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Abstract—In response to the rapid expansion of Internet-
of-Things (IoT) devices and associated cybersecurity threats,
this work proposes a novel LSTM-CNN architecture for robust
individual device identification, leveraging behavior monitoring
and ML/DL advancements. Evaluated against a dataset from 45
Raspberry Pi devices, this model outperforms traditional ML/DL
methods, achieving a +0.96 average F1-Score and demonstrating
strong resilience to adversarial attacks, including context-based
and ML/DL-specific evasion attempts. Through the application
of adversarial training and model distillation defenses, the model
vulnerability to the most effective attack was reduced from a
0.88 success rate to 0.17, maintaining high-performance integrity.

Index Terms—Adversarial attacks, Device Identification, Arti-
ficial Intelligence, Internet of Things, Context Attack
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I. INTRODUCTION

With the expansion of IoT and advancements in processing
technologies, the deployment of IoT devices has surged,
enriching sectors like Industry 4.0, Smart Cities, and Health-
care with diverse applications. This proliferation, however,
raises significant cybersecurity challenges, particularly as
more potent IoT devices, such as Single-Board Computers
(SBCs), are prone to sophisticated cyber threats. Conventional
static identifiers for device authentication are increasingly
vulnerable, prompting a shift towards behavior and hardware-
based identification methods. These methods offer enhanced
security by distinguishing devices through unique hardware
characteristics and performance patterns.

This work presents a summary of [1], which focuses on
individual device identification through hardware performance,
considering the challenges posed by adversarial attacks on
data integrity and identification techniques. It proposes an
LSTM-CNN architecture for identifying devices based on the
unique behavior of their CPU, GPU, memory, and storage,
utilizing a dataset from 45 Raspberry Pi devices for evaluation.
This architecture demonstrates high accuracy, with an average
F1-Score of +0.96 and a True Positive Rate (TPR) of +0.80.

Moreover, this work outlines a threat model for adversarial
attacks affecting hardware behavior-based identification, an-
alyzing both context-related and ML/DL-focused adversarial
evasion attacks. It finds that while context attacks like
temperature variations have minimal impact, ML/DL evasion
techniques can significantly challenge identification accuracy.
To counter these threats, the research applies adversarial
training and model distillation defense techniques, effectively

reducing the success rate of the most potent attacks to
approximately 0.18, thereby enhancing the model robustness
against such adversarial tactics.

II. INDIVIDUAL IDENTIFICATION

The section elaborates on an ML/DL framework for individ-
ual device identification via hardware performance, establishing
a baseline for analyzing the impact of attacks and defenses.
The dataset, named LwHBench, collects performance metrics
from CPU, GPU, Memory, and Storage of 45 Raspberry Pi
devices, under controlled conditions to ensure data integrity.

The LSTM-1DCNN architecture, designed for time series
analysis, combines LSTM recursive pattern recognition with
1D-CNN spatial pattern extraction. TABLE I showcases the
classification performance of various models. The LSTM-
1DCNN model notably achieves the highest performance,
highlighting its effectiveness in identifying individual devices
based on hardware performance metrics.

TABLE I: Baseline classification model performance.

Model Accuracy Avg.
Precision

Avg.
Recall

Avg.
F1-Score

Single vector approaches
SVM 0.7838 0.7955 0.7829 0.7849
XGBoost 0.9059 0.9173 0.9056 0.9087
Random Forest 0.8549 0.8664 0.8542 0.8570
MLP 0.8895 0.8960 0.8880 0.8899

Time series approaches (10 values)
1D-CNN 0.9428 0.9453 0.9428 0.9428
LSTM 0.9346 0.9430 0.9346 0.9346
LSTM 1D-CNN 0.9602 0.9626 0.9602 0.9602
Multi 1DCNN LSTM 0.9535 0.9553 0.9535 0.9535

The performance of the LSTM-1DCNN model suggests its
potential to enhance IoT security. This contrasts prior works
that relied on aggregated features, indicating the advantage of
using extensive datasets and time series DL models.

III. THREAT MODEL

This section outlines the threat model for ML/DL-based
device identification solutions that rely on monitoring internal
hardware performance. It identifies potential vulnerabilities
in both the data generation by hardware and the subsequent
evaluation by ML/DL models, as illustrated in Fig. 1.

The list of identified threats is the following one. TH1. Fin-
gerprint eavesdropping and hijacking: Attackers intercept and
misuse fingerprint data to impersonate devices by exploiting
data transmission and storage vulnerabilities. TH2. Fingerprint
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Fig. 1: Threat impact on the steps of the identification process.

forgery: With detailed knowledge of the fingerprint generation
process, adversaries craft counterfeit fingerprints to mimic
legitimate devices. TH3. Context modification: External or
operational condition manipulations are used to disrupt the
accurate generation or recognition of device fingerprints. TH4.
ML/DL evaluation evasion: Knowledgeable attackers create
malicious data samples to fool the ML/DL evaluation models,
aiming to impersonate specific devices.

IV. ADVERSARIAL ATTACKS AND DEFENSES

This section evaluates the vulnerability of an ML/DL-based
device identification model to adversarial attacks designed for
device impersonation or identification disruption. The model
faces threats from TH2 (Fingerprint forgery), TH3 (Context
modification), and TH4 (ML/DL evaluation evasion), with TH1
(Fingerprint eavesdropping and hijacking) neutralized through
encryption and high-privilege process isolation.

1) Identification Disruption Attack (TH3): The DL model
resilience to context modification, particularly temperature
changes, was tested. Despite the temperature variation during
data collection, attacking the model with new temperature
conditions only slightly affected its performance. The experi-
ments showed a minor 0.03 decrease in average metrics for
descending order temperatures and a negligible impact on
ascending order, albeit with a decrease in minimum TPR
to about 0.65 for two devices. This minimal performance
degradation suggests robustness to context modifications, with
all devices still identifiable above a 0.50 TPR threshold.

2) Device Spoofing Attacks (TH2, TH4): Device spoofing
tested the model susceptibility to ML/DL evaluation evasion.
White-box attacks such as the Fast Gradient Sign Method
(FGSM), Basic Iterative Method (BIM), and Momentum
Iterative Method (MIM) demonstrated significant success
rates, pointing to a glaring susceptibility. TABLE II shows
the success rate for the main attacks tested. Notably, the
BIM and Projected Gradient Descent (PGD) attacks achieved
success rates above 0.85, underlining a pronounced risk of
malicious device impersonation. This analysis highlights the
model exposure to targeted evasion attacks, underscoring the
necessity for enhanced security measures.

In response to the vulnerabilities identified, adversarial
training and model distillation were applied as defense
mechanisms. These strategies aimed to enhance the model

TABLE II: Adversarial attack results.

Attack Attack Success Rate Time
FGSM, ϵ = 0.05 0.3056 8.79 s
BIM, ϵ = 0.5 0.8823 752.64 s
MIM, ϵ = 0.05 0.8537 793.97 s
PGD, ϵ = 0.6 0.8823 748.06 s

robustness against ML/DL evasion attacks, with a focus on
device spoofing threats. The integration of adversarial training
and distillation notably reduced the success rate of the most
effective attacks to below 0.18, significantly bolstering the
model defenses without impacting overall performance metrics.
TABLE III shows the Attack Success Rate (ASR) after applying
the defense mechanisms. The combination of these defenses
proved most effective, marking a pivotal advancement in
safeguarding device identification models against sophisticated
adversarial tactics.

TABLE III: Attack ASR on the robust models.

Attack
Baseline
Model

Distilled
Model

Adversarial
Training

Adversarial
Training +
Distilled

FGSM, ϵ = 0.05 0.3056 0.2725 0.2704 0.1561
BIM, ϵ = 0.5 0.8823 0.3024 0.1482 0.1631

MIM, ϵ = 0.05 0.8537 0.7950 0.1918 0.1784
PGD, ϵ = 0.6 0.8823 0.2741 0.1155 0.1235

V. CONCLUSIONS AND FUTURE WORK

The rapid proliferation of IoT devices has necessitated
the development of novel identification techniques leveraging
hardware behavior and ML/DL methods. This work utilized
performance data from 45 Raspberry Pi devices, to evaluate
ML/DL classifiers for device identification. A DL model
integrating LSTM and 1D-CNN layers emerged as the most
effective, achieving an average F1-Score of 0.96 and suc-
cessfully identifying devices with a minimum TPR of +0.80.
Despite its robustness against temperature changes, the model
was vulnerable to certain ML/DL evasion attacks, which
achieved up to a 0.88 success rate. Implementing model
distillation and adversarial training significantly enhanced
resilience against these attacks, with minimal impact on
accuracy and identification thresholds. Future work will explore
additional adversarial attacks and defense strategies, including
generative models. Incorporating trust metrics and evaluating
the fairness and robustness of predictions will also be a focus,
alongside investigating federated learning for distributed model
generation.
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