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Boson sampling with ultracold atoms in a programmable optical lattice
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Sampling from a quantum distribution can be exponentially hard for classical computers and yet could be
performed efficiently by a noisy intermediate-scale quantum device. A prime example of a distribution that
is hard to sample is given by the output states of a linear interferometer traversed by N identical boson
particles. Here, we propose a scheme to implement such a boson-sampling machine with ultracold atoms in
a polarization-synthesized optical lattice. We experimentally demonstrate the basic building block of such a
machine by revealing the Hong-Ou-Mandel interference of two bosonic atoms in a four-mode interferometer. To
estimate the sampling rate for large N , we develop a theoretical model based on a master equation that accounts
for particle losses, but does not include technical errors. Our results show that atomic samplers have the potential
to achieve a quantum advantage over today’s best supercomputers with N � 40.

DOI: 10.1103/PhysRevA.110.012615

I. INTRODUCTION

The idea that quantum computers could efficiently solve
problems that are believed to be intractable for classical com-
puters is the main motivation for the development of quantum
computing devices [1–3]. However, despite the impressive
progress in increasing the number of qubits and extending
their coherence time [4–16], building a fault-tolerant univer-
sal quantum computer is not yet within the reach of current
quantum technology [17]. This fact has stimulated the de-
velopment of alternative concepts of quantum computation
that can be performed with noisy intermediate-scale quan-
tum (NISQ) devices — machines that are far less demanding
than a fault-tolerant quantum computer and yet can outper-
form the best available classical computers on specific tasks.
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Examples of such NISQ devices are quantum annealers [18],
quantum simulators [19–27], quantum learning machines
[28,29], digital-analog quantum machines [30], and quantum
sampling machines [31].

A quantum sampling machine deals with the task of draw-
ing from the probability distribution of the outcomes that
are produced by measuring a quantum system in a highly
entangled state. In essence, the idea is to use the randomness
inherent to a measured quantum system to construct a hard-
to-simulate sampling machine. Compared to other problems
(e.g., decision problems), quantum sampling has the advan-
tage that its computational complexity can be ascertained for
many quantum distributions [32] by relying only on a few
widely held assumptions (e.g., no collapse of the polyno-
mial hierarchy). Knowing the computational complexity of
the specific problem allows us to gain important insights into
the conditions (e.g., size of the Hilbert space) and class of
quantum states [33–36] required to achieve a quantum advan-
tage over classical machines [37,38]. Quantum sampling also
appeals for practical reasons because its computational hard-
ness is generally robust to small experimental errors [39,40].
Such a natural tolerance to errors makes quantum sampling a
particularly suitable task to be performed with NISQ devices.
Based on these motivations, several proposals have been put
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forward, where one draws samples from the state generated
by a quantum circuit such as a constant-depth quantum cir-
cuit [41–43], instantaneous quantum polynomial-time circuit
[44,45], random quantum circuit [39,46–49], or linear quan-
tum circuit of indistinguishable bosons [50], better known as
a boson sampler.

Boson sampling [51] refers to the problem of sampling
from the probability distribution of the outcomes generated by
N identical, noninteracting bosons that have traveled through
an M-mode interferometer, with the initial and final N-particle
states being of the form of Fock states. The state of each
particle evolves according to the same M×M unitary matrix
U , mapping the initial into the final M modes of the linear
interferometer. The probability of detecting a particular out-
come comprising N bosons is proportional to the absolute
square of the permanent of a N×N submatrix of U [52,53].
In spite of its compact analytical expression, the permanent
(and likewise its absolute square) is very hard to compute,
for it requires a time exponential in N [54]. In fact, even
its approximation to a multiplicative factor has been shown
[55] to fall into the #P-hard complexity class [56]. From
a physics point of view, it is worth emphasizing that the
hardness of this problem is due to the quantum statistics
of indistinguishable bosons and not to interactions between
particles [57,58].

A number of experiments have been reported demonstrat-
ing boson sampling in photonic quantum circuits [59–70],
with the current record being N = 20 photons in M = 60
modes [71]. Because of losses, however, it is hard to reach
in the near future a much higher number of photons in a
deterministic manner. This limitation along with the develop-
ment [72] of more efficient classical algorithms for simulating
boson sampling have prompted the study of variants of the
problem that better cope with losses, such as lossy boson
sampling [73,74], scattershot boson sampling [74–77], and
Gaussian boson sampling [74,78]. This latter in particular,
which uses squeezed light instead of single photons, has
demonstrated [79–82] a huge increase in the number of pho-
tons detected at the interferometer output, on the order of 100,
leading to claims of a quantum advantage.

The quantum advantage of Gaussian boson-sampling ma-
chines has been questioned, though, as it has been shown that
classical sampling algorithms are able to efficiently draw sam-
ples from a sufficiently close distribution [83–86]. For random
quantum circuits [48,49], likewise, effective representations
of the qubits’ entangled state have been found [87,88] using
tensor networks, which result in a tremendous speed-up of
classical simulations, since only a tiny fraction of the Hilbert
space is actually used when the gate fidelity is below a certain
threshold. Such a race between quantum hardware and ever
more efficient classical algorithms is indeed expected to con-
tinue in the coming years, promising new insights into what
makes quantum systems advantageous from a computational
complexity perspective. Remarkably, it was shown [36] based
on fine-grained complexity arguments that a boson sampling
quantum machine of the original type [50] with N = 100 and
M = 500 achieves quantum advantage with respect to any (i.e.,
known and unknown) classical simulation algorithms. These
numbers are large, yet not beyond the reach of scalable NISQ
devices such as ultracold atoms in optical lattices.

In this article, we propose to use ultracold atoms in
state-dependent optical lattices as a scalable architecture for
boson sampling with hundreds of bosons. We also report
on the experimental realization of the basic building block
of the proposed boson-sampling machine, demonstrating the
Hong-Ou-Mandel interference between two atoms trapped
in state-dependent optical lattices. In our scheme, atoms
cooled into their motional ground state play the role of iden-
tical bosons, while the lattice site as well as two internal
atomic states serve as the bosonic modes. Distant modes,
associated with different lattice sites, are brought together
by state-dependent shift operations, which are realized with
polarization-synthesized optical lattices [89,90]. Modes that
are spatially overlapped are coupled in pairs, by a combi-
nation of microwave and site-resolved optical pulses, real-
izing the analog of phase-programmable photonic quantum
circuits [91,92].

It should be mentioned that based on a similar motivation
to establish a quantum advantage, other NISQ proposals alter-
native to photonic boson samplers have been put forward in
the past years relying on trapped ions [93–95], superconduct-
ing circuits [96], and neutral atoms with microwave-assisted
tunneling [97]. Furthermore, after the submission of this arti-
cle, the first demonstration of boson sampling using ultracold
atoms has been presented [98], involving 180 atoms spread
across 1000 sites in a tunnel-coupled optical lattice. This
recent experiment beautifully demonstrates the potential of
ultracold atoms to realize a large-scale boson-sampling de-
vice, once arbitrarily programmable quantum circuits can be
created. Such arbitrary quantum circuits could be produced
either using programmable tweezer arrays [99] or with state-
dependent potentials, as discussed in this article.

II. BOSON SAMPLING WITH ATOMS
IN OPTICAL LATTICES

A boson-sampling quantum machine is in essence an M-
port quantum circuit traversed simultaneously by N identical
bosons that do not interact with each other. As there are no
interactions between the particles, such a quantum circuit
behaves as a linear interferometer, mapping each input mode
into a superposition of the output modes,

a†
i →

M∑
j=1

Uji a†
j . (1)

Here, a†
i is the operator creating a boson in the ith mode,

and Uji is the matrix element of a unitary transformation U ,
which is randomly chosen from the uniform distribution (i.e.,
Haar measure) over all M × M unitaries. The randomness of
U ensures that no particular feature can be exploited to effi-
ciently simulate the boson sampler machine with a classical
computer.

By detecting the occupation of the output modes, the
machine thus directly samples from the probability distribu-
tion P(n1, n2, . . . , nM ) = |〈n1, n2, . . . , nM |U |ψ0〉|2. Here, ni

denotes the number of bosons in the ith output mode, and
|ψ0〉 represents the initial state with N identical bosons,
each occupying a particular input mode. According to best-
known algorithms [72], sampling from P cannot be performed
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FIG. 1. Illustration of a quantum circuit based on ultracold atoms in state-dependent optical lattices. Each site accommodates two modes,
|±〉, of the quantum circuit represented by two internal states of the atom. A representative initial state is shown, where every second mode
of the circuit is occupied. State-dependent shift operations connect distant modes, while local operations couple the internal modes. Inset:
Hong-Ou-Mandel interference of two indistinguishable atoms, where a combination of local phase-imprinting pulses and microwave pulses
realize the equivalent of a generalized photonic beam splitter.

efficiently with classical computers, as it is bound to com-
puting the permanent of N × N matrices, which requires a
computation time of order O(N22N ) [100].

Importantly, to be hard to simulate by a classical computer,
a boson sampler must have a number of modes much larger
than that of particles, M � N � 1 [50]. The gold standard
satisfying this condition is given by the scaling law M = N2

because it ensures that detecting two or more particles in any
of the output modes has a small probability [101]. In fact,
only when the output modes are singly occupied, i.e., for
the so-called collision-free outcomes, does the conjectured
hardness of boson sampling hold [50]. We therefore assume
such a quadratic scaling in this paper. It should, however,
be emphasized that this scaling has so far only been experi-
mentally realized with a relatively small number of particles,
N < 10, by photonics devices [71].

In the remainder of this section, we develop a concept of
how to implement such a boson-sampling quantum machine
with ultracold atoms in state-dependent optical lattices. We
start with the key idea of how to construct arbitrary quantum
circuits, and then discuss initialization and detection.

A. Arbitrary quantum circuits using polarization-synthesized
optical lattices

Figure 1 illustrates how to “wire” an arbitrary quantum cir-
cuit using ultracold atoms in state-dependent optical lattices.
The idea here is to use the lattice sites along with two internal
states of the atom, |+〉 and |−〉, to represent the modes of
the quantum circuit, so that M/2 lattice sites accommodate
M modes. Modes associated with adjacent sites are connected
in pairs by state-dependent shift operations.

Such state-dependent shift operations can be performed
using polarization-synthesized optical lattices [89]. This piece
of technology relies on the synthesis of polarization states
of light to create two movable, fully independent periodic

potentials,

V±(x) = V 0
± cos2{2π/λL[x − x±(t )]}, (2)

which selectively trap atoms in either the |+〉 or |−〉 internal
state. Here, V 0

± represents the trap depth and x±(t ) the posi-
tion of the respective periodic potentials, x is the coordinate
along the lattice direction, and λL is the wavelength of the
lattice laser. The underlying concept of state-dependent opti-
cal potentials is suited to atomic species such as Rb and Cs
[102,103]. In this work, we will consider specifically the case
of 133Cs, where the internal modes are the hyperfine states
|+〉 = |F = 4, mF = 3〉 and |−〉 = |F = 3, mF = 3〉, and λL

is set to the value of 870 nm, for which the trapping potential
of right and left circularly polarized light selectively traps the
two internal states.

The lattice potentials must be chosen sufficiently deep,
with V 0

± being on the order of a few hundred recoil energies,
to prevent atoms from tunneling to the neighboring sites. In
such a deep-lattice regime, one can shift the atoms to the
adjacent sites in a state-dependent manner by simply varying
the relative position, x+(t ) − x−(t ), as a function of time t . We
have experimentally demonstrated [104] that repeated state-
dependent shift operations preserve the coherence between the
two internal states. Furthermore, we have shown in a recent
work [105] that shifting the atoms by one lattice site can be
rapid, with the minimum duration being bounded by the trap
period at around 10 µs.

Crucially, a quantum circuit such as the one in Fig. 1, where
the modes are locally coupled in alternating pairs, allows one
to realize any arbitrary M×M unitary transformation U of the
input into the output modes [106,107]. For a generic matrix
U , a minimum number M(M−1)/2 of local operations T is
required, arranged in a circuit of M-step depth [107]. Such an
operation T defines the basic unit of the quantum circuit, cou-
pling together the modes |±〉 associated with a given lattice
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site,

T =
(

e−iφ cos(θ/2) − sin(θ/2)
e−iφ sin(θ/2) cos(θ/2)

)
, (3)

where φ and θ are parameters depending on the particular site
and time step. A programmable quantum device of this kind
is said to be completely controllable [108].

We propose to implement T through composite pulses,
where two types of elementary operations are stacked to-
gether: local phase imprints A(ϕ) and global Hadamard pulses
H . In fact, for any T , one can find suitable angles θ and φ

yielding the following decomposition:

T = e−iφ/2 T ′ = e−iφ/2H†A(θ )HA(φ), (4)

where A(ϕ) = exp[−iσzϕ/2] imprints onto the two modes
|±〉 a relative phase depending on the lattice site, whereas
H = exp(−iσxπ/4) acts on all sites identically, realizing the
equivalent of a beam splitter (here, σi represent the Pauli
matrices). Note that the local common-mode phase shift by
φ/2, which appears in Eq. (4), can be avoided by conveniently
adapting the algorithm by Clements et al. [107] to use T ′
instead of T as the basic unit.

The decomposition of T in Eq. (4) reveals a direct analogy
to phase-programmable photonic circuits [91,92]. Their struc-
ture reveals, however, an important difference: for ultracold
atoms, a single spatial dimension suffices to wire the circuital
modes, whereas at least two dimensions are necessary for pho-
tonic devices [70]. The advantage of ultracold atoms simply
arises from the fact that massive particles can be held in a
specific location by a trapping potential.

The global Hadamard gates are readily implemented by
means of π/2 microwave pulses, which act homogeneously
on all lattice sites and require a time of order of 1µs. The local
operator A(ϕ) can be realized by exploiting the differential
Stark shift that is produced by an array of laser beams focused
on the target lattice sites through a high-numerical-aperture
objective lens [109–111]. Exploiting the vector polarizability
of alkali atoms [102], one can imprint a purely differential
phase shift ϕ onto the atoms by means of a circularly polarized
light field. For Cs atoms, this condition is fulfilled when the
wavelength of the addressing light field is chosen at λA =
880 nm. Such local pulses also require that the addressing
beam has a nonzero component along the quantization axis.
This additional condition can be met by tilting the quantiza-
tion axis with respect to the lattice direction (see Appendix A).

The differential phase shift ϕ is directly controlled by the
product of the laser intensity and pulse duration. We estimate
that the addressing pulses A(ϕ) can be realized in about 1 µs
using approximately 10 µW of laser power per addressed
lattice site. These pulses have a small impact on the coherence
time of the atoms, because the probability that an atom scatters
a photon off the addressing beam is approximately 4 × 10−5.

It is worth noting that the composite pulse scheme pro-
posed to implement T offers an important advantage over
other schemes that use local resonant pulses to couple the
two hyperfine states, |±〉. The reason for this is the difference
in sensitivity to the crosstalk caused by the light field at the
sites adjacent to the target lattice site. Differential Stark shift
pulses, as in the proposed scheme, depend on the intensity
of the addressing laser beams in their Hamiltonian, while

resonant pulses directly depend on the respective electric
fields. This different sensitivity implies that for the same
intensity I leaking to the neighboring sites, crosstalk errors
are smaller in the proposed scheme: the crosstalk infidelity is
proportional to I2 in the proposed scheme, in contrast to I in
the resonant pulse schemes.

B. Initializing an array of identical atoms

Atom sorting techniques have been demonstrated [90,112–
116] where movable optical potentials are used to determinis-
tically fill a predefined array of optical traps with one atom
each. Recently, it has become possible to achieve densely
packed arrays with more than 1000 atoms [117,118]. Once
loaded into the desired sites of an optical lattice, atoms can be
cooled to their motional ground state using sideband cooling
techniques, making them indistinguishable in their mechan-
ical degrees of freedom. Ground-state probabilities above
90% have already been achieved for atoms trapped in optical
tweezers [115,119–121], whereas higher values above 99%
are expected [122] for more tightly confined atoms in a three-
dimensional optical lattice.

C. Detection of individual atoms

The final state is measured by recording a fluorescence
image of the atoms [111,123]. Using a high-resolution objec-
tive lens, the positions of the individual atoms in the optical
lattices can be reconstructed with a high fidelity, exceeding
99%. Standard fluorescence-imaging techniques, however,
only give information about the occupation of modes belong-
ing to distinct lattice sites. To also resolve the occupation of
modes associated with the same site, a state-sensitive detec-
tion scheme resolving the two hyperfine states, |±〉, is needed.
For this purpose, a long-distance state-dependent transport
operation can be used to realize an optical Stern-Gerlach
detection, mapping the two internal states to different lattice
sites [124,125]. Alternatively, one can use a magnetic Stern-
Gerlach detection scheme in a multilayer optical lattice [126].

A particle number resolving detection is more demand-
ing. Standard fluorescence imaging is not suitable because of
light-induced collisions, which only allow the parity of the
occupation number to be measured [127]. One approach is
to distribute the atoms to multiple sites prior to fluorescence
imaging [128], similar to spatial multiplexing in photonic
devices [63]. An improved version of this approach consists
of using a pinning lattice to detect the atoms [129,130]. Al-
ternatively, one can exploit the interaction blockade to induce
occupation-dependent tunneling to distinct sites of an optical
lattice [126].

III. SCALING LAW OF AN ATOM-BOSON-SAMPLING
MACHINE

To appreciate the quantum advantage of an atom boson
sampler over classical machines, we study in this section the
sampling rate R as a function of the number of bosons.
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A. Ideal boson sampler

In the ideal case of no atom losses, the sampling rate is
simply given by the repetition rate Rrep at which N bosons are
made to interfere with each other in a quantum circuit of M
modes. Three terms determines this rate,

R−1
rep = tinit + texec + tdet, (5)

where tinit is the time for preparing the initial state of N atoms,
texec is the time for executing the quantum circuit, and tdet is
the time for detecting the atoms in the M output modes.

To estimate the execution time texec, we assume that local
Stark shift pulses can be carried out in parallel by optically
addressing all sites simultaneously [16,131]. The time for
executing the quantum circuit is thus proportional to the total
number of steps, which in turn is equal to the number of modes
M (see Sec. II A). Considering that the number of modes is
given by M = N2, as previously reasoned, we find that the
execution time has a quadratic dependence on the number of
bosons, texec = N2tstep, where tstep is the time to perform the
single step.

The initialization time tinit is proportional to N for linear
atom sorting [112,113], and to log(N ) for parallel atom sort-
ing [90]. For simplicity, we assume that this time is fixed at
500 ms, since the initialization of 100 atoms can be efficiently
performed in less than this time [27]. Likewise, we consider
the detection time to be fixed, tdet = 100 ms, since both po-
sitions and spin can be efficiently detected for all atoms in a
single operation relying on fluorescence imaging [124,125].

Furthermore, if we postselect only those events with all
atoms populating a different output mode (i.e., the so-called
collision-free events), because these are the events hard to
simulate with a classical machine, the sampling rate is reduced
by a constant factor 1/e in the limiting case of large N [101],
leading to Rideal ≈ Rrep/e.

Thus, we conclude that under ideal conditions, an atom
boson sampler can draw events from the boson distribution
efficiently, since its computation time 1/Rideal scales with N2

for sufficiently large N (i.e., polynomial time complexity). In
contrast, classical computer simulations require an exponen-
tially longer time to perform the same task, which scales with
O(N22N ) [72] (see Sec. II).

B. NISQ boson sampler

In a realistic scenario typical of NISQ devices, the sam-
pling rate is significantly degraded by state preparation errors,
atom losses while executing the quantum circuit, and detec-
tion inefficiency. Along the lines of Refs. [68,72], we estimate
the sampling rate as

RNISQ = (ηinitηdet )
N Psurv Rideal, (6)

where ηdet is the detection efficiency, ηinit the cooling effi-
ciency into the motional ground state, and Psurv the probability
that all N atoms survive. As reasoned in Sec. I, we only
consider the case where no particle is lost.

Equation (6) immediately reveals that the computation time
1/RNISQ scales exponentially with the number of particles.
It is therefore important to carefully evaluate the expression
in Eq. (6) to determine the conditions when an atom boson

sampler offers a quantum advantage over classical computer
simulations.

As described in Sec. II, cooling and detection of ultracold
atoms can be done efficiently, with reported values of ηinit and
ηdet above 90% [115,119–121] and 99% [124], respectively.
The survival probability Psurv in Eq. (6) depends on two main
loss mechanisms, which we discuss below.

The first mechanism responsible for the loss of atoms is
collisions between one of the N trapped atoms and a parti-
cle from the background gas at room temperature, causing
the atom involved in the collision to be ejected from the
trap. For N atoms, the probability that no collision with
the background gas occurs during a single step is given by
the exponential formula PBG

step = exp (−Ntstep/τBG), where τBG

is the background-gas-limited mean lifetime of a single atom.
The second mechanism leading to the loss of atoms is

given by inelastic collisions of atoms occupying the same
lattice site. Inelastic collisions cause the atoms to change their
hyperfine state [132–134], and to acquire kinetic energy, thus
leaving the motional ground state where they are initially
prepared. Such inelastic collisions typically result in the loss
of atoms from the trap because of the large energy separa-
tion between hyperfine states (several MHz between adjacent
mF states, 9.2 GHz between different F states, expressed in
frequency units). Three-body collisions are neglected because
the probability of three (and more) particles occupying the
same lattice site compared to that of pairs is negligible in
the limit of a large number of modes (see Appendix B). To
account for the two-atom lossy collisions, we introduce the
survival probability of a pair of atoms located in the same
lattice site, given by exp (−t/τTB), where τTB is the mean life-
time limited by two-body collisions. Note that for simplicity
we use the same constant τTB without differentiating between
the three possible spin configurations of the two bosons occu-
pying the same site. To estimate the number of pairs of atoms
that can collide on site, we make the conservative assumption
that all states of N bosons have equal probability of being
occupied at every time step. This is a conservative assumption,
which overestimates the probability of inelastic collisions at
the initial steps since the atoms are first prepared in different
sites. Based on these assumptions, the probability of finding
k sites occupied by exactly a pair of atoms can be estimated
as Pk = e−3/2(3/2)k/k! (see Appendix B). For example, P0 is
the probability of the collisionless subspace, where all atoms
occupy distinct lattice sites. Thus, the survival probability per
time step, limited by two-body lossy collisions, is obtained by
the evaluating the following sum:

PTB
step =

N/2∑
k=0

Pke−k
tstep
τTB ≈ exp

[
3

2

(
e− tstep

τTB − 1
)]

, (7)

where the expression on the right-hand side holds in the
limit of large N (see Appendix B). For weak two-body
losses, t � τTB, the survival probability PTB

step decays as
exp [−3tstep/(2τTB)], while in the limiting case of strong
losses the survival probability approaches P0.

Combining the two loss mechanisms, the survival probabil-
ity per step is simply given by Pstep = PBG

stepPTB
step. Because the

execution of the quantum circuit requires M = N2 steps, the
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FIG. 2. Scaling of boson-sampling machines. Predicted sampling rate vs the number of bosons N is shown for atomic (blue), photonic
(purple), and classical (gray) boson-sampling machines. The atomic sampling is computed based on Eq. (6), where an extended model (see
Appendix B) is used for Pstep to account for both particle pairs and triplets. Our atomic sampling model disregards decoherence by technical
noise sources; see text. The photonic and classical curves correspond to Eqs. (C1) and (C2), respectively. Under state-of-the-art conditions,
atomic NISQ devices have the potential to overtake classical algorithms at N ≈ 37. Pioneering photonic experiments are marked with symbols

[59], [60], and [61], while the best reported boson-sampling experiment is marked with [71]. Note that the photonic experimental
points refer to implementations of the original boson-sampling problem, and thus do not include Gaussian boson-sampling experiments, for
the reasons presented in Sec. I. Our proof-of-principle experiment, described in Sec. IV, is marked with . The numerical results obtained
with the master equation approach (see Appendix D) are indicated with , with the vertical bars indicating the 1-σ statistical uncertainty.

total survival probability of N atoms (where N � 1) is thus

Psurv = (Pstep)M

= exp
{ − N3tstep/τBG + N2(3/2)

(
e− tstep

τTB − 1
)}

. (8)

A comparison of the two terms in Eq. (8) shows that
under typical conditions tstep � τTB � τBG two-body colli-
sions are the dominant loss mechanism for N < Nthreshold =
3τBG/(2τTB). As will be argued below, realistic experiments
are expected to operate with a number of atoms below this
threshold.

To evaluate RNISQ in Eq. (6), we consider two different
scenarios, which are based on conservative and state-of-the-
art assumptions, respectively. In the conservative scenario,
we assume a step duration tstep = 170 μs and a mean life-
time limited by two-body collisions τTB = 40 ms, while in
the state-of-the-art scenario, we consider tstep = 33 μs and
τTB = 400 ms. For the initialization and detection times, we
assume tinit = 500 ms and tdet = 100 ms, with efficiencies of
ηinit = 0.90 and ηdet = 0.99 for the conservative scenario, and
ηinit = ηdet = 0.99 for the state-of-the-art scenario. For the
mean lifetime limited by background gas collisions, we take
τBG = 360 s in both scenarios. The threshold value Nthreshold

is larger than 1000 atoms in both scenarios, implying that for
a realistic number of atoms the dominant loss mechanism is

inelastic two-body collisions rather than collisions with the
background gas.

In Fig. 2, we show the sampling rate RNISQ as a function
of the number of particles N , computed for an atom boson
sampler with conservative and state-of-the-art assumptions
(blue curves). To identify the regime of potential quantum
advantage, we present in the same figure the sampling rate
Rclassical of best algorithms [72] simulating a boson sampler
using a standard laptop and the Tianhe-2 supercomputer (gray
curves). For the sake of comparison, we also report in the
figure the sampling rate expected for NISQ photonic devices
(purple curves) for a conservative and state-of-the-art sce-
nario; see Appendix C for details.

To validate our model of the sampling rate RNISQ in Eq. (6),
we have carried out exact numerical simulations based on a
master equation approach (Appendix D) for N up to 4. The
result of the numerical simulations (blue squares in Fig. 2)
shows a very good agreement with the curves from the model.

In the scenario of N = 50, which is relevant for quantum
advantage, we find that the sampling rate of the fastest atomic
sampler proposed in this work (tstep = 33 μs) is dominated by
initialization and detection times. We expect a different situa-
tion in tunnel-coupled optical lattices [98], where a tunneling
event (i.e., the equivalent of a time step) takes about tstep ≈
1 ms. For these samplers, the execution time texec = N2 tstep is
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on the order of a few seconds for N = 50 particles and will
likely be the factor limiting the sampling rate.

We should emphasize that our model takes into account
interactions between atoms only through their dissipative ef-
fects, which are accounted for in Eq. (6) in terms of atom
losses. The model does not consider interaction-induced phase
shifts. Modeling coherent interactions between atoms requires
a different approach [135], and goes beyond the scope of this
work. We expect that the interaction-induced phase shifts will
make this boson-sampling problem even harder to simulate on
classical computers compared to its linear counterpart, as was
originally proposed [55].

Finally, we would like to point out that, both in our the-
oretical model of Eq. (6) and in the numerical simulations,
we have not considered technical errors affecting the opera-
tions during the quantum circuit. Future investigations on the
scaling of atomic sampling devices will have to address not
only atom losses, but also the loss of coherence. The specific
technical errors will depend on the specific implementation,
and a detailed analysis thereof goes beyond the scope of this
work. We refer the reader to the Appendix of Ref. [136] for
a discussion of the main technical decoherence mechanisms,
and to Ref. [89] for a characterization of the noise sources
affecting polarization-synthesized optical lattices. The present
work rather focuses on quantifying the effect of fundamental
errors that exist across all neutral atom platforms.

IV. EXPERIMENTAL DEMONSTRATION OF
THE HONG-OU-MANDEL INTERFERENCE

We have performed a proof-of-principle experiment with
two atoms in a four-mode interferometer, which demonstrates
the Hong-Ou-Mandel effect with atoms, as schematically
shown in the inset of Fig. 1. Such an experiment establishes
the basic building block of the envisaged boson-sampling
machine.

The Hong-Ou-Mandel effect with atoms has been pre-
viously demonstrated experimentally using movable optical
tweezers [137], an optical lattice superimposed to a box
potential [138], and a free-fall atom interferometer [139].
Compared to these setups [140] and to related proposals based
on microwave-induced tunneling [97], our setup is distin-
guished by the way modes are coupled, where the atoms
are moved with state-dependent shift operations [89] instead
of having them tunnel through an optical potential barrier.
Our approach enables faster operations on the scale of a few
microseconds instead of milliseconds.

The setup used for our experimental demonstration is
schematically depicted in Fig. 3(a). We start with a handful
of Cs atoms, which are sparsely loaded in a one-dimensional
polarization-synthesized optical lattice [89]. Using the atom
sorting technique presented in Ref. [90], a pair of atoms is then
selected and repositioned to a relative distance of 20 lattice
sites with a success rate of about 99%, mainly limited by
an incorrect detection of the initial distance between the two
atoms [123].

To make the two atoms identical, we cool them to the
ground state of the lattice site potential in which they are
respectively trapped. For this purpose, we use resolved side-
band cooling, where the sideband transitions are driven by

FIG. 3. Experimental setup probing the Hong-Ou-Mandel inter-
ference with two atoms. (a) Atoms are trapped in a polarization-
synthesized optical lattice, formed by two optical standing waves of
left (L) and right (R) circular polarization, which can be shifted by
varying the optical phases φL and φR (adapted after Ref. [89]). Two
Raman laser beams perform transverse sideband cooling. A spiral
phase plate (SPP) generates a hollow-tube laser beam (intensity pro-
file in the inset), enhancing the transverse confinement of the atoms.
Cooling along the longitudinal and transverse directions is evidenced
by the suppressed blue detuned sidebands in the (b) microwave and
(c) Raman sideband spectra, respectively.

microwave radiation [141] for the direction along the lattice
axis and by two Raman lasers [119] for the transverse direc-
tions. The optical lattice provides a tight confinement (ν‖ ≈
120 kHz sideband) along its longitudinal direction, while
a hollow-tube potential collinear with the lattice axis also
provides a tight confinement (ν⊥ ≈ 20 kHz sideband) in the
transverse directions. These trap frequencies are much larger
than the recoil frequency (≈2 kHz), thus ensuring that the
Lamb-Dicke condition necessary for ground-state cooling is
fulfilled. We alternate between microwave and Raman side-
band cooling three times in order to cool the atoms in both the
longitudinal and transverse directions. By allowing a slight
ellipticity of the transverse potential, we lift the degeneracy
of the transverse motional states, allowing Raman sideband
cooling to be effective along both transverse directions. At the
end of the cooling process, the atoms are polarized in state
|+〉 = |F = 4, mF = 4〉 with a probability of 99%. Note that
in this section |+〉 refers to a different Zeeman state than the
one considered in the rest of this work (cf. Sec. II A). With
the mF state chosen for the experimental demonstration, it
must be taken into account that the state-dependent potentials
depend on both left and right circular polarization components
of the trapping light field [105].

Figures 3(b) and 3(c) report a typical microwave and
Raman sideband spectrum recorded after the cooling proce-
dure, demonstrating a pronounced suppression of the cooling
(blue detuned) sideband with respect to the heating (red de-
tuned) sideband. From the ratio of the sideband amplitudes
[142], we derive a ground-state probability of ∼ 95% for
the longitudinal direction and of ∼ 84% for each transverse
direction. Thus, the overall probability of occupying the mo-
tional ground state can be estimated as P3D ≈ 95% × 84% ×
84% ≈ 67(9)%.

After sideband cooling, a magnetic field gradient along
the lattice direction (11.6 G/cm) is ramped up in 10 ms and
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maintained until detecting the atoms by fluorescence imag-
ing. The magnetic field gradient induces a position-dependent
Zeeman shift (≈1.2 kHz per lattice site), which is used to
selectively transfer one of the two atoms to the |−〉 state.
We perform such a selective spin flip by addressing the target
atom with a microwave narrow-bandwidth π pulse (Gaussian
shape, 7-kHz rms width). Spin-flip errors are clearly visible
in the final fluorescence image, allowing them to be removed
by postselection. The atom thus selected is then adiabatically
transported in 1 ms to the site of the second atom by shifting
the V−(x) lattice potential. With the two atoms occupying the
same site, we apply a fast microwave π/2 pulse (square shape,
4.8 μs duration). This pulse acts much like the beam splitter of
a Hong-Ou-Mandel optical interferometer, erasing the which-
way information of the two impinging particles. Last, we shift
the V+(x) lattice potential to map the internal states, |+〉 and
|−〉, to two different locations ten lattice sites apart, where the
atoms are detected by position-resolved fluorescence imaging.

Two identical atoms are expected to bunch together in
the same lattice site with unit probability because of the
Hong-Ou-Mandel interference (bosonic quantum statistics).
In practice, however, the two atoms can differ from each other
because of their motional states. For two atoms in orthogonal
states (i.e., fully distinguishable particles), the outcomes re-
semble those obtained from the toss of two independent coins,
yielding a bunching probability of 1/2 (classical statistics).
For partially distinguishable atoms like ours, the probability
to bunch is determined by the so-called quantum purity of the
state, γ ≈ P2

3D, which represents the probability of the two
atoms to be indistinguishable: Pbunch = γ + (1 − γ )/2. Thus,
the Hong-Ou-Mandel interference is established if we can
show that the bunching probability of the two atoms fulfills
Pbunch > 1/2.

In the experiment, we distinguish three outcomes corre-
sponding to the detection of zero, one, and two atoms in the
final fluorescence image. Figure 4 shows the experimentally
recorded probability for each of them. When both atoms are
positively detected, the atoms are found at different locations,
ten sites apart (see fluorescence image in Fig. 4). Impor-
tantly, such an outcome can only occur when the two atoms
have not bunched together. Its probability is thus directly
related to Pbunch through the expression P2 = S2(1 − Pbunch),
where S is the single-atom survival probability. From the
measurement of P2 = 19(3)% and the independent charac-
terization of the single-atom survival probability S = 84(1)%
(see Appendix E), we therefore obtain Pbunch = 73(4)%,
which exhibits a 5-σ deviation from the reference value 1/2.

Such a value of Pbunch establishes that the Hong-Ou-
Mandel interference of the two atoms occurs with a prob-
ability γ = 2Pbunch − 1 = 45(8)%, in good agreement with
the value expected from the independent measurement of the
ground-state fraction, γ ≈ P2

3D ≈ 45(12)%. We expect that γ

can be significantly improved in the future with more effi-
cient ground-state cooling of the atoms in a three-dimensional
optical lattice. An analysis of all experimental outcomes, in-
cluding those with zero and one atom detected, yields a value
of Pbunch = 73(6)% that is statistically consistent with the
value we have derived from P2 only (see Appendix E).

In the future, it will be interesting to test not only the
degree of indistinguishability between atoms, but also their

FIG. 4. Detection of the Hong-Ou-Mandel interference. Right:
measured probability for the detection of zero (P0), one (P1), or
two atoms (P2). The dashed lines show the case of distinguishable
particles as a reference (see Appendix E). The error bars represent
the 68% Clopper-Pearson confidence intervals. Left: representative
fluorescence images of the two atoms after the Hong-Ou-Mandel
sequence, with the internal states |−〉 and |+〉 mapped to the sites 0
and 10. When the atoms are bunched in the same site, inelastic light-
induced collisions result in either one or zero atoms being detected.
Superresolution microscopy allows resolving the lattice sites de-
spite the diffraction-limited optical resolution of approximately four
sites [123].

degree of entanglement. For that, one could study cross-
correlations with a two-atom interferometer as presented in
Refs. [143–146].

V. CONCLUSIONS

In this work, we have presented a scheme for the realiza-
tion of programmable NISQ circuits with neutral atoms in
state-dependent optical lattices. Quantum circuits based on the
proposed scheme can be easily reprogrammed and scaled up
to hundreds of modes. Both repogrammability and scalability
are key to realize large random unitaries—a prerequisite for
any large-scale boson-sampling machine. Furthermore, we
have experimentally demonstrated the basic building block
of an atom boson-sampling machine by executing a quantum
circuit with four modes and two indistinguishable atoms. We
observed the atoms bunching in pairs, thus revealing their
bosonic nature. The Hong-Ou-Mandel interference signal of
the atom bunching is found to deviate from the outcome
predicted for distinguishable (i.e., classical) particles by 5 σ .
The degree of indistinguishability of the atoms is determined
by the probability of occupying the motional ground state in
the potential well of an optical lattice site. We independently
measured the motional ground-state occupancy of the atoms
and showed that it is in good agreement with the ground-state
occupancy inferred from the observed bunching probability.

We have discussed in detail how to wire quantum circuits
using a one-dimensional state-dependent optical lattice. Our
analysis of NISQ devices has shown that controlling more
than M = 500 lattice sites will be required to reach a quantum
advantage over the best supercomputers. Controlling such a
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large number of lattice sites may become difficult to realize
in a one-dimensional geometry. However, our scheme can be
readily extended to two-dimensional state-dependent optical
lattices [147], leading to a more compact and less resource-
intensive platform.

For future studies, it will be interesting to investigate the
role of controlled coherent collisions among atoms [148],
which can be exploited to imprint collisional phases onto the
quantum state when two or more particles meet at the same
site [149]. The inclusion of such nonlinearities is shown to
augment the amount of correlations in the output distribution
[135]. For this reason, there is a potential that simulating a
nonlinear boson sampler with classical computers will be an
even harder task than the original linear problem.

Finally, we emphasize that beyond the boson-sampling
application, the proposed scheme can be used to implement
reprogrammable parametrized quantum circuits—a key com-
ponent for quantum machine learning [28,29].

Note added. Recently, the first demonstration of an atomic
boson sampler has been put forward [98], involving 180 atoms
spread across 1000 optical tweezer sites.
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APPENDIX A: QUANTIZATION AXIS

The propagation direction of the addressing beam must
be perpendicular to the optical lattice itself in order to allow
it to be tightly focused on the individual sites of the lattice
itself. The only way to satisfy this geometric condition and
the condition stated in Sec. II A that the quantization axis
must have a nonzero component along the addressing beam
is to have the quantization axis form an angle α �= 0 with the
direction of the optical lattice.

However, tilting the quantization axis by α with re-
spect to the optical lattice laser beams causes a wobbling
of the optical lattice potential depth, V 0

±, during the state-
dependent shift operations. Because of this wobbling, the
lattice depth is reduced by a factor | cos(α)| during transport.
The extent of this effect is very small for small angles. For
example, for α = 15 ◦ the lattice depth is reduced by only
∼ 3%. This wobbling can be easily taken into account and

compensated for in the design of transport operations by opti-
mal control [105].

APPENDIX B: PAIR DISTRIBUTION
AND EXTENDED MODEL

In the limit of large N and after averaging over random
quantum circuits, the state of the N bosons is described by
a uniform statistical mixture ρu, where all possible config-
urations of the N bosons over the M modes are equally
weighted [101]. Using this result, we derive a general expres-
sion P(k2, k3) to account for the probability of finding exactly
k2 sites occupied by a pair and k3 sites occupied by a triplet,
whereas the other sites are singly occupied.

To calculate P(k2, k3), we first determine the number of
configurations containing k3 sites occupied by a triplet of
atoms. For that, we consider that there are

(M/2
k3

)
possible

combinations to arrange k3 triplets in M/2 sites, where we
assume for simplicity that the overall number of modes M is
even. Given the two spin states, for each site occupied by a
triplet, we have

((2
3

)) = 4 possible spin configurations, where
the double brackets denote the multiset coefficient. Thus, the
previous number of combinations must be multiplied by 4k3

to obtain the total number of configurations for the k3 triplets.
Next, we consider that there are

(M/2−k3

k2

)
combinations to

arrange k2 pairs in the remaining M/2 − k3 sites. This number
must be multiplied by 3k2 to account for the

((2
2

)) = 3 different
spin configurations for each pair. Now, there are

(M/2−k2−k3

N−2k2−3k3

)
different combinations to place the remaining N − 2k2 − 3k3

particles in the rest of the sites. For each singly occupied site,
there are only two possible spin configurations. Finally, to
obtain the probability P(k2, k3), all the configurations should
be divided by the overall number of possible bosonic configu-
rations, which is given by the multiset coefficient

((M
N

))
. Hence,

the probability of having exactly k2 sites occupied by pairs and
k3 sites occupied by triplets is given by

P(k2, k3) = 4k3

(
M/2

k3

)
3k2

(
M/2 − k3

k2

)
2N−2k2−3k3

×
(

M/2 − k2 − k3

N − 2k2 − 3k3

)/((
M

N

))
. (B1)

In the limit of large N , the expression in Eq. (B1)
yields a vanishing probability to have k3 > 0 triplets,
limN→∞ P(k2, k3 > 0) = 0. Instead, when k3 = 0, Eq. (B1)
converges to a Poisson distribution for the occurrence of
k2 pairs,

lim
N→∞

P(k2, 0) = λk2

eλk2!
, (B2)

with average value λ = 3/(2c). Here, the constant factor c
denotes the ratio c = M/N2, which in the main text has
simply been assumed equal to 1. Figure 5 shows the distri-
butions P(k2, 0) (left panel) and P(0, k3) (right panel) for an
increasing number of particles N = 3, 9, and 27, assuming
c = 1. The graphs show that the probability associated with
the collision-free subspace, P(0, 0), tends to the finite value
exp[−3/(2c)]. We also notice that for a relatively small num-
ber of particles N � 10, the probability of finding a triplet,
P(0, 1), has a non-negligible value between 0.05 and 0.1.
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FIG. 5. Extended probability distribution of particle pairs and
triplets. Left: P(k2, 0) vs k2 is plotted (dotted lines) for N = 3, 9,
and 27 and c = 1. For increasing N , P(k2, 0) tends to Eq. (B2) (solid
line). Right: P(0, k3) vs k3 is plotted (dotted lines) for N = 3, 9, and
27 and c = 1. For increasing N , P(0, k3 > 0) tends to zero.

It is straightforward to generalize Eq. (B1) to higher occu-
pations (quartets, quintets, etc.). However, the probability of
having more than three particles in a site is negligible even for
a small number of particles and can thus be safely neglected.

The extended distribution P(k2, k3) can be used to estimate
the effect of two-body losses on the uniform state ρu. Two-
body losses are assumed to reduce the survival probability of a
state containing k2 pairs by a factor e−k2t/τTB . A particle triplet
decays three times faster than a pair because there are three
possible combinations for the colliding pairs. This can also be
understood through the action of the particle decay operator
V (t ) (defined in Appendix D) on a state with k3 particle
triplets, where V (t )|k3〉〈k3|V †(t ) = exp (−3k3t/τTB)|k3〉〈k3|.
The total survival probability is thus obtained evaluating
the sum

PTB
step =

N/3∑
k3=0

N/2−k3∑
k2=0

P(k2, k3)e− (k2+3k3 )tstep
τTB . (B3)

The sum in Eq. (B3) can be simplified in the limit of large
N by ignoring particle triplets. Using the approximate expres-
sion in Eq. (B2) for P(k2, 0), we obtain

PTB
step ≈

N/2∑
k2=0

P(k2, 0)e− k2tstep
τTB ≈ exp

[
3

2c

(
e− tstep

τTB − 1

)]
, (B4)

which corresponds to Eq. (7) in the main text when c = 1. The
expression on the right-hand side of Eq. (B4) is obtained by
computing the limit as N tends to infinity.

Note that in Fig. 2 and in Appendix D, the extended model
of Eq. (B3) is used instead of Eq. (7) to describe the two-body
losses, because it also applies in the limit of a small number
of particles.

APPENDIX C: SCALING LAW FOR PHOTONIC
AND CLASSICAL BOSON SAMPLERS

Along the lines of Ref. [68], the sampling rate of a photonic
boson sampler is given by

Rph = 1

e

R0

N
ηN , (C1)

where R0/N is the rate in which N indistinguishable photons
are created and η = η f η

d
c is the success probability of a single

photon going through state preparation, circuit transmission,
and successful detection. The success probability η is a prod-
uct of a fixed probability η f , which does not scale with the
number of modes in the circuit and depends only on the
state preparation and detection, and the circuit transmission
probability ηM

c , which accounts for the chance that a photon is
absorbed at each beam splitter. For a square circuit [107] with
M = N2, the sampling rate Rph is mainly determined by the
term ηNM

c for sufficiently large N .
Our conservative values (lower edge of the purple area in

Fig. 2) are based on Ref. [71]. The authors use a single-photon
source working at R0 = 76 MHz and report a boson-sampling
rate of Rph = 295 Hz for five photons in a 60 × 60 optical
circuit. The transmission probability through the entire cir-
cuit is reported as 98.7% and correspondingly ηc = 0.9871/60,
which in turn allows us to extract the fixed preparation and
detection probability of η f = 0.14. For the state-of-the-art es-
timate (upper edge of the purple area in Fig. 2), we assume an
overall increased fixed preparation and detection probability
of η f = 0.65 [69].

For a classical boson sampler, the time required by a
recently developed algorithm [72] based on Metropolized in-
dependent sampling to generate a valid sample scales as

Rcl = 2−N/(100 ã N2), (C2)

where ã relates to the speed of the classical computer. This
value has been reported to be ã = 3 × 10−15 s in the case of
the Tianhe-2 supercomputer [100]. For the case of an ordinary
computer, we choose this value to be ã = 3 × 10−9 s.

APPENDIX D: BENCHMARK WITH EXACT
SIMULATIONS

We derive a master equation model in order to bench-
mark the sampling rate formula in Eq. (6). In our model, an
N-particle initial state is given by |ψ0〉, where 〈ψ0|ψ0〉 = 1
and

∑M
m=1 nm|ψ0〉 = N |ψ0〉. Here, nm is the number operator

acting on mode m. The evolution of such a quantum state is
given by

|ψ〉 = UMV (tstep)UM−1 . . .U1V (tstep)|ψ0〉, (D1)

where Uj are the coherent operations at step j, and V (t ) =
exp (−Ht ) represents the particle decay operator acting for a
time t . The Hermitian operator H is

H = 1

2τBG

M/2∑
s=1

ns + 1

4τTB

M/2∑
s=1

ns(ns − 1), (D2)

where ns is the number operator counting the number of
atoms in the lattice site s. In Eq. (D2), the first and second
terms account for single-body and two-body decay processes,
respectively. The effect of V (tstep) is to leave the state in
the N-particle subspace (i.e., the collision-free subspace in
which we are interested), but with a reduced norm. When
the operator is applied to a state with k pairs, it reduces the
norm by a factor exp (−Ntstep/2τBG) exp (−ktstep/2τTB). The
survival probability of the boson sampler is thus characterized
by the norm squared, 〈ψ |ψ〉.
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FIG. 6. Numerical simulation benchmark of the survival prob-
ability. Blue lines represent the exact simulation for N = 4 and
M = 16, where each point is the average of 30 realizations with
different random unitaries. (a) Success probability pj from time step
j − 1 to j for different decay rates τTB = texec, τTB = texec/5, and
τTB = texec/20. The black dashed lines are obtained using the simple
model in Eq. (B3). (b) Total survival probability 〈ψM |ψM〉 vs τ−1

TB .
The black dashed line represents the simple model, (PTB

step)M .

We use the master equation model given in Eq. (D1) to
carry out numerical simulations for up to N = 4 bosons, M =
N2 modes, and M steps. The exact numerical simulations
allow us to validate the survival probability model in Eq. (B3),
which was used to estimate the sampling rate of an atom boson
sampler in Sec. III. We consider in particular the survival
probability from time step j−1 to j, which is given by p j =
〈ψ j |ψ j〉/〈ψ j−1|ψ j−1〉, where |ψ j〉 = ∏ j

i=1 UiV (tstep)|ψ0〉. In
Fig. 6(a), we plot p j versus j and for different values of
τTB. For clarity, we omit the effect of single-particle losses
as their effect is trivial, and for simplicity we choose as
initial state a pure state given by a uniform superposition
of all bosonic states of N particles. For τTB = texec, we find
an almost exact correspondence between Pstep (black dashed
line) and p j (blue solid curve) for all steps j, suggesting that,
for weak losses, Eq. (B3) provides an accurate description
of the overall survival probability. For lower values of τTB,
such as τTB = texec/5 or τTB = texec/20, this correspondence
only holds for the initial state, while for the rest of the steps
PTB

step < p j , showing that Eq. (B3) represents a lower bound on
the survival probability for each step. In Fig. 6(b), we evaluate
the total survival probability 〈ψM |ψM〉 as a function of τTB

(blue solid curve) and compare it with the result from the

simple model, (PTB
step)M . We find that the simple model gives

a correct description of two-body losses when τTB � texec and
a lower bound estimate when τTB � texec. Although numerical
benchmarks have been performed for up to N = 4, to our
knowledge, it is reasonable to assume that the observed results
are generalizable to a much larger number of particles.

APPENDIX E: MONTE CARLO ANALYSIS OF
THE HONG-OU-MANDEL EXPERIMENT

In order to extract Pbunch from the experimental results, it
is important to consider that atoms bunched in the same site
cannot be directly detected by fluorescence imaging without
losing them. In fact, independent measurements performed in
our apparatus on bunched atoms show that with a probability
PLIC,0 = 71(5)% no atom is left, while with a probability
PLIC,1 = 1 − PLIC,0 just a single atom is detected in the final
fluorescence image as a consequence of light-induced colli-
sions [150]. Hence, identical atoms lead to the detection of
either zero or one atom, while distinguishable atoms are both
detected if after the Hong-Ou-Mandel π/2 pulse they occupy
different internal states. Examples of the three possible out-
comes with 0, 1, and 2 atoms detected are shown in Fig. 4(a).

To measure the single-atom survival probability S, we
performed independent measurements similar to the Hong-
Ou-Mandel interference experiment outlined in the main text,
omitting the microwave π/2 pulse. Without the π/2 pulse,
Pbunch = 0, independent of the quantum purity of the state, γ .
From this calibration experiment, we can directly determine
S = 84(1)%. The value of S is limited by losses at the begin-
ning of the transverse cooling process, which could be avoided
in the future with an improved experimental procedure.

We employ a Monte Carlo analysis to more rigorously
analyze the statistical outcomes recorded for the Hong-Ou-
Mandel experimental sequence that is described in Sec. IV.
The Monte Carlo simulation uses the predetermined light-
induced collision probability PLIC,0 and the single-atom
survival probability S. Further input parameters are the bunch-
ing probability Pbunch, the addressing probability of the
narrow bandwidth microwave pulse, and the probability to
successfully reconstruct the position of the atoms. Using a
nonlinear least squares regression, we fit the generated Monte
Carlo events to the measured data to extract the underlying
experimental parameters, yielding Pbunch = 73(6)%.
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