the Myerson-Owen value. Now we provide

a new characterization of this value with the purpose of defining all the axioms from the

data (the game and the graph) and obtaining a better comparison with the Owen value.

Consider the following axioms for  an allocation rule over GC.

Linearity. For all games (N, v), (N, v
0) 2 G, ↵, � 2 R and L ✓ LN ,

 (N,↵v + �v
0
, L) = ↵ (N, v, L) + � (N, v

0
, L).

E�ciency. For all (N, v, L) 2 GC it holds

X

i2N

 i(N, v, L) = v(N).

Observe that now a null player can obtain profit due to his position in the graph inside

a component if this position is essential for other players to cooperate. But if all the players

in the component are null then it is impossible to get profits despite the strategic position

inside the union of each player. A coalition S ✓ N is a null coalition in (N, v) 2 G if each

i 2 S is a null player for (N, v).

Null component. Let (N, v, L) 2 GC and let S 2 N/L be a null coalition. Then

 i(N, v, L) = 0 for all i 2 S.
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Two coalitions S, T ✓ N with S\T = ; are substitutable2 in a game (N, v) if v(R[S) =

v(R [ T ) for all R ✓ N \ (S [ T ). We can suppose that two substitutable components

obtain the same total payo↵ in the sense of the coalitional symmetry (section 2.2) because

the internal structure in each union is independent of the bargaining among them.

Substitutable components. Let (N, v, L) 2 GC. If S, T 2 N/L are substitutable in (N, v)

then
X

i2S

 i(N, v, L) =
X

j2T

 j(N, v, L).

Now the equal treatment property for players depends on the structure in each component

because they are asymmetric. The Myerson fairness axiom can not be used to explain this

asymmetry because the deletion of a link can cause a change in the number of components

(unions) and then in the bargaining among them. So, we use the modified fairness proposed

by Casajus (2007). This axiom can be seen as a balance among unilateral disconnection

threats. The di↵erence of payo↵s for breaking up unilaterally a link, placing the players

disconnected by this fact out of the game, is the same for both players in the link. Let

(N, v, L) 2 GC and ij 2 L. If S 2 N/L with i, j 2 S and Si 2 N/(L \ {ij}) with i 2 Si (in

the same way Sj) then N
i
ij = (N \ S) [ Si (in the same way N

j
ij).

Modified fairness. Let (N, v, L) 2 GC and ij 2 L, it holds

 i(N, v, L)�  i

⇣
N

i
ij, v, LN i

ij
\ {ij}

⌘
=  j(N, v, ⇢)�  j

⇣
N

j
ij, v, LNj

ij
\ {ij}

⌘
.

We prove in the next theorem that the Myerson-Owen value is the only one satisfying all

these axioms3.

Theorem 1. The Myerson-Owen value is the only allocation rule for games with com-

munication structure satisfying the following axioms: e�ciency, linearity, null component,

substitutable components and modified fairness.

2
The concept of substitutable coalitions is slightly di↵erent to the concept given in Owen (1977). Our

concept implies the other but it is independent of the unions.
3
Casajus (2007) proved that the Myerson-Owen value satisfies e�ciency and modified fairness but we

replicate the proofs because they are used in the remark just after the theorem.
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Proof. We will test that each one of the axioms is satisfied by the Myerson-Owen value.

Let (N, v, L) 2 GC, N/L = {N1, ..., Nm} and M = {1, ...,m}. The quotient game for every

k 2 M satisfies v(N/L)Nk = v
N/L.

Efficiency. Using that the Myerson value is e�cient by components (section 2.3) and the

Shapley value is e�cient (section 2.1) we get

X

i2N

⇠i(N, v, L) =
X

i2N

µi(Nk(i), vk(i), LNk(i)
) =

mX

k=1

X

i2Nk

µi(Nk, vk, LNk
) =

mX

k=1

vk(Nk)

=
mX

k=1

�k(M, v
(N/L)Nk ) =

mX

k=1

�k(M, v
N/L) = v

N/L(M) = v(N).

Linearity. Suppose now another game with the same communication structure, (N, v
0
, L),

and two numbers a, b 2 R. As the Shapley value is a linear function (section 2.1), for each

k 2 M we have for all S ✓ Nk by (9)

(av + bv
0)k(S) = �k

�
M, (av + bv

0)(N/L)S
�
= avk(S) + bv

0
k(S)

because (av+ bv
0)(N/L)S = av

(N/L)S + bv
0(N/L)S from (3). Since the graph LNk

is the same for

both games then (av + bv
0)k/LNk

= avk/LNk
+ bv

0
k/LNk

from (5). Using the linearity of the

Shapley value again and (6)

⇠i(N, av + bv
0
, L) = �i

⇣
Nk(i), (av + bv

0)k(i)/LNk(i)

⌘
= a ⇠i(N, v, L) + b ⇠i(N, v

0
, L).

Null component. Suppose N1 2 N/L is a null coalition for the game (N, v). If Q ✓ M

with 1 /2 Q then we use NQ =
S

q2Q Nq. For each T = {i1, ..., ip} ✓ N1 we have that i1, ..., ip

are null players for the game and by (3)

v
(N/L)T (Q [ {1})� v

(N/L)T (Q) = v (NQ [ T )� v (NQ)

=
pX

l=2

[v (NQ [ {i1, ..., il})� v (NQ [ {i1, ..., il�1})]

+ [v (NQ [ {i1})� v (NQ)] = 0.

Hence 1 is a null player in
�
M, v

(N/L)T
�
. As the Shapley value satisfies the null player axiom
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(see section 2.1) we get �1

�
M, v

(N/L)T
�
= 0. So using (9), v1(T ) = 0 for all T ✓ N1. But if

v1 = 0, then v1/LN1 = 0 in N1 from (5). For all i 2 N1 we have from (6)

⇠i(N, v, L) = µi (N1, 0, LN1) = �i (S, 0) = 0.

Substitutable components. Let N1, N2 2 N/L be two substitutable coalitions in (N, v).

For each Q ✓ M we denote NQ =
S

q2Q Nq again. We test that 1, 2 are substitutable players

for
�
M, v

N/L
�
. Let Q ✓ M \ {1, 2},

v
N/L(Q [ {1}) = v (NQ [N1) = v (NQ [N2) = v

N/L(Q [ {2}),

because N1, N2 are substitutable in (N, v). Since the Shapley value satisfies equal treatment

(see section 2.1)

v1(N1) = �1(M, v
N/L) = �2(M, v

N/L) = v2(N2).

The Myerson value is e�cient by components (8) so

X

i2N1

⇠i(N, v, L) =
X

i2N1

µi (N1, v1, LN1) = v1(N1)

= v2(N2) =
X

j2N2

µj (N2, v2, LN2) =
X

j2N2

⇠j(N, v, L).

Modified fairness. Let ij 2 L and suppose i, j 2 N1. We have

N
i
ij/(LN i

ij
\ {ij}) = {(N1)i, N2, ..., Nm}.

Although the quotient game depends on the graph, we get v

L
Ni
ij
\{ij}

1 = v1 in N
i
ij. Now we

use two properties of the Myerson value: the decomposability and the fairness (section 2.3),

⇠i(N, v, L)� ⇠i(N
i
ij, v1, LN i

ij
\ {ij}) = µi(N1, v1, LN1)� µi((N1)i, v1, L(N1)i)

= µi(N1, v1, LN1)� µi(N1, v1, LN1 \ {ij})

= µj(N1, v1, LN1)� µj(N1, v1, LN1 \ {ij})

= ⇠j(N, v, L)� ⇠j(N
j
ij, v1, LNj

ij
\ {ij})
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Suppose  , 0 di↵erent values over GC satisfying the five axioms. We take the smallest

N and L such that  6=  
0. Hence there is a characteristic function v with  (N, v, L) 6=

 
0(N, v, L). Linearity and (1) imply that there exists uT with T ✓ N such that

 (N, uT , L) 6=  
0 (N, uT , L) .

The family N/L is a partition of N . We set MT = {S 2 N/L : S \ T 6= ;}. If S /2 MT then

all the players in S are null players for the unanimity game (N, uT ). The null group property

says that for all i 2 S

 i (N, uT , L) =  
0
i (N, uT , L) = 0.

If S 2 MT with |S| > 1 then for each i 2 S there is j 2 S \ {i} with ij 2 L. Taking into

account the minimal election of N and L and the modified fairness

 i(N, uT , L)�  j(N, uT , L) =  i

⇣
N

i
ij, uT , LN i

ij
\ {ij}

⌘
�  j

⇣
N

j
ij, uT , LNj

ij
\ {ij}

⌘

=  
0
i

⇣
N

i
ij, uT , LN i

ij
\ {ij}

⌘
�  

0
j

⇣
N

j
ij, uT , LNj

ij
\ {ij}

⌘

=  
0
i(N, uT , L)�  

0
j(N, uT , L).

Therefore  i(N, uT , L)�  
0
i(N, uT , L) =  j(N, uT , L)�  

0
j(N, uT , L). Since LS is connected

there exists B 2 R with  i(N, uT , L) �  
0
i(N, uT , L) = B for all i 2 S. If S, S 0 2 MT then

S \ S
0 = ; and

uT (S [R) = 0 = uT (S 0 [R)

for all R ✓ N \ (S [ S
0). Hence S and S

0 are substitutable for (N, uT ). The substitutable

components axiom implies that there exist A,A0 2 R such that for all S 2 MT

X

i2S

 i(N, uT , L) = A and
X

i2S

 
0
i(N, uT , L) = A

0
.

Now we apply e�ciency using that uT (N) = 1,

X

i2N

 i(N, uT , L) = |MT |A = 1 = |MT |A0 =
X

i2N

 
0
i(N, uT , L).
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Thus A = A
0 and

X

i2S

 i(N, uT , L) =
X

i2S

 
0
i(N, uT , L) 8S 2 MT .

For each S 2 MT we will use the above equality. If S = {i} then  i(N, uT , L) =  
0
i(N, uT , L).

Otherwise we obtain

0 =
X

i2S

 i(N, uT , L)�  
0
i(N, uT , L) = |S|B,

thus B = 0 and  i(N, uT , L) =  
0
i(N, uT , L) for all i 2 Nk. Hence we get the contradiction

 i(N, uT , L) =  
0
i(N, uT , L) for all i 2 S 2 MT . 2

Remark. Now we deal with the logical independence of the axioms. We need to find five

allocation rules over GC di↵erent to the Myerson-Owen value satisfying four axioms of our

set but not the other one. The Owen value,  (N, v, L) = !(N, v,N/L), satisfies all our

axioms except modified fairness. As we say in section 2.1 the Shapley value is the only one

satisfying e�ciency, linearity, null player and equal treatment. Furthermore these axioms are

independent and then there exist four allocation rules for G, (✏p)4p=1, such that ✏p satisfies all

the Shapley value’s axioms except the axiom p in the above order.4 We define an allocation

rule  ✏ over GC for each allocation rule ✏ over G in the following way. Let (N, v, L) 2 GC,

N/L = {N1, ..., Nm} and M = {1, ...,m}. We take the game (Nk, v
✏
k) given by

v
✏
k(S) = ✏(M, v

(N/L)S), 8S ✓ Nk.

So, we consider

 
✏
i(N, v, L) = µi(Nk(i), v

✏
k(i), LNk(i)

) 8i 2 N.

Of course the Myerson-Owen value is one of this kind of allocation rules, ⇠ =  
�. If L = LN

then  ✏(N, v, L) = ✏(N, v). Following the proof of the above theorem we conclude the next

4✏1i (N, v) = 0 for all i 2 N satisfies linearity, null player and equal treatment but not e�ciency. Let

Nv = {i 2 N : i is not a null player in (N, v)}, ✏2i (N, v) = v(N)
|Nv| if i 2 Nv and ✏2i (N, v) = 0 otherwise satisfies

e�ciency, null player and equal treatment but not linearity. ✏3i (N, v) = v(N)
|N | for all i 2 N satisfies e�ciency,

linearity and equal treatment but not null player. Given (N, v) 2 G let (N \ 1, v/1) the game defined as

v/1(S) = v(S [ 1) for each S ⇢ N \ 1 (v/1(;) = 0), ✏4i (N, v) = �i(N \ 1, v/1) for every i 2 N \ 1 and

✏41(N, v) = 0 satisfies e�ciency, linearity and null player but not equal treatment.

13



equivalences:

(a)  ✏ always satisfies modified fairness.

(b) ✏ satisfies e�ciency if and only if  ✏ does.

(c) ✏ satisfies linearity if and only if  ✏ does.

(d) ✏ satisfies null player if and only if  ✏ satisfies null component.

(e) ✏ satisfies equal treatment if and only if  ✏ satisfies substitutable components.

Hence we take  ✏p with p = 1, 2, 3, 4 to finish the reasoning.

4. Reducing a proximity relation

A proximity relation ⇢ over N can be seen as a fuzzy set ⇢ over LN = LN [ {ii : i 2 N}

where ⇢(ij) = ⇢(i, j), taking into account symmetry. Therefore we can calculate t-cuts and

Choquet integrals of proximity relations. But not all the fuzzy sets ⇢ over LN are proximity

relations because we need ⇢(ii) = 1 for each i 2 N . Proximity relations form the family of

the fuzzy sets over LN which t-cuts contain {ii : i 2 N} for all t 2 (0, 1].

We say that a proximity relation ⇢ is crisp if im(⇢) = {1}. Communication structures are

identified with the family of the crisp proximity relations. Each communication structure

L ✓ LN is identified with the crisp proximity relation ⇢L such that ⇢L(i, j) = 1 if i = j or

ij 2 L, and ⇢L(i, j) = 0 otherwise. On the other hand, if ⇢ is a crisp proximity relation then

we take the communication structure L
⇢ = {ij 2 LN : ⇢(i, j) = 1, i 6= j}. Particularly the

t-cuts of a proximity relation are communication structures. A priori union structures are

identified with crisp similarity relations.

We can only consider set functions over LN for Choquet integrals of proximity relations.

Each f : 2LN ! R is identified with another set function over LN , denoted with the same

letter f , given by f(A) = f(A\LN) for all A ✓ LN , and then we use the Choquet integral

of a proximity relation with respect to the first f as the one with respect to the second f .

In this section we introduce several ways of reducing a proximity relation, the set of

elements a↵ected or the set of levels of the image. We also show several properties of the

proximity relations related with the Choquet integral.

Definition 2. Let ⇢ be a proximity relation over N . If S ✓ N then the proximity relation

restricted to S is ⇢S, a new proximity relation over S with ⇢S(i, j) = ⇢(i, j) for all i, j 2 S.

14



Obviously, for each S ✓ N we have |im(⇢S)|  |im(⇢)|. Now we see a relation with the

Choquet integral of the restriction.

Proposition 2. Let ⇢ be a proximity relation over N . If f : 2LN ! R is such that there is

S ✓ N with f(L) = f(LS) for all L ✓ LN then

Z
⇢ df =

Z
⇢S df |LS .

Proof. Consider S ✓ N and ⇢ a proximity relation . For all t 2 (0, 1] we have ([⇢]t)S = [⇢S]t.

Let f : 2LN ! R with f(L) = f(LS) for all L ✓ LN . If im(⇢) = {�1, ...,�p} then im(⇢S) =

{�01, ...,�0p0} ✓ im(⇢). For each q
0 2 {1, ..., p0} and q 2 {1, ..., p} with �

0
q0  �q < �

0
q0+1 we

obtain [⇢S]�q = [⇢S]�0
q0
. So,

Z
⇢ df =

pX

q=1

(�q � �q�1) f([⇢]�q) =
pX

q=1

(�q � �q�1) f(
�
[⇢]�q

�
S
)

=
pX

q=1

(�q � �q�1) f([⇢S]�q) =
p0X

q=1

�
�
0
q � �

0
q�1

�
f([⇢S]�0

q
) =

Z
⇢S df |LS . 2

Now we define a scaling of a proximity relation which considers insignificant the levels

out of an interval.

Definition 3. Let ⇢ be a proximity relation over N . If a, b 2 [0, 1] with a < b then ⇢
b
a is the

interval scaling of ⇢, a new proximity relation over N defined as

⇢
b
a(i, j) =

8
>>>><

>>>>:

1, if ⇢(i, j) � b

⇢(i, j)� a

b� a
, if ⇢(i, j) 2 (a, b)

0, if ⇢(i, j)  a.

Observe that it holds |im(⇢ba)|  |im(⇢)| and particularly ⇢10 = ⇢. The interval scaling of

a proximity relation and the original proximity relation are comonotone as fuzzy sets.

Proposition 3. Let ⇢ be a proximity relation over N and a, b 2 [0, 1] with a < b. The

interval scaling ⇢
b
a and ⇢ are comonotone.
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Proof. We prove that ⇢ba, ⇢ are comonotone as fuzzy sets over LN . Let ij, kl 2 LN . We

suppose without loss of generality ⇢(i, j) � ⇢(k, l). If ⇢(i, j) � b then ⇢ba(i, j) = 1 � ⇢
b
a(k, l).

If ⇢(k, l)  a then ⇢ba(k, l) = 0  ⇢
b
a(i, j). Otherwise, a < ⇢(k, l)  ⇢(i, j)  b and we get:

⇢(i, j)� a

b� a
� ⇢(k, l)� a

b� a
. 2

The above proposition implies the next result for the Choquet integral.

Proposition 4. Let ⇢ be a proximity relation over N and a1, ..., ar 2 [0, 1] with a1 < · · · < ar.

It holds for all f : 2LN ! R that

Z
⇢ df =

r+1X

p=1

(ap � ap�1)

Z
⇢
ap
ap�1

df,

with a0 = 0 and ar+1 = 1.

Proof. Suppose ⇢ a proximity relation and consider numbers a1 < · · · < ar in [0, 1], a0 = 0

and ar+1 = 1. Remember that comonotony is a transitive property. Hence, as (ap�ap�1) � 0

for every p 2 {1, ..., r + 1}, Proposition 2 implies that (ap � ap�1)⇢
ap
ap�1 and (aq � aq�1)⇢

aq
aq�1

are comonotone for all p, q 2 {1, ..., r + 1}.

We also prove that

⇢ =
r+1X

p=1

(ap � ap�1)⇢
ap
ap�1

.

Let ij 2 LN . We suppose ⇢(i, j) 6= 0 because otherwise ⇢apap�1(i, j) = 0 for all p . In that case

there exists q 2 {1, ..., r + 1} with ⇢(i, j) 2 (aq�1, aq]. For each p < q we have ⇢apap�1(i, j) = 1

and for each p > q we get ⇢apap�1(i, j) = 0. If p = q,

⇢
aq
aq�1

(i, j) =
⇢(i, j)� aq�1

aq � aq�1
.

So, we obtain

r+1X

p=1

(ap � ap�1)⇢
ap
ap�1

(i, j) =
q�1X

p=1

(ap � ap�1) + (⇢(i, j)� aq�1) = ⇢(i, j).
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Finally we use properties (C4) and (C2) of the Choquet integral to get for any f

Z
⇢ df =

Z r+1X

p=1

(ap � ap�1)⇢
ap
ap�1

df =
r+1X

p=1

(ap � ap�1)

Z
⇢
ap
ap�1

df. 2

Now we define a scaling of a proximity relation where the insignificant levels are those

within the interval.

Definition 4. Let ⇢ be a proximity relation over N . Let a, b 2 [0, 1] with a < b and a 6= 0

or b 6= 1. The dual interval scaling of ⇢ is a new proximity relation over N given by

⇢
b
a(i, j) =

8
>>>>><

>>>>>:

⇢(i, j) + a� b

1 + a� b
, if ⇢(i, j) � b

a

1 + a� b
, if ⇢(i, j) 2 (a, b)

⇢(i, j)

1 + a� b
, if ⇢(i, j)  a.

Remark. If a = 0 and b = 1 then the dual interval scaling is not well defined. As we will see

later this case appears in our results without real influence, but in some step of the proof of

Theorem 7 we need it. So, we define

⇢
1
0(i, j) =

8
<

:
1, if ⇢(i, j) = 1

0, otherwise.

This definition is motivated by the next reasoning: if a = 0 and b 2 (0, 1) then ⇢b0(i, j) =

⇢(i,j)�b
1�b if ⇢(i, j) � b and ⇢b0(i, j) = 0 otherwise. We can see our definition as the limit of this

option when b tends to 15.

Observe that it also holds |im(⇢ba)|  |im(⇢)|. Next result about the Choquet integral is

obtained from Proposition 4.

Proposition 5. Let ⇢ be a proximity relation over N . For every pair of numbers a, b 2 [0, 1]

5
There exists another di↵erent option to define the dual interval scaling ⇢10. If we study what happens

when (a, b) tends to (0,1) the limit does not exist, and actually we can take any proximity relation as

⇢10(i, j) = 1 if ⇢(i, j) = 1, ⇢10(i, j) = K if ⇢(i, j) 2 (a, b) and ⇢10(i, j) = 0 if ⇢(i, j) = 0.
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with a < b and for every set function f : 2LN ! R it holds

Z
⇢ df = (b� a)

Z
⇢
b
a df + (1 + a� b)

Z
⇢
b
a df.

Proof. Consider ⇢ a proximity relation and numbers a, b 2 [0, 1] with a < b. If a = 0 and

b = 1 we have a trivial equality. Otherwise, Proposition 4 says

Z
⇢ df = a

Z
⇢
a
0 df + (b� a)

Z
⇢
b
a df + (1� b)

Z
⇢
1
b df.

Since comonotony is a transitive property we get that a⇢a0, (1 � b)⇢1b are comonotone using

Proposition 3. Therefore (C2) and (C4) imply

Z
⇢ df = (b� a)

Z
⇢
b
a df +

Z ⇥
a⇢

a
0 + (1� b)⇢1b

⇤
df.

Now we prove the next equality of fuzzy sets (1+a�b)⇢ba = a⇢
a
0+(1�b)⇢1b . Suppose i, j 2 N .

If ⇢(i, j)  a then

a⇢
a
0(i, j) + (1� b)⇢1b(i, j) = a

⇢(i, j)

a
= ⇢(i, j).

If ⇢(i, j) � b then

a⇢
a
0(i, j) + (1� b)⇢1b(i, j) = a+ (1� b)

⇢(i, j)� b

1� b
= ⇢(i, j) + a� b.

Finally, if ⇢(i, j) 2 (a, b) then a⇢
a
0(i, j) + (1 � b)⇢1b(i, j) = a. We finish the proof using (C2)

again. 2

5. Games with a proximity relation among the players.

Owen (1977) considered that the players in a game are organized in a priori unions (see

section 2.2) depending on their common interests. Now we suppose that it is possible to

measure the closeness of the ideas of the players. In this order we are going to think of a

proximity function describing the closeness among them. Let (N, v) 2 G. If ⇢ is a proximity

relation over N then ⇢(i, j) represents the closeness level between players i, j 2 N .

Definition 5. A game with a proximity relation among the players is a triple (N, v, ⇢) such
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that (N, v) 2 G is a game and ⇢ is a proximity relation over N . The set of the games with

a proximity relation among the players is denoted as GP .

If we take a crisp proximity relation then we obtain a game over a communication struc-

ture in the sense of Casajus (2007), namely it is a set of a priori unions with a communication

structure in each union. Particularly, if we consider a similarity relation, transitivity means

here that if the measure of the facets of closeness between players i, k is ⇢(i, k) and the one

between players k, j is ⇢(k, j) then i, j can assume at least (in the worst case) ⇢(i, k)^⇢(k, j)

level of closeness. Games with crisp similarity relations are games with a priori unions. Next

we see an example of a game with a proximity relation that is not any of these particular

cases.

Example. Suppose a set of five agents interested in making use of a land. They decide

to cooperate getting the maximum feasible profit. Players 1,2 are relatives, players 2,3 are

owners, players 1,4,5 are workers, 1,2,5 have been working together for a long time, and 1,5

are beer friends. The characteristic function in millions of euros is: v(S) = 10(|S| � 1) if

2 2 S but 3 /2 S, v(S) = 16(|S| � 1) if 3 2 S but 2 /2 S, v(S) = 48(|S| � 2) if 2, 3 2 S,

and v(S) = 0 otherwise. We can define the relationship among the players as the following

proximity relation considering all the relations with same importance: ⇢(i, i) = 1 for all

i, ⇢(1, 5) = 0.6, ⇢(1, 2) = 0.4, ⇢(1, 4) = ⇢(2, 3) = ⇢(2, 5) = ⇢(4, 5) = 0.2 and ⇢(i, j) = 0

otherwise. We represent the situation by a fuzzy graph, a graph with weighted edges.

Figure 1. Proximity relation.

Jiménez-Losada et al. (2010) introduced games on fuzzy communication structures using

fuzzy graphs. In Jiménez-Losada et al. (2013) we proposed several Myerson values for these

situations. Obviously a proximity relation is a particular kind of fuzzy graph, but our
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interpretation is di↵erent from the fuzzy communication structures. Now we extend the

Owen model in a fuzzy way. We can see a proximity relation as a communication structure

by levels of the players. Let (N, v, ⇢) 2 GP . For each t 2 (0, 1] we suppose that a set of

players form an a priori union with communication structure if they are connected at least

at level t and this set is maximal.

Example. Next figure shows the di↵erent groups formed at each level t 2 (0, 1] in the above

example. Every group has a specific communication structure which determines how the

union is formed. The reader can see for instance that if our demand to form a group is to

connect them with level at least t = 0.3 then {1, 2, 5} is a union. But in this group the

position of player 1 is not the same as in the others.

Figure 2. Communication structure partition.

Let ⇢ be a proximity relation over N . We define the set function for every player i 2 N

given as

⇠i(N, v)(L) = ⇠i (N, v, L) 8L ✓ LN, (10)

where ⇠ is the Myerson-Owen value (Definition 1). Now we introduce the solution proposed

in the paper for games with a proximity relation among the players.

Definition 6. The prox-Owen value is the allocation rule over the games with a proximity
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relation among the players defined for all (N, v, ⇢) 2 GP and i 2 N as

⌘i(N, v, ⇢) =

Z
⇢ d⇠i(N, v).

Remark. Using the expression of the Choquet integral (11) we get the following equality. If

im(⇢) = {�1 < · · · < �m} and �0 = 0 then

⌘(N, v, ⇢) =
mX

k=1

(�k � �k�1)⇠(N, v, [⇢]�k
). (11)

This formula shows the prox-Owen value as a sequence of Myerson-Owen values of the

corresponding cuts by closeness intervals.

Example. Suppose the game of our example in Figure 1. Depending on the assumed infor-

mation we obtain the following solutions. If we omit the relationships among the players the

Shapley value is �(N, v) = (20.333, 37, 46, 20.333, 20.333). If we consider only the communi-

cation structure L in Figure 1 without the numbers on the links we apply the Myerson-Owen

value of the game (which coincides with the Myerson value because the graph is connected),

⇠(N, v, L) = (20.4, 50.9, 36.733, 15.566, 20.4). Finally we calculate the prox-Owen value. We

have to consider the di↵erent graphs in Figure 2 to determine the Choquet integral. So, for

each player i 2 N = {1, 2, 3, 4, 5}

⌘(N, v, ⇢) = (0.2� 0)⇠(N, v) ([⇢]0.2) + (0.4� 0.2)⇠(N, v) ([⇢]0.4)

+(0.6� 0.4)⇠(N, v) ([⇢]0.6) + (1� 0.6)⇠(N, v) ([⇢]1)

= (21.38, 38.346, 45.613, 19.38, 19.28).

In a communication structure L ✓ LN the set of coalitions which determines the a priori

unions among the players are the connected components, the family N/L. In a proximity

relation this role is played by the groups as we define now.

Definition 7. Let ⇢ be a proximity relation over N . A coalition S ✓ N is a t-group for ⇢

with t 2 (0, 1] if S 2 N/[⇢]t. The family of groups of ⇢ is the set N/⇢ =
S

t2(0,1] N/[⇢]t.

A group in a proximity relation is a coalition which can be considered as an a priori union
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with communication structure when we establish a minimum relation level. If ⇢ is a crisp

proximity relation (a communication structure) then S 2 N/⇢ if and only if S is a connected

component in the graph.

Definition 8. Let ⇢ be a proximity relation over N . Coalitions S1, ..., Sr ✓ N are leveled

groups if there is a number t 2 (0, 1] such that S1, ..., Sr are t-groups.

For each set of leveled groups S1, ..., Sr (r � 1) we denote

tS1...Sr =
^

{t 2 (0, 1] : S1, ..., Sr 2 N/[⇢]t} (12)

t
S1...Sr =

_
{t 2 (0, 1] : S1, ..., Sr 2 N/[⇢]t}. (13)

Observe that number t
S1...Sr is a maximum but number tS1...Sr is an infimum. Moreover

0  tS1...Sr < t
S1...Sr  1. Obviously, we can say then that groups S1, ..., Sr 2 N/[⇢]t for all

t 2 (tS1,...,Sr , t
S1,...,Sr ]. If ⇢ is a crisp proximity relation then tS1,...,Sr = 0 and t

S1,...,Sr = 1 for

every set of components.

Proposition 6. Let ⇢ be a proximity relation over N . If S, T 2 N/⇢ are groups with

S \ T 6= ; then S ✓ T or T ✓ S. Particularly, if S, T are leveled groups then S \ T = ;.

Proof. Suppose S, T 2 N/⇢ with ⇢ proximity relation. If they are leveled then there exists

t 2 (0, 1] with S, T 2 N/[⇢]t, thus S \ T = ;. If tS = tT then they are leveled groups. Hence

we consider tS > tT . There is a number t > tS such that S 2 N/[⇢]t and T is union of

components in N/[⇢]t, therefore or S \ T = ; or S is one of these components. 2

6. Axioms for the prox-Owen value.

We propose an axiomatization for the prox-Owen value inspired by the axioms of the

Owen value and the Myerson-Owen value (section 2.2 and section 3).

Let  be an allocation rule overGP , namely a function which obtains a vector  (N, v, ⇢) 2

RN for each game with proximity relation (N, v, ⇢) 2 GP . Consider the following axioms.

E�ciency. For all (N, v, ⇢) it holds

X

i2N

 i(N, v, ⇢) = v(N).
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Linearity. For all games (N, v), (N, v
0) 2 G, ↵, � 2 R and ⇢ proximity relation over N ,

 (N,↵v + �v
0
, ⇢) = ↵ (N, v, ⇢) + � (N, v

0
, ⇢).

Players in a null coalition do not obtain profit when the coalition is considered as a

union or a partition of unions, but they can get profits as a coalition inside a bigger union

depending on their position in the structure of this union. Therefore we can take these levels

t 2 (tS, 1] as insignificant and rescale. The next axiom extends the null component property.

Null group. Let (N, v, ⇢) 2 GP and S 2 N/⇢ a group which is null for the game (N, v)

then

 i(N, v, ⇢) = tS i

�
N, v, ⇢

tS
0

�
8i 2 S.

In order to extend the substitutable components axiom we can suppose that between the

levels in which both of the groups are unions the total payo↵ for each group is the same,

namely using (12) and (13)

X

i2S

 i(N, v, ⇢
tST

tST
) =

X

j2T

 j(N, v, ⇢
tST

tST
). (14)

But we can get a similar condition (but not equivalent) using the next axiom which is also

an extension of the substitutable components property6.

Substitutable leveled groups. Let (N, v, ⇢) 2 GP . If S, T 2 N/⇢ are leveled groups and

they are substitutable in (N, v) then

X

i2S

 i(N, v, ⇢)� (1+ tST � t
ST ) i(N, v, ⇢

tST

tST
) =

X

j2T

 j(N, v, ⇢)� (1+ tST � t
ST ) j(N, v, ⇢

tST

tST
).

6
Observe that, by Proposition 4, our prox-Owen value satisfies the substitutable leveled groups axiom if

and only if it holds (14).
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The proximity relation ⇢
tST

tST
represents the scaling of ⇢ out of (tST , tST ). We suppose that

the payments for groups S, T , subtracting the part in which they are no substitutable, i.e.

outside the interval (tST , tST ), are the same.

We extend the modified fairness axiom to a fuzzy situation. In this case, we take into

account the mere reduction of the relation between two players. So we have to consider

that this reduction of level only concerns to the interval between the reduced level and the

original one. Let ⇢ be a proximity relation over a set of players N with im(⇢) = {�1 <

· · · < �m} and �0 = 0. Consider i, j 2 N two di↵erent players with ⇢(i, j) = �k > 0. The

number ⇢⇤(i, j) = �k�1 satisfies that for all t 2 (⇢⇤(i, j), ⇢(i, j)] the set N
i
ij (or N

j
ij) in the

communication structure [⇢]t is the same. We denote also as N i
ij (or N j

ij) this common set

for ⇢. Now modified fuzzy fairness says that modified fairness holds if we reduce by t the

level of a link ij for the payo↵s in (⇢(i, j) � t, ⇢(i, j)], adding those payo↵s obtained out of

this interval.

Modified fuzzy fairness. Let (N, v, ⇢) 2 GP and i, j 2 N with ⇢(i, j) > 0, for each

t 2 (0, ⇢(i, j)� ⇢
⇤(i, j)] it holds

 i(N, v, ⇢)�  j(N, v, ⇢) = (1� t)
h
 i

⇣
N, v, ⇢

⇢(i,j)
⇢(i,j)�t

⌘
�  j

⇣
N, v, ⇢

⇢(i,j)
⇢(i,j)�t

⌘i

+t

h
 i

⇣
N

i
ij, v, (⇢

⇢(i,j)
⇢(i,j)�t)N i

ij

⌘
�  j

⇣
N

j
ij, v, (⇢

⇢(i,j)
⇢(i,j)�t)Nj

ij

⌘i
.

The next theorem proves that the prox-Owen value is the only allocation rule satisfying

all these axioms.

Theorem 7. The prox-Owen value ⌘ is the only allocation rule over GP satisfying the

following axioms: e�ciency, null group, substitutable leveled groups, modified fuzzy fairness

and linearity.

Proof. We will test each one of the axioms.

Efficiency. The Myerson-Owen value satisfies e�ciency as we saw in Theorem 1. Hence,

 
X

i2N

⇠i(N, v)

!
(L) =

X

i2N

⇠i(N, v, L) = v(N)

for all (N, v, L) 2 GC. Now, applying the properties of the Choquet integral (C3), (C5) and
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also
W

ij2LN ⇢(i, j) = 1

X

i2N

⌘i(N, v, ⇢) =
X

i2N

Z
⇢ d⇠i(N, v) =

Z
⇢ d

X

i2N

⇠i(N, v) = v(N).

Linearity. Suppose now another game with the same communication structure, (N, v
0
, L),

and two numbers a, b 2 R. As the Myerson-Owen value verifies linearity (Theorem 1) then

(C3) implies

⌘i(N, av + bv
0
, ⇢) =

Z
⇢ d⇠i(N, av + bv

0)

= a

Z
⇢ d⇠i(N, v) + b

Z
⇢ d⇠i(N, v

0)

= a ⌘i(N, v, ⇢) + b ⌘i(N, v
0
, ⇢).

Null group. Let S be a null coalition for (N, v). We consider ⇢ a proximity relation over

N with S 2 N/⇢ and i 2 S. We have for the number tS (12) that for all r > tS there exists

a partition {S1, ..., Sm} of S such that S1, ..., Sm 2 N/[⇢]r. Obviously, these coalitions are

also null coalitions and then ⇠i(N, v)([⇢]r) = 0 for all i 2 S since the Myerson-Owen satisfies

the null component property (Theorem 1). If tS = 0 then ⌘i(N, v, ⇢) = 0. Otherwise, by

Proposition 4 we get

⌘i(N, v, ⇢) = tS ⌘i(N, v, ⇢
tS
0 ) + (1� tS)

Z
⇢
1
tS
d⇠i(N, v).

If t 2 im(⇢1tS) then r = tS + t(1� tS) > tS satisfies that ⇢(i, j) � r if and only if ⇢1tS(i, j) � t.

Hence, [⇢1tS ]t = [⇢]r and ⇠i(N, v)([⇢1tS ]t) = 0 for all t. By (C5) we have

Z
⇢
1
ts d⇠i(N, v) = 0.

Substitutable leveled groups. Let S, T ✓ N be two substitutable coalitions in a game

(N, v). Consider now ⇢ a proximity relation over N with S, T 2 N/⇢ leveled groups. We

take numbers tST (12) and t
ST (13). Applying Proposition 5 for any player i 2 N ,

⌘i(N, v, ⇢) = (1 + tST � t
ST )⌘i(N, v, ⇢

tST

tST
) + (tST � tST )

Z
⇢
tST

tST
d⇠i(N, v).
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So, for groups S and T we have by (C3)

X

i2S

⌘i(N, v, ⇢)� (1 + tST � t
ST )⌘i(N, v, ⇢

tST

tST
) = (tST � tST )

Z
⇢
tST

tST
d

X

i2S

⇠i(N, v)

X

j2T

⌘j(N, v, ⇢)� (1 + tST � t
ST )⌘j(N, v, ⇢

tST

tST
) = (tST � tST )

Z
⇢
tST

tST
d

X

j2T

⇠j(N, v).

If t 2 im(⇢t
ST

tST
) then we take tST < r = tST + t(tST � tST )  t

ST which satisfies [⇢t
ST

tST
]t = [⇢]r.

So, as S, T 2 N/[⇢]r for all r 2 (tST , tST ] then we obtain from the substitutable components

axiom of the Myerson-Owen value (Theorem 1)

"
X

i2S

⇠i(N, v)

#
([⇢t

ST

tST
]t) =

"
X

j2T

⇠j(N, v)

#
([⇢t

ST

tST
]t).

Hence,

(tST � tST )

Z
⇢
tST

tST
d

X

i2S

⇠i(N, v) = (tST � tST )

Z
⇢
tST

tST
d

X

j2T

⇠j(N, v).

Modified fuzzy fairness. Let i, j 2 N . We consider ⇢ proximity relation with ⇢(i, j) > 0

and t 2 (0, ⇢(i, j)� ⇢
⇤(i, j)]. Using Proposition 5 for numbers ⇢(i, j)� t, ⇢(i, j) and (C3)

⌘i(N, v, ⇢) � ⌘j(N, v, ⇢) =

Z
⇢ d[⇠i(N, v)� ⇠j(N, v)]

= (1� t)

Z
⇢
⇢(i,j)
⇢(i,j)�t d[⇠i(N, v)� ⇠j(N, v)] + t

Z
⇢
⇢(i,j)
⇢(i,j)�t d[⇠i(N, v)� ⇠j(N, v)]

= (1� t)[⌘i(N, v, ⇢
⇢(i,j)
⇢(i,j)�t)� ⌘j(N, v, ⇢

⇢(i,j)
⇢(i,j)�t)]

+t

Z
⇢
⇢(i,j)
⇢(i,j)�t d[⇠i(N, v)� ⇠j(N, v)].

For each x 2 im
⇣
⇢
⇢(i,j)
⇢(i,j)�t

⌘
there exists r = ⇢(i, j) � t(1 � x) with r 2 (⇢(i, j) � t, ⇢(i, j)]

such that
h
⇢
⇢(i,j)
⇢(i,j)�t

i

x
= [⇢]r. Since r  ⇢(i, j) then ij 2 [⇢]r, thus the modified fairness of the

Myerson-Owen value (Theorem 1) implies

⇠i(N, v)([⇢⇢(i,j)⇢(i,j)�t]x)�⇠j(N, v)([⇢⇢(i,j)⇢(i,j)�t]x) = ⇠i(N
i
ij, v)

⇣
([⇢⇢(i,j)⇢(i,j)�t]x)N i

ij

⌘
�⇠j(N

j
ij, v)

⇣
([⇢⇢(i,j)⇢(i,j)�t]x)Nj

ij

⌘
.
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Hence, we obtain by (C3) and Proposition 1

Z
⇢
⇢(i,j)
⇢(i,j)�t d[⇠i(N, v)� ⇠j(N, v)]

=

Z
(⇢⇢(i,j)⇢(i,j)�t)N i

ij
d⇠i(N

i
ij, v)|N i

ij
�
Z

(⇢⇢(i,j)⇢(i,j)�t)Nj
ij
d⇠j(N

j
ij, v)|Nj

ij

= ⌘i

⇣
N

i
ij, v, (⇢

⇢(i,j)
⇢(i,j)�t)N i

ij

⌘
� ⌘j

⇣
N

j
ij, v, (⇢

⇢(i,j)
⇢(i,j)�t)Nj

ij

⌘

Suppose now  , 
0 di↵erent values over GP satisfying the five axioms. We prove the

uniqueness by induction on the cardinality of the image of ⇢.

Let |im(⇢)| = 1. Of course im(⇢) = {1} and ⇢ is a crisp proximity relation. Hence in this

case we obtain the uniqueness for the family of communication structures of the Myerson-

Owen value (Theorem 1). We suppose that there is only one value for all the games with a

proximity relation ⇢ with |im(⇢)| < d, d > 1.

Consider now a proximity relation ⇢ over N with |im(⇢)| = d. If  6=  
0 linearity

implies that there exists a unanimity game uT satisfying  (N, uT , ⇢) 6=  
0(N, uT , ⇢). The

family N/[⇢]1 is a partition of N . We set MT = {S 2 N/[⇢]1 : S \ T 6= ;}. If S /2 MT

then S is a null group for (N, uT ). We apply the null group property, if tS = 0 then

 i(N, uT , ⇢) = 0 =  
0
i(N, uT , ⇢). Otherwise, as 0 < tS < 1 then tS 2 im(⇢) \ {1} but for all

i, j 2 N with ⇢(i.j) = tS it holds ⇢tS0 (i, j) = 1. Hence |im(⇢tS0 )|  |im(⇢)|� 1 < d. The null

group property implies now that for all i 2 S,

 i(N, uT , ⇢) = tS i(N, uT , ⇢
tS
0 ) = tS 

0
i(N, uT , ⇢

tS
0 ) =  

0
i(N, uT , ⇢).

Let S, S 0 2 MT . We have several cases depending on the numbers tSS0 , t
SS0

. If tSS0 = 0 and

t
SS0

= 1 then |im(⇢10)| = 1 < d. If tSS0 > 0 and t
SS0

= 1 then tSS0 2 im(⇢) \ {1} but for all

i, j 2 N with ⇢(i, j) = tSS0 it holds ⇢1tSS0 (i, j) = 1, therefore |im(⇢1tSS0 )|  |im(⇢)| � 1 < d.

If tSS0 = 0 and t
SS0

< 1 then t
SS0 2 im(⇢) \ {1} but for all i, j 2 N with ⇢(i, j) = t

SS0
it

holds ⇢t
SS0

0 (i, j) = 0, therefore |im(⇢t
SS0

0 )|  |im(⇢)| � 1 < d. Otherwise 0 < tSS0 < t
SS0

< 1,

then tSS0 , t
SS0 2 im(⇢) but for all i, j with ⇢(i, j) = tSS0 and for all i0, j0 with ⇢(i0, j0) = t

SS0

it holds ⇢t
SS0

tSS0 (i, j) = ⇢
tSS0

tSS0 (i
0
, j

0), therefore |im(⇢t
SS0

tSS0 )|  |im(⇢)| � 1 < d. So, applying the
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substitutable leveled groups axiom

X

i2S

 i(N, uT , ⇢) �
X

j2S0

 j(N, uT , ⇢)

= (1 + tSS0 � t
SS0

)

"
X

i2S

 i(N, uT , ⇢
tSS0

tSS0 )�
X

j2S0

 j(N, uT , ⇢
tSS0

tSS0 )

#

= (1 + tSS0 � t
SS0

)

"
X

i2S

 
0
i(N, uT , ⇢

tSS0

tSS0 )�
X

j2S0

 
0
j(N, uT , ⇢

tSS0

tSS0 )

#

=
X

i2S

 
0
i(N, uT , ⇢)�

X

j2S0

 
0
j(N, uT , ⇢).

Hence
X

i2S

 i(N, uT , ⇢)�  
0
i(N, uT , ⇢) =

X

j2S0

 j(N, uT , ⇢)�  
0
j(N, uT , ⇢) = H.

Now, using e�ciency

X

i2N

 i(N, uT , ⇢)�  
0
i(N, uT , ⇢) =

X

S2MT

X

i2S

 i(N, uT , ⇢)�  
0
i(N, uT , ⇢)

= |MT |H = 0.

Thus H = 0. If S = {i} with i 2 T then  i(N, uT , ⇢) =  
0
i(N, uT , ⇢). Suppose then S 2 MT

with i, j 2 S two di↵erent players with ⇢(i, j) = 1. We apply modified fuzzy fairness to this

link reducing by 1� ⇢
⇤(i, j),

 i(N, uT , ⇢)�  j(N, uT , ⇢) = ⇢
⇤(i, j)

⇥
 i(N, uT , ⇢

1
⇢⇤(i,j))�  j(N, uT , ⇢

1
⇢⇤(i,j))

⇤

+(1� ⇢
⇤(i, j))

h
 i(N

i
ij, uT , (⇢

1
⇢⇤(i,j))N i

ij
)�  j(N

j
ij, uT , (⇢

1
⇢⇤(i,j))Nj

ij
)
i

=  
0
i(N, uT , ⇢)�  

0
j(N, uT , ⇢),

where the last equality holds since ⇢⇤(i, j) 2 im(⇢) \ {1} and then

|im(⇢1⇢⇤(i,j))|, |im((⇢1⇢⇤(i,j))N i
ij
)|  |im(⇢)|� 1 < d.

Coalition S is connected in [⇢]1, this fact implies that we can connect two players in S

by {i = i0, i1, ..., ip = j} ✓ S with ⇢(iq, iq�1) = 1 for all q = 1, ..., p. Thus, we have
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 i(N, uT , ⇢)�  
0
i(N, uT , ⇢) = K for all i 2 S and

0 =
X

i2S

 i(N, uT , ⇢)�  
0
i(N, uT , ⇢) = |S|K.

We get K = 0 and  i(N, uT , ⇢) =  
0
i(N, uT , ⇢) for all i 2 S. 2

Remark. Following the remark just after Theorem 1 and the proof of Theorem 7, the allo-

cation rule define as

⌫i(N, v, ⇢) =

Z
⇢ d!i(N, v),

being !i(N, v)(L) = !i(N, v,N/L), satisfies all the axioms except the modified fuzzy fairness

axiom. In the same way, the allocation rules

⌫
p
i (N, v, ⇢) =

Z
⇢ d 

p
i (N, v)

with p = 1, 2, 3, 4 and  p
i (N, v)(L) =  

p
i (N, v, L) satisfies all the axioms except one of them.

The prox-Owen value can be seen as a fuzzy version of the Myerson-Owen value for games

with communication structures. Similarity relations is the subfamily of proximity relations

associated to the a priori unions structures of Owen, because the bilateral relations among

the players are transitive. Moreover if ⇢ is a similarity relation then [⇢]t is a structure of a

priori unions for each t 2 (0, 1]. We can obtain an axiomatization for the prox-Owen value

over this subfamily. Obviously the prox-Owen value satisfies e�ciency and linearity within

this subfamily. As the restriction, the interval scaling and the dual interval scaling of a

similarity relation are similarity relations then null group and substitutable leveled groups

are also feasible axioms for similarity relations. Observe that the modified fuzzy fairness is

not feasible because if we reduce the level of a pair of players we can break up the transitivity.

In exchange, we introduce this other axiom used for the Owen value. For a similarity relation

⇢ and for two di↵erent players i, j 2 N such that there is a group S 2 N/⇢ with i, j 2 S we

denote

t
ij =

_
{tS : S 2 N/⇢, i, j 2 S}.

Substitutable players in a group. Let ⇢ be a similarity relation over N . If i, j are

substitutable for the game (N, v) (as individual coalitions) and there exists a group S 2 N/⇢
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with i, j 2 S then

 i(N, v, ⇢)�  j(N, v, ⇢) = (1� t
ij)[ i(N, v, ⇢

1
tij)�  j(N, v, ⇢

1
tij)]

Theorem 8. The prox-Owen value is the only value over GS (the set of games with a

similarity relation among the players) which satisfies e�ciency, null group, substitutable

leveled groups, substitutable players in a group and linearity.

Proof. The uniqueness part is similar to Theorem 7 using substitutable players in a group

instead of modified fuzzy fairness.

Hence we only have to check that the prox-Owen value satisfies substitutable players in

a group over similarity relations. Let i, j 2 N be two substitutable players in (N, v). As we

said in section 2.3 an a priori union structure is actually a communication structure L where

every component is a complete graph, and ⇠ = !. Suppose L so. If i, j are in the same

component in L the equal treatment for players in a union axiom (see section 2.2) of the

Owen value implies ⇠i(N, v)(L) = ⇠j(N, v)(L). Let ⇢ be a similarity relation with a group

containing players i, j. Using Proposition 4 with number tij we have

⌘i(N, v, ⇢)� (1� t
ij)⌘i(N, v, ⇢

1
tij) = t

ij

Z
⇢
tij

0 d⇠i(N, v)

⌘j(N, v, ⇢)� (1� t
ij)⌘j(N, v, ⇢

1
tij) = t

ij

Z
⇢
tij

0 d⇠j(N, v)

For each t 2 im
⇣
⇢
tij
0

⌘
we take r = tt

ij with r 2 (0, tij] and [⇢t
ij

0 ]t = [⇢]r. As r 2 (0, tij] then

i, j are contained in the same connected component of [⇢]r. Therefore

Z
⇢
tij

0 d⇠i(N, v) =

Z
⇢
tij

0 d⇠j(N, v) 2

7. Conclusions.

We have introduced games with a proximity relation among the players. Proximity re-

lations allow us to level the closeness relation among the players. This closeness can be

interpreted as ideological proximity, social relation, economic interest or personal feeling.
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We propose an Owen-type value for these situations using the Choquet integral. Besides, an

axiomatization for the value is given taking into account fuzzy conditions according to the

context of the data. This work highlights how the properties of the Choquet integral are a

powerful tool for the analysis of the fuzzy relations among the agents in a bargaining situ-

ation. The notation of the prox-Owen value as a Choquet integral simplifies the expression

of the axioms and it also allows to see how the properties of the Choquet integral intervene

in the proofs. Expression (11) shows the prox-Owen value as a linear combination of the

Myerson-Owen value of the cuts. This formula is the calculus tool of the value as we show

in the example. Also this last expression allows to interpret the axioms as intervals of dif-

ferent situations. Although the analysis of the proximity relations is a progress with respect

to the foregoing knowledge in the Owen line, other interesting open problems are feasible

using fuzzy tools. So, fuzzy cognitive maps or bipolar fuzzy cognitive maps will allow us to

describe subjective closeness of the agents and positive or negative attraction among them.
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Jiménez-Losada A., Fernández J.R., Ordóñez M. and Grabisch M. (2010). Games on fuzzy
communication structures with Choquet players, European Journal of Operational Re-

search 207: 836-847.
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