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Abstract 
In recent years, Deep Learning has gained popularity for its ability to 
solve complex classification tasks, increasingly delivering better 
results thanks to the development of more accurate models, the 
availability of huge volumes of data and the improved computational 
capabilities of modern computers. However, these improvements in 
performance also bring efficiency problems, related to the storage of 
datasets and models, and to the waste of energy and time involved in 
both the training and inference processes. In this context, data 
reduction can help reduce energy consumption when training a deep 
learning model. In this paper, we present up to eight different 
methods to reduce the size of a tabular training dataset, and we 
develop a Python package to apply them. We also introduce a 
representativeness metric based on topology to measure how similar 
are the reduced datasets and the full training dataset. Additionally, we 
develop a methodology to apply these data reduction methods to 
image datasets for object detection tasks. Finally, we experimentally 
compare how these data reduction methods affect the 
representativeness of the reduced dataset, the energy consumption 
and the predictive performance of the model.
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1 Introduction
Successful Deep Learning (DL) models require considerable consumption of resources for their development,  
partly due to the large volumes of data used for training. As explained in 1, most Artificial Intelligence  
(AI) research focuses solely on improving model performance at any cost. This line of research is known as 
Red AI. In contrast, Green AI considers the energy costs associated with AI development and seeks a balance  
between model performance and energy efficiency.

For example, recent publications such as 2 and 3 explain variousways to improve the efficiency of intelli-
gent agents, particularly DL models. In 4, the authors present experiments in which a dataset is reduced by ran-
dom sampling with different percentages of reduction to train various types of models, such as k Nearest  
Neighbours (k-NN), Decision Trees (DT), Support Vector Machines (SVM), Random Forests (RF), AdaBoost,  
and Bagging Classifier. These experiments suggest that reducing the size of the training set significantly 
decreases the training time in all cases and does not worsen the model’s performance in specific cases of SVM,  
AdaBoost, and Bagging Classifier. In the other three algorithms, random reduction significantly decreases the  
F1-score.

The field of object detection and localization in images has undergone a fascinating evolution over the years,  
driven by significant advances in computer vision and deep learning. In its early stages, the methods focused on 
more traditional approaches, using features and regional classifiers. However, these methods could not effi-
ciently handle large datasets and presented challenges in terms of speed and accuracy. The introduction of  
Convolutional Neural Networks5 (CNNs) marked a paradigm shift by addressing the automatic feature learning  
capability. R-CNN variants6 introduced the concept of Regions of Interest (RoI), significantly improving  
accuracy but with a considerable computational cost. The true milestone came with the arrival of YOLO7,  
which proposed an innovative approach by dividing the image into a grid and making predictions of bounding  
boxes and classes in a single pass. Although early versions of YOLOslightly sacrificed accuracy, they dem-
onstrated revolutionary speed, making them suitable for real-time applications. Subsequent evolution, from  
YOLOv2 to YOLOv5 (the model we will focus on in this analysis from now on), has been marked by continu-
ous improvements. Later versions refined the architecture, and incorporated specialized layers and attention  
strategies, enhancing accuracy without significantly compromising speed.

In summary, we will focus on analyzing how data reduction affects the training of deep neural networks, expand-
ing the list of reduction methods with other algorithms developed in recent years. The two specific tasks in  
which we test the selected techniques are tabular data classification and object detection for image datasets. 
We have tested eight different data reduction methodologies and compared their performance and efficiency 
in four different datasets: the Collision dataset and the Dry Bean dataset, both containing tabular data focused on  
classification, and the Roboflow dataset and the Mobility Aid dataset, which consist of images and focused 
on object detection (localizing people in wheelchairs and pedestrians). Besides, we propose a specific meth-
odology tailored for dealing with images, which is particularly crucial for detecting people in wheelchairs 
and pedestrians in the REXASI-PRO context. Finally, we have unified the Python implementations into two  
user-friendly GitHub repositories: one serving as a library for reduction methods and the other showcasing  
the experiments carried out, as cited in 8 and 9.

This paper is organized as follows: In Section 2, we present the Python library created to utilize data reduc-
tion methods, the proposed methodology for applying them to structured data, such as images, and a summary 
of the main results obtained and conclusions. Later, in Section 3, all the preliminary concepts are introduced, 
including key concepts about multi-layer perceptrons, how the classification of tabular data and object detec-
tion from images works, along with metrics to measure the performance of data reduction methods. Moving 
on to Section 4, we introduce different methodologies to reduce a dataset, categorizing them into four groups:  
statistic-based methods, geometry-based methods, ranking-based methods and wrapper methods. Finally, in  
Section 5, the results are tested experimentally for both tabular data and object detection, providing details  
about the databases, the experiment setup and the parameter settings.

2 Key findings and contributions
In this section, we highlight the main contributions developed for this paper.
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2.1 Python Library: data reduction methods
We have released the Beta version of a Python Library to use the data reduction methods. It is placed on an  
Open-access GitHub repository provided with instructions fromthe README.md file of the repository to use  
the data reduction methods.

Library repository 8

Experiments repository 9

The reduction methods implemented are listed in Table 1. We have included those state-of-the-art methods  
for date reduction that satisfy the following conditions:

1.   �The implementation is available or their implementation is straightforward.

2.   �The final size of the reduced dataset can be chosen.

3.   �The reduction time offsets the training savings tested in small examples.

2.2 Data reduction for images
Some of the methods listed in Table 1 need their input to be n-dimensional vectors and cannot be directly 
applied to structured data such as images that have a tensor of shape (height, width, channels). In this paper, we 
propose two methodologies (see Section 5.2.1) to extend the reduction methods to images, in the context of  
this research project (object detection). Specifically,

1.   �For statistic-based, geometry-based, and ranking-based reduction methods: The proposed method-
ology involves using a feature extraction model, such as the YOLOv5 backbone, and applying it to 
the given dataset. Then, we employ Global Average Pooling (GAP)10 to transform the images into  
n-dimensional vectors (768 dimensions, due to the backbone’s structure, which yields 768 feature 
maps). This allows us to apply data reduction techniques effectively. Finally, the images selected by the  
reduction method as the most important ones will be used to train the model.

2.   �For the wrapper method: We create a classification network to apply these techniques internally within 
the classification model. Subsequently, the images selected as the most important by the reduction  
method will be used to tune the YOLOv5 model with the reduced dataset.

2.3 Summary of the main results and conclusions
The outcome of the investigation on the effectiveness of reduction methods to achieve green AI, with the 
aim of minimizing CO

2
 emissions and computational costs while maintaining performance, yielded prom-

ising results. The CO2 emissions were estimated using a specific software implementation but no physical  
sensors were used (See Section 3.4.3).

•   �For tabular datasets: We have found that using reduced datasets notably decreases both the compu-
tation time and carbon emissions of neural network training. We have also found that these reduc-
tion methods can discard a large number of training examples without losing the good predictive  
properties of the DL models. However, notice there is no reduction method that always performs  

Table 1. List of state-of-the-art data reduction methods selected for 
comparison.

STATISTIC-BASED SRS Stratified Random Sampling 4

PRD ProtoDash 11

GEOMETRY-BASED CLC Clustering Centroids 12

MMS Maxmin Selection 13

DES Distance-Entropy Selection 14

RANKING-BASED PHL PH Landmarks 15

NRMD Numerosity Reduction by Matrix Decomposition 16

WRAPPER FES Forgetting Events Score 17
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better than the rest. Furthermore, for one of the analyzed datasets, we have found a significant sta-
tistical correlation between the performance metrics of the trained models and a topological metric  
called ε-representativeness (discussed in detail in Section 3.4.1), which measures how close is the  
reduced dataset to the full one.

•   �For images: The proposed methodology is an effective way to achieve greener artificial intelligence 
models with good performance. In summary, regarding the Roboflow dataset, substantial reductions 
in both CO

2
 emissions and computation time (particularly for a 75% reduction rate) were achieved  

(approximately 60% time savings) without compromising the model’s performance in localization 
and object detection tasks. Among the reduction methods applied, SRS, MMS and RKM proved most  
effective, while NRMD exhibited poorer performance, and FES incurred longer processing times. 
Similarly, positive results were observed with the Mobility Aid dataset, with significant reductions in  
CO

2
 emissions and computation time without compromising performance for specific methods. In this 

case, SRS, PRD, PHL and MMS demonstrated superior effectiveness, while NRMD and RKM were  
identified as less efficient methods.

3 Background
In this section, all preliminary concepts are introduced. We provide key concepts about multi-layer perceptrons  
and present the two specific problems we are addressing: the classification of tabular data and object detection  
from images. Subsequently, we describe the YOLOv5 architecture. Finally, in Section 3.4, we discuss the  
different metrics to measure the performance of the different data reduction methods.

3.1 Multi-layer Perceptrons
Multi-layer perceptrons (MLP) are the simplest kind of neural networks18. An MLP, denoted N, is a function 
that transforms input vectors through a series of smaller functions called layers. Formally, N can be represented  
as a composition N = f

l
 ◦···◦ f

1
, where f

j
 : ℝdj−1 → ℝdj is the j-th layer function. Each layer f

j
 can be decom-

posed into d
j
 smaller functions called units or neurons, f

j
 = (f

j,1
,..., f

j,dj
). Each neuron f

j,m
 is defined as  

, ,, ( ) ( )T
j m j mj m jf x g W x b= + , where W

j,m
 ∈ ℝdj−1 is the weight vector of the neuron, b

j,m
 ∈ ℝ is the bias term,  

and g
j
 : ℝ → ℝ is a nonlinear activation function19. These components determine how information flows through  

the network and how it is transformed at each layer.

The design of an MLP depends on three elements: its architecture, a vector of parameters, and a set of learning  
hyperparameters. The architecture of an MLP is the choice for the number of layers (l), the number of dimen-
sions of the layers (d

1
,..., d

l
) and the activation functions (g

1
, g

2
,..., g

l
). Given a neural architecture, the network  

parameters are the weight vector entries W
j,m

 and the bias terms b
j,m

. All these parameters can be encoded 
in a parameter vector θ ∈ ℝp, being p the number of adjustable parameters in the network. It is common to  
denote the MLP by Nθ to state that N uses θ as a parameter vector. The set of all possible parameter vectors is 
denoted as Θ. Finally, the hyperparameters are related to the training procedure, that is, the search for a vec-
tor θ that makes Nθ useful for the specific task and dataset. The hyperparameters must be defined prior to this  
search and are usually set by trial and error.

Given an MLP Nθ and a tabular dataset D (whose definition can be read in Subsection 3.2), the suitability  
of the task is measured by a loss function L(·, D) : Θ → ℝ20, designed to have small values when Nθ is useful  
and vice versa. Two typical examples of loss functions are the Mean Square Error for regression tasks and the  
Categorical Cross Entropy loss for classification tasks21. The search for a good choice of θ is made with an iter-
ative training process that minimizes L across n

e
 successive epochs using the information from D. In each  

epoch, D is randomly partitioned into a series of sub-datasets B
1
, B

2
,..., known as batches, with a maxi-

mum size equal to β. Each batch B
j
 is then fed into Nθ, where its performance is evaluated, resulting in the cal-

culation of the loss gradient ∇θ L(θ, B
j
). This gradient information is used by an optimization algorithm 

such as Stochastic Gradient Descent (SGD), Adaptative Moment Estimation (Adam) or Root Mean Square  
Propagation (RMSprop), to update θ and minimize L 22. These optimization algorithms may depend on other 
hyperparameters such as a learning rate γ ∈ ℝ+ or a momentum µ ∈ ℝ+. Additionally, one can complement the  
training process with regularization techniques such as L1 or L2 regularization, dropout, or weight decay, 
which try to prevent overfitting (which occurs when the model fits so closely to the training dataset that it does 
not generalize well to new examples). The hyperparameters that define the training process are then the loss  
function L, the number of epochs n

e
, the batch size β, the optimization algorithm (together with other associ-

ated hyperparameters if needed), and the regularization techniques. For more details on feedforward neural  
networks, MLPs and how to train them, visit23.
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3.2 Classification of tabular data
A dataset D = (X, f) of a classification problem is a pair composed of a set of examples X = {x

1
, · · · x

N
} ⊂ ℝd  

and a function f : X → {1,..., c}. The function p
j
 : X → ℝ that maps x

i
 = (x

i,1
, · · ·, x

i,d
)T to p

j
 (x

i
) = x

i, j
 is called 

the feature j. The set of examples X
k
 = {x

i
 ∈ X : f(x

i
) = k} with k ∈ {1,..., c} are called the class k. These  

types of datasets are usually known as tabular data because they can also be seen as a pair (X, y) where  
X ∈ ℝN×d is a table or matrix whose i-th row corresponds to the example x

i
 and whose j-th column corre-

sponds to the feature p
j
, and y ∈ ℝn is a vector whose i-th component corresponds to y

i
 = f(x

i
). This tabular  

representation of the dataset is usual in computer science and is how it is used in Python code to design 
DL models. Given a dataset D = (X, f), the classification problem consists of finding a feed-forward neural  
network N : ℝd → {1,..., c} that approximates f.

3.2.1 Data reduction
Given a dataset D = (X, f), the goal of data reduction is to find a reduced dataset D

R
 = (S, g), where 

S = {s
1
, · · · s

n
} ⊂ ℝd (being n < N) and g : S → {1,..., c}. The class k in D

R
 will be denoted as  

S
k
 = {s

i
 ∈ S : g(s

i
) = k}. In Section 4, some algorithms to extract a reduced dataset D

R
 from D are described. In 

most of them, the resulting D
R
 will be a sub-dataset of D, which means that S ⊂ X and g = f|

S
. Assuming  

that D
R
 is representative of D and inherits its intrinsic properties, it should be able to be used to train N 

instead of D, gaining efficiency and obtaining a model N
R
 with similar performance. To test the correlation  

between representativeness, efficiency and performance it is necessary to define adequate metrics for all of  
them. The metrics that we use in our experiments can be consulted in Subsection 3.4.

3.3 Object detection from images
This Subsection is devoted to the definition of the problem and the description of YOLOv5.

3.3.1 Defining object detection
The problem of object detection24 and localization in the field of computer vision refers to the task of iden-
tifying the presence of specific objects in an image and providing accurate information on the spatial loca-
tion of each of them. In other words, its main goal is to detect the presence of objects of interest within a visual  
scene and, at the same time, delineate the exact region where they are located in the image.

To better understand this type of problem, it can be helpful to break it down into two key components:

•   �Object Detection: This involves identifying and classifying the presence of objects within an image. This 
aspect addresses the fundamental question of “What objects are in the image?”. Each detected object is  
usually associated with a specific class.

•   �Object Location: Refers to providing information about the precise spatial location of the detected 
objects. This involves defining the coordinates or bounding boxes surrounding each object in the image,  
indicating exactly where they are located.

3.3.2 Object detection with YOLOv5
YOLO45, an abbreviation for “You Only Look Once”, is conceived to address object detection with a compre-
hensive and efficient approach. Its main objective is to perform accurate detections of multiple objects in a sin-
gle pass through the image, minimizing duplication of efforts and optimizing processing speed. YOLO is a  
single-stage architecture with which object detection is performed by viewing the problem as a regression 
problem to spatially separate the bounding box and the probability classes associated with the bounding box.  
A neural network predicts the bounding box and prediction class directly from the entire image from a sin-
gle evaluation. The fifth version of YOLO, named YOLOv525,26, is the first native release of models in the  
YOLO family written in Pytorch27. YOLOv5 is fast, with inference times up to 0.007 seconds per image, mean-
ing 140 frames per second. Figure 1 shows the detailed architecture of YOLOv5. Specifically, YOLOv5  
consists of three essential components:

Backbone
The backbone extracts the essential features from the input image. In YOLOv5, it includes CSP-Darknet53,  
which is a convolutional neural network and incorporates a cross-stage partial network (CSPNet)28 into  
Darknet to separate the base layer feature map into two parts and then combine them through a cross-stage  
hierarchy as shown in Figure 1. X is a variable in CSP1_X and CSP2_X, meaning the number of BottleNecks  
in the network. This enhanced CSPNet, built upon Darknet53, residual blocks, depthwise separable convolu-
tions, and preactivation for improved efficiency and feature representation. For instance, given an RGB input 
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image of 416 pixels in height and width, the backbone produces an output with 768 feature maps, each with  
dimensions of 13 pixels in height and width.

Neck
The neck acts as a bridge between the backbone and the head, performing operations to merge and refine  
features at different scales. The neck includes a spatial pyramid pooling-fast (SPPF) layer and a cross-stage  
partial path aggregation network (CSP-PAN), as shown in Figure 1. A spatial pyramid pooling (SPP)30 layer 
is a pooling layer that removes the CNN limitation of fixed-size input images. The SPPF layer optimizes the  
SPP structure and improves the efficiency more than twofold. It aggregates information received from 
inputs and returns a fixed-length output. PAN31 is a feature pyramid network, used to improve information  
flow and help with the proper location of pixels in mask prediction task. In YOLOv5, this network has been  
modified applying the CSPNet strategy as shown in Figure 1.

Head
The network’s head makes the final predictions, generating bounding boxes and classifications for each object. It 
is composed of four convolution layers that predict the location of the bounding boxes (x,y,height,width), the  
scores and the final classification. In addition, YOLOv5 uses several augmentations such as Mosaic, copy-paste,  
random affine, MixUp, HSV augmentation, random horizontal flip, as well as other augmentations from 
the albumentations package32. It also improves the grid sensitivity to make it more stable to runaway  
gradients.

Figure 1. Architecture of YOLOv529, including three main parts: backbone, neck and head. The “backbone” is 
responsible for extracting fundamental features from the image, such as edges and textures. The “neck” is used to 
extract feature pyramids, which helps the model to generalize well to objects of different sizes and scales. Finally, the 
“head” is responsible for the final prediction, generating the coordinates and classes of the detected objects.
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YOLOv5 provides five scaled versions: YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l  
(large), and YOLOv5x (extra large), where the width and depth of the convolution modules vary depending  
on the specific applications and hardware requirements. From now on, we will focus on YOLOv5m, which is  
the one we have used for the experimentation.

3.4 Metrics
In the following, we will discuss metrics for evaluating the performance of artificial intelligence models for 
both classification and object detection, as well as metrics for evaluating the representativeness of the reduced  
data over the entire dataset and evaluating the cost of the models.

3.4.1 Representativeness metrics
In this section, we include the two metrics that we will use in our experiments to measure the similarity between  
the original dataset D and its reduced version D

R
.

Reduction ratio
This is a common metric in the machine learning literature for comparing D and D

R
. The reduction ratio is 

just the quotient between the sizes of X
R
 and X. It has already been considered in publications such as 4 and 16 

to measure the representativeness of D
R
 with respect to D and to study its effect on efficiency and performance,  

and we will also use it for our experiments.

ε-Representativeness
In 33, the authors introduced the concept of ε-representative datasets. The ε indicates how representative and, 
hence, how good is the representation of D

R
 for D, smaller values being better. Consequently, we have ε = 0 if 

and only if D
R
 = D. Given a fixed isometry i : D

R
 → ℝd, the minimum ε such that D

R
 is a ε-representative dataset  

of D is:

                                                          1 11, , ( ) ( )
max max || ( ) ||max

R
k c x f k x f k

x i xε
− −

∗
= ′∈ ∈

′= −
…                                                           (1)

It has been mathematically proven in 33 that, if D
R
 is ε-representative of D with ε small enough, D

R
 and D 

have the same accuracy (a performance metric whose definition can be read in 3.4.2) for a perceptron (which is 
a feed-forward neural network N : ℝd → ℝ with a single layer). Besides, it was proved experimentally in 
33 that a similar relationship exists between the ε-representativeness of D

R
 with respect to D and the model  

performance for more complex neural architectures.

3.4.2 Performance metrics
Given a dataset D = (X, f) of a classification problem, one can design many different DL models with differ-
ent architectures and parameters, that will give different approximations to f. It is then essential to measure  
how good these approximations are, assessing the overall performance of each model. Depending on the spe-
cific goals and characteristics of the classification task, some metrics might be more relevant than others,  
and the final choice of metrics is up to the model developers.

All the performance metrics that we will use in our experiments are derived from the confusion matrix. Given a 
dataset D and a DL model N, the confusion matrix is a table with c rows and c columns where the cell (i, j) is  
filled with a non-negative integer n

i,j
 equal to the number of examples in X whose actual class is f(x) = i and 

whose predicted class is N(x) = j. The sum of all the entries in row i is equal to the number of examples whose  
actual class is i, and it is denoted as A

i
. The sum of all the entries in column j is equal to the number of examples 

whose predicted class is j, and is denoted as P
j
. In addition, the sum of all the numbers in the confusion matrix  

is equal to N, the size of X. An example of a confusion matrix can be found in Table 2. Ideally, one would like 
to obtain a DL model N that fits exactly f, that is, f(x) = N(x) ∀x ∈ X. In that case, the confusion matrix  
would be null out of the diagonal. In practice, it is not always possible to find such a perfect model (it may not 
be desirable due to the risk of overfitting X) but, in general, it is considered a good sign to get a confusion  
matrix with high values in the diagonal entries and lower values in the non-diagonal entries.

Accuracy
Accuracy is the most straightforward performance metric. It is the probability of correctly classifying a random  
example from X using N. It is calculated as the quotient between the number of correctly classified  
examples and the total size of X, that is,

                                                                             1 ,
c

k kk n
Acc

N
==

∑                                                                              (2)
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Accuracy is a good metric for getting an overview of the model quality, but it can be misleading if the eval-
uation is reduced to it. When the training dataset is imbalanced (that is, it has some classes much more 
numerous than others) it is possible to find DL models that are bad at classifying the items from the least  
populated classes but yet have high accuracy because they perfectly fit f for the most populated ones. For this  
reason, it is also necessary to use other performance metrics that analyze the performance of N class by class.

Precision
Precision measures the probability that the model N is correct when it predicts that an example belongs 
to a specific class k. It tells us how confident we can be in the predictions obtained. For each class k, the preci-
sion is obtained as the quotient between the number of examples correctly classified in class k and the total  
number of examples whose predicted class is k, that is,

                                                                                 
,k k

k
k

n
Pre

P
=                                                                                   (3)

When working with a dataset D with c classes, we can calculate c different precision values from the confu-
sion matrix. We can resume all this information using the macro average precision, which is just the arithmetic  
mean of all of them:

                                                                          
1

1 c

k
k

MAPre Pre
c =

= ⋅ ∑                                                                          (4)

The macro average precision assigns the same relevance to the precision of all classes regardless of their size.  
It also mitigates the bias induced by the largest ones.

Recall
“Recall” measures the probability that the model N correctly classifies the examples from X

k
. It tells us 

how good the predictions are for that specific subset of X. For each class k the recall is obtained as the quotient 
between the number of examples correctly classified in class k and the total number of examples whose actual  
class is k, that is,

                                                                                 ,k k
k

k

n
Rec A=                                                                                   (5)

Just as all the precisions can be summarized with the macro average precision, the recall values can also be  
aggregated using the macro average recall, with the analogous formula:

                                                                          
1

1 c

k
k

MARec Rec
c =

= ⋅ ∑                                                                          (6)

Some bibliographic sources also refer to this metric as Balanced Accuracy34.

In object detection, a high Recall means the model is proficient at capturing most of the objects in the images,  
minimizing the number of false negatives.

Table 2. Confusion matrix for a classification problem with c 
classes, together with its marginal sums.

Predicted 1 ··· Predicted k ··· Predicted c Total

Actual 1 n1,1
⋯ n1,k

⋯ n1,c A1

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

Actual k nk,1
··· nk,k

··· nk,c Ak

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

Actual c nc,1
··· nc,k

··· nc,c Ac

Total P1
··· Pk

··· Pc N
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F1-score
F1-score is a metric that gives us a trade-off between precision and recall. For each class k, it is obtained as  
the harmonic mean of the precision and recall values:

                                                              
,1 2 2k k k k

k
k k k k

nPre Rec
F

Pre Rec AP
⋅

= ⋅ = ⋅
+ +

                                                              (7)

As a harmonic mean, F1
k
 lies between Pre

k
 and Rec

k
, always being less than or equal to the arithmetic mean  

2
k kPre Rec+ . In fact, F1

k
 tends to approach the minimum value between Pre

k
 and Rec

k
, resulting in a lower score 

when precision or recall is low. Maximizing the F1-score is desirable because achieving a high value indi-
cates that both precision and recall are high, proving that the model N has a good performance for that  
specific class.

As we already did with precision and recall, we can define the macro average F1-score as:

                                                                            
1

1
1 1

c

k
k

MAF F
c =

= ⋅ ∑                                                                             (8)

An alternative definition for the macro average F1-score can be found in 35, but we prefer to use this 
one since it appears to be more suitable36 and can be computed with standard Python libraries devoted to  
classification learning.

Intersection over Union and Mean Average Precision
Intersection over Union (IoU)37 indicates the overlap of the predicted bounding box coordinates with the ground 
truth box. Higher IoU indicates that the predicted bounding box coordinates closely resemble the ground truth 
box coordinates. IoU is calculated by comparing the overlapped region between the prediction of the model 
and the ground truth with the total region covered by both. Mathematically, IoU is expressed as the ratio of the  
intersection area to the union area of the two regions:

                                                                       ,
IntersectionArea

IoU
UnionArea

=                                                                        (9)

where:

- Intersection Area: Area where the model’s prediction and the ground truth overlap.

- Union Area: Total area covered by both regions.

IoU is commonly set at 0.5, which means that the metric considers a detection successful if at least 50% of  
the predicted region overlaps with the actual region of the object.

The Mean Average Precision (mAP)38,39 is the current benchmark metric used by the computer vision research 
community to evaluate the robustness of object detection models. The mAP metric evaluates the overall  
accuracy of the model across multiple intersections over Union thresholds, so the first thing you need to do 
when calculating the Mean Average Precision (mAP) is to select the IoU threshold. When calculating mAP,  
you have the flexibility to choose either a single IoU threshold or a range of thresholds. For instance, when 
you choose a single IoU threshold, such as 0.5 (denoted mAP@0.5), you are assessing the model’s accuracy  
when the predicted bounding box overlaps with the ground truth bounding box by at least 50%. However,  
seting a range of thresholds, like 0.5 to 0.95 with 0.05 increments (indicated as mAP@0.5:0.95), allows you  
to evaluate the model performance across a spectrum of IoU values.

The second thing we need to do is divide our detections into classes based on the detected class. We then com-
pute the Average Precision (AP) for each class and calculate its mean, resulting in an mAP for a given 
IoU threshold. We calculate Precision-Recall curve points for different confidence thresholds and then we  
calculate the AP for each class k using the following equation:

                                                                   
1

0

1
( )k k k kAP Pre Rec dRec

t
= ∫                                                                    (10)

where t is the number of IoU thresholds considered.
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All the average precisions can be aggregated using the mean Average Precision, by the following formula:

                                                                            
1

1 c

k
k

mAP AP
c =

= ⋅ ∑                                                                            (11)

The mAP incorporates the trade-off between precision and recall and considers both false positives (FP) and 
false negatives (FN). This property makes mAP a suitable metric for most detection applications. A high mAP  
means that a model has both a low false negative and a low false positive rate.

3.4.3 Efficiency metrics
The cost of designing and using a model can depend on many factors. According to 1, the total cost of getting  
a result (R) is linearly related to the cost of processing a single example (E), the size of the training dataset  
(D) and the number of hyperparameters to be set (H), giving us the following equation:

                                                                          Cost( )R E D H⋅ ⋅                                                                           (12)

Following this idea, several metrics have been proposed to measure the amount of work performed during train-
ing, such as electricity consumption, the number of parameters to be adjusted, or the total number of float-
ing point operations performed. Some advantages and disadvantages of using these metrics can be read  
in 1. For our experiments, we will only focus on two specific metrics that are easy to calculate with Python 
code and give us an intuition about the impact that our DL model has on the environment. These are the elapsed  
computing time needed to build the DL model and the estimated carbon emission into the atmosphere during  
the process.

Elapsed computing time
Measuring the elapsed computation time is as simple as setting a timer at the beginning of the model build-
ing and using it to know how many seconds have passed until the whole process is finished. This time span 
can be influenced by factors independent of the training dataset and the model, such as hardware specifica-
tions, concurrent tasks on the same machine, and the utilization of multiple cores. However, it serves as a natu-
ral metric. When these factors are kept constant, the computation time serves as a direct indicator of energy  
consumption and carbon emissions, making it a meaningful measure of efficiency in the model-building process.

Estimated carbon emission
Carbon emission is the quantity we want to minimize, since carbon dioxide (CO

2
) is one of the main gases 

involved in the greenhouse effect. An excessive release of CO
2
 into the atmosphere contributes to the change 

in its composition, leading to an increase in the global average temperature40,41. Nevertheless, in practice, it 
is not easy to give an exact measure of carbon emission, since it depends on the sources of the energy used, the 
computer where the calculations are done, and the quality of the local electricity infrastructure. However, it  
is possible to give an approximate measure of carbon emission using the Python package CodeCarbon42.

This approximation measure is the product of the energy consumed by its carbon intensity, which is the amount 
of CO

2
 released per unit of energy. The amount of energy consumed by a computer is estimated by monitor-

ing the power usage of its components, such as the central processing unit (CPU), graphics processing unit  
(GPU), and random access memory (RAM). To obtain the carbon intensity of the energy, it is necessary to know 
where it comes from. Each energy source emits a different amount of CO2 for each kilowatt-hour of energy  
generated. Coal, petroleum and natural gas are three sources with high carbon intensity, while renew-
able sources such as solar power and hydroelectricity are characterized by lower carbon intensity. With the 
combination of energy sources used in the geographical area where the computer is located (the so-called  
energy mix), the average carbon intensity can be computed. This methodology is based on 43 and has already  
been used to estimate the carbon emission of machine learning development in 44.

4 Data reduction methods
In this section, we introduce different methodologies to reduce a dataset. According to the nature of the reduc-
tion algorithm, we categorize these methods into four groups: statistic-based methods, which reduce the data-
set using probability or statistical concepts; geometry-based methods, which take into account the distances  
between examples to reduce the dataset; ranking-based methods, which sort the examples according to some 
criterion and reduce the dataset by selecting the best ones; and wrapper methods, which reduce the dataset  
during the training process.
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4.1 Statistic-based methods
In this subsection, we introduce two data reduction methods that use concepts of probability and statistics to  
extract a reduced dataset D

R
 from D.

Stratified Random Sampling (SRS). The most simple method for data reduction is Stratified Random Sampling  
(SRS), as proposed in 4, where the natural strata are the c classes of D. Given a proportion p ∈ [0, 1], the algo-
rithm just selects for each class k a random subset S

k
 ⊂ X

k
 with a reduction ratio of p. This ensures that D

R
  

has the same class balance as D. The pseudocode for SRS is shown in Algorithm 1.

Algorithm 1. SRS: Stratified Random Sampling

   Data: D = (X, f), p ∈ [0, 1]
   Result: DR = (S, g)
1 for k = 1, ···, c do
2       Set the class k as Xk = {x ∈ X : f(x) = k};
3       Set the number of examples to be selected as nk = ⌊p · |Xk|⌋;
4       Select a random subset Sk ⊂ Xk with |Sk| = nk;
5 Set S = ⋃k=1,···,c Sk;
6 Set g = f |S;

ProtoDash Selection (PRD). ProtoDash Selection (PRD)11 is an algorithm based on the concept of Maxi-
mum Mean Discrepancy (MMD), which measures the dissimilarity between two probability distributions by 
comparing finite samples. Given a set of indices I = {1, ···, n

A
}, let 

1
{ } And

i iA a =∈= �  be the sample. Given a sub-
set of indices L ⊂ I, a vector of non-negative weights w = (w

1
, ···, w

nA
)T with w

j
 = 0 ∀j ∉ L, and a kernel function  

K : ℝd × ℝd → ℝ
+
, the empirical maximum mean discrepancy between A and B = {a

j
 : j ∈ L} is:

                        � 2
, ,

21( , , , ) ( , ) ( , )( , )
AA II L L

j ji j i i ji j
ii j j i j

MM D K A B w w K a a w w K a aK a a nn ∈∈ ∈ ∈
= − +∑ ∑ ∑ ∑                        (13)

The aim of ProtoDash Explainer is to find a subset L ⊂ I with size |L| = m and a vector of weights  
w = (w

1
, ···, w

nA
)T that minimize � ( , , , )MM D K A B w , which is equivalent to maximize Equation (14).

                                                                        1
( )

2
TTl w w w Kwµ= −                                                                         (14)

being 1 ( , )
A

j i ji K a a
n

µ = ∑  the j-th component of the vector µ and K
i, j

 = K(a
i
, a

j
) the (i, j)-th component of the matrix 

K. Finding such an optimal subset L is infeasible in practice, and the ProtoDash Explainer algorithm helps 
us to find an approximate solution heuristically. It starts by setting L = ∅ and w

j
 = 0 ∀ j ∈ I. Each iteration  

of the ProtoDash Explainer consists of two steps. In the first step, the index j
0
 ∉ L that takes the maxi-

mum value in g = ∇l(w) = µ − Kw is selected. In the second step, the set of weights w is updated to maximize 
l(w), subject to w

j
 ≥ 0 ∀ j ∈ I and w

j
 = 0 ∀ j ∉ L. The algorithm ends when |L| = m and the output subset is  

B = {a
j
 ∈ A : j ∈ L}. The ProtoDash Explainer does not necessarily give an optimum solution, but it is 

proven in 11 that the quality of the approximate solution is lower-bounded by a fraction of the quality of the  
optimum solution. The pseudocode for the ProtoDash Explainer can be seen in Algorithm 2.

Algorithm 2. ProtoDash explainer

     Data: A = An
i ia =1{ }  ⊂ ℝd, K : A × A → ℝ, 1 ≤ m ≤ nA

     Result: B ⊂ A
  1 Set I = {1, ···, nA} the set of indices in A;
  2 Set L = ∅ the set of selected indices;
  3 Set Ki, j = K(ai, aj) ∀i, j ∈ I;
  4 Set ∑

A
i jj i

1 K a ,aµ = n
( ) ∀j ∈ I;

  5 Set wj = 0 ∀ j ∈ I;
  6 Define l(w) = wT µ − 1

2
wTKw; 

  7 Define ∇l(w) = µ − Kw;
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  8 while |L| < m do
  9      Set g = ∇l(w);
10      Set j0 = arg maxj∈I\L gj;
11      Update L = L ∪ {j0};
12      Solve ξ = arg maxw l(w) subject to wj ≥ 0 ∀j ∈ I, wj = 0 ∀j ∉ L;
13      Update w = ξ;
14 Set B = {aj ∈ A : j ∈ L};

Then, the ProtoDash Selection algorithm just applies the ProtoDash Explainer to each class X
k
, finding a sub-

set S
k
 ⊂ X

k
 with n

k
 examples that approximately minimizes � ( , , , )k kMM D K X S w . The reduced dataset D

R
  

is the union of all S
k
. The pseudocode for Protodash Selection can be seen in Algorithm 3.

Algorithm 3. PRD: ProtoDash Selection

   Data: D = (X, f), p ∈ [0, 1], K : X × X → ℝ
   Result: DR = (S, g)
1 for k = 1, ···, c do
2      Set the number of examples to be selected as nk = ⌊p · |Xk|⌋;
3      Apply Algorithm 2 with A = Xk and m = nk to get Sk = B
4 Set S = ⋃k=1,···,c Sk;
5 Set g = f |S;

4.2 Geometry-based methods
In this subsection, we introduce three data reduction methods that use the distances between the examples  
in D to find a reduced dataset D

R
.

Clustering Centroids Selection (CLC). Clustering is a branch of unsupervised machine learning whose task 
is to partition a dataset into groups or clusters, where objects within the same cluster are highly similar and dis-
tinct from those in other clusters. The goal is to discover patterns or structures without prior knowledge  
or labels. Clustering algorithms yield diverse partitions depending on the approach. For a comprehensive  
overview of clustering, we refer to 44.

The Clustering Centroids Selection (CLC) algorithm proposes to use k-means, one of the most-known  
clustering algorithms, for data reduction. This idea was stated in 45 and 46, among others. The general idea 
is to apply k-means on each class of D and include the resulting centroids in D

R
. This is the only data reduc-

tion method in this paper where the reduced dataset D
R
 is not necessarily a sub-dataset of D. This method is 

easy to understand but can be computationally expensive for large datasets, unstable, and sensitive to outliers,  
as stated in 47,48. The pseudocode for CLC can be read in Algorithm 4.

Algorithm 4. CLC: Clustering Centroids Selection

   Data: D = (X, f), p ∈ [0, 1]
   Result: DR = (S, g)
1 for k = 1, ···, c do
2      Set the class k as Xk = {x ∈ X : f(x) = k};
3      Set the number of examples to be selected as nk = ⌊p · |Xk|⌋;
4      Apply k-Means on Xk with nk clusters;
5      Select the set of centroids Sk;
6 Set S = ⋃k=1,···,c Sk;
7 for k = 1, ···, c do
8      Set g(x) = k for each x ∈ Sk;

Maxmin Selection (MMS). Maxmin Selection (MMS) uses the distances between the examples to ensure 
that D

R
 is evenly spaced. It has been used in 13 for the reduction of datasets and in 49 to create efficient data 
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descriptors. For each class k, the first step is to pick a random example x
r
 ∈ X

k
 and add it to S

k
. Then, given a  

distance function d : X × X → ℝ+, each step picks the example in X
k
 \ S

k
 that maximizes the function:

: \

min ( , )
kS

k k

x

D X S

x d x x
′∈

′

�

�

This is repeated until S
k
 has the required size. This method gives a subset that covers up well the dataset, but  

tends to pick extreme or outlier points. The pseudocode for MMS can be read in Algorithm 5.

Algorithm 5. MMS: Maxmin Selection

     Data: D = (X, f), p ∈ [0, 1], d : X × X → ℝ+

     Result: DR = (S, g)
  1 for k = 1, ···, c do
  2       Set the class k as Xk = {x ∈ X : f (x) = k};
  3       Set the number of examples to be selected as nk = ⌊p · |Xk|⌋;
  4       Select a random example xr ∈ Xk;
  5       Set Sk = {xr};
  6       while |Sk| < nk do
  7            Set x = arg maxx ∈Xk\Sk minx′∈Sk d(x, x′);
  8            Update Sk = Sk ∪ {x};
  9 Set S = ⋃k=1,···,c Sk;
10 Set g = f |S;

Distance-Entropy Selection (DES). Distance-Entropy Selection (DES)14 is a data reduction method that 
tries to ensure that the resulting dataset D

R
 has relevant examples. It is based on a distance-entropy indicator  

that measures how informative are the different examples for the classification task.

The algorithm begins by selecting a subset X
base

 ⊂ X, known as the base data. In our implementation, we 
have decided to select the base data via Stratified Random Selection, using a proportion p

base
 < p. The base 

data is used to calculate a prototype p
k
 for each class k = 1, ···, c. In our case, the prototype p

k
 is defined as  

the average of all points of class k in X
base

. The algorithm then calculates the distances between the proto-
types and all points in X

pool
 = X \X

base
, called the pool data. The distances d

k
 = d(x, p

k
) associated to x ∈ X

pool
 are  

transformed into a probability distribution by the softmax function, with formula:

                                                                      
1

Softmax ( )
k

j

d

k c d
j

ed
e=

=
∑

                                                                     (15)

The information entropy of this distribution is called the distance-entropy indicator of x:

                                                      2
1

( ) Softmax( ) log Softmax( )
c

k k
k

E x d d
=

= − ⋅∑                                                       (16)

Finally, the reduced dataset D
R
 is formed by all the examples in X

base
 and the examples from X

pool
 with the  

highest values for the distance-entropy indicator. The pseudocode for Distance-Entropy Selection can be seen  
in Algorithm 6.

Algorithm 6. DES: Distance-Entropy Selection

     Data: D = (X, f), p ∈ [0, 1], pbase ∈ [0, p], d : X × X → ℝ+

     Result: DR = (S, g)
  1 for k = 1, ···, c do
  2       Set the class k as Xk = {x ∈ X : f (x) = k};
  3       Set the number of examples to be included in the base data as nk,base = ⌊pbase · |Xk|⌋;
  4       Select a random subset Sk,base ⊂ Xk with |Sk| = nk,base ;
  5       Calculate a prototype pk for the examples in Sk,base;
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  6 Set Xbase = ⋃k=1,···,c Sk,base;
  7 Set Xpool = X \ Xbase;
  8 for x ∈ Xpool do
  9       for k = 1, ···, c do
10             Calculate the distance dk = d(x, pk);
11       for k = 1, ···, c do
12             Transform the distances into probabilities with Softmax(dk) = 

∑
k

j

d

c d
j

e
e

;

=1

13       Calculate the distance-entropy indicator as E(x) = – ∑c
k=1 Softmax(dk) · log2 Softmax(dk);

14 Set the number of examples to be added as nadd = ⌊p · |X|⌋ − |Xbase|;
15 Set Xadd ⊂ Xpool containing the nadd examples in Xpool with higher values for E;
16 Set S = Xbase ∪ Xadd;
17 Set g = f |S;

To justify why the best examples are those with higher entropies, the authors of 14 use the following reason-
ing. Suppose that an example x ∈ X

pool
 is closer to one prototype p

k
 than to all the others. In that case, the  

distance-entropy indicator E(x) will be low and x is likely to be classified in class k. By contrast, items with 
high entropy are informative because they are different from all prototypes and not so easy to classify. Note  
that the examples from the pool data are selected regardless of their class, so it is possible that the reduction  
ratio of each class is different from the global reduction ratio. For this reason, we recommend selecting the  
base data using a sufficiently high p

base
 to make sure that all classes are well represented and then  

complementing the base data with the most informative examples from the pool data.

4.3 Ranking-based methods
In this subsection, we describe three methods that are based on a ranking system. Basically, these meth-
ods assign a score to the examples based on a particular criterion, sort them according to their score, and then  
select the best-ranked examples from this sorted list.

PH Landmarks Selection (PHL). PH Landmarks Selection (PHL)15 is a subset selection method based on 
the concept of persistent homology. Roughly speaking, persistent homology is a common technique in topo-
logical data analysis (TDA) that builds a filtration of simplicial complexes over the dataset examples (such as  
Vietoris-Rips filtration) and computes for each n ≥ 0 the evolution of certain mathematical features (called  
n-dimensional homology classes) along the filtration. The n-dimensional persistent homology of a data set 
can be encoded in a barcode 

1
{[ , ]} nI

n i i iB b d ==  that has a bar [b, d) for each n-dimensional homology class that  
first appears in the stage b of the filtration and disappears at stage d.

PHL algorithm orders the examples in each class by evaluating how their removal changes its persistent  
homology. Given an example x ∈ X

k
, the first step is to find its δ-neighbourhood ∆

x
 = {x� ∈ X

k
 \ {x} : d(x, x�) ≤ δ}.  

If |∆
x
| ≤ 2, x is considered a super-outlier. If x is not a super-outlier, a Vietoris-Rips filtration is built over ∆

x
  

and its persistent homology is computed for n = 0, 1, 2. Then, the PH outlierness of x is:

                                                   
0,1,2

0,1,2
( ) max max{ : [ , ) ( )}PH n xi i i in i

Bout x d b b d
=

∈= − ∆                                                    (17)

A restricted version of PH outlierness that can be used in practice is:

                                                         1
1( ) max{ : [ , ) ( )}PH xi i i ii

Bout x d b b d ∈= − ∆                                                         (18)

We denote the PH outlierness as out
PH

. Small values for out
PH

(x) indicate that the persistent homologies of  
X

k
 and X

k
 \ {x} are similar. The theoretical motivation for this statement can be found in 15. Two strategies are 

proposed to select examples from X
k
. On the one hand, we can choose the examples that are not super-outliers  

and have smaller values for out
PH

(x), called representative landmarks. On the other hand, we can choose 
those with higher values for out

PH
(x), called vital landmarks. In case there are not enough examples in X

k
 

that are not super-outliers to be chosen, the subset can include some random super-outliers. The reduced  
dataset D

R
 is created by applying this procedure for each class. Algorithm 7 shows the pseudocode for PHL  

selection.
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Algorithm 7. PHL: PH Landmarks Selection

     Data: D = (X, f), p ∈ [0, 1], d : X × X → ℝ+, δ > 0, otype ∈ { multidimensional, restricted},
                ltype ∈ {representative, vital}
     Result: DR = (S, g)
  1 for k = 1, ··· , c do
  2       Set the class k as Xk = {x ∈ X : f (x) = k};
  3       Set the number of examples to be selected as nk = ⌊p · |Xk|⌋;
  4       Set Ok = ∅ the set of super-outliers;
  5       if otype = multidimensional then
  6            Set outPH ≡ PHout 0,1,2;
  7       else
  8            Set outPH ≡ PHout1 ;
  9       for x ∈ Xk do
10             Find ∆x = { �x ∈ Xk \ {x} : d(x, �x) ≤ δ};
11             if |∆x| > 2 then
12                  Compute the Vietoris-Rips filtration of ∆x for n = 0, 1, 2;
13                  Compute outPH(x);
14             else
15                  Update Ok = Ok ∪ {x};
16      if nk ≤ |Xk \ Ok| then
17           if ltype = representative then
18                Set the subset Sk ⊂ Xk \ Ok with the nk lowest values for outPH;
19           else
20                Set the subset Sk ⊂ Xk \ Ok with the nk highest values for outPH;
21      else
22           Select a random subset Rk ⊂ Ok with |Rk| = |Xk| − nk;
23           Set Sk = Xk \ Rk;
24 Set S = ⋃k=1,···,c Sk;
25 Set g = f |S;

Numerosity Reduction by Matrix Decomposition (NRMD). Numerosity Reduction by Matrix Decomposition  
(NRMD)16 is a method that leverages matrix decomposition to rank examples in a dataset D = (X, f). 
To use this method, it is necessary to use the tabular representation of D that we saw in Subsection 3.2.  
The matrix X contains all the examples in X, and the submatrix X

k
 contains all the examples in X

k
.

Given a matrix A ∈ ℝn×d with rows a
1
, ··· , a

n
, a decomposition is just a factorization A = UV, where U ∈ ℝn×r,  

V ∈ ℝr×d with rows v
1
, ··· , v

r
, and r = min{n, d}. Some typical matrix decompositions are Singular 

Value Decomposition (SVD)50, Non-negative Matrix Factorization (NMF)51, PLU Decomposition52, QR  
decomposition52, Dictionary Learning (DICL)53, Supervised Principal Component Analysis (SPCA)54 and Fisher  
Linear Discriminant Analysis (FLDA)55. From this decomposition, each row of A is assigned a score based 
on its similarity to the rows of V. The matrix Σ, with Σ

i, j
 = |cos(a

i
, v

j
)|ε, stores all the similarities (|·|ε denotes 

the maximum between the absolute value and a certain ε > 0). The final score vector is −log(Σ)w, where  
w ∈ ℝr is a weight vector given by 1/

1/
i

i
ii

w
λ

λ
=

∑
 when the decomposition is based on eigenvalues (as in SVD, 

SPCA and FLDA) and by 2
( 1)i

iw
r r

=
+

 otherwise (as in NMF, DL, PLU and QR decompositions). Algorithm 8  
shows the procedure to calculate scores from a matrix decomposition.

Algorithm 8. Calculate scores from a matrix

     Data: A ∈ ℝN ×d, dtype ∈ {SVD, NMF, PLU, QR, DL, SPCA, FLDA}
     Result: s ∈ ℝN

  1 Set r = min{N, d};
  2 Calculate A = UV using the dtype decomposition;
  3 Set Ã as the normalization of A;
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  4 Set Ṽ as the normalization of V;
  5 if dtype ∈ {SVD, SPCA, FLDA} then

  6      Set w ∈ ℝr with wi = 
∑

i

ii

1/
1/
λ

λ
, being λ1 > ··· > λr the eigenvalues given by the decomposition;

  7 else
  8      Set w ∈ ℝr with wi = i

r r +
2

( 1)
;

  9 Calculate the scores vector s = −log(|ÃṼT|ε)w;

Given a specific decomposition type, the NRMD method computes scores for all matrices X
1
, ··· , X

c
. As a 

result, there exists a score sX(x) for each x ∈ X. In addition, the method calculates scores s
D
(x) for the matrix  

D = [X|E], where E ∈ ℝN×c represents the one-hot encoding matrix of f. In this encoding, E
ij
 = 1 if f(x

i
) = j and  

E
ij
 = 0 otherwise. The final score for an example x ∈ X is s(x) = sX(x) · s

D
(x). The dataset D

R
 is finally formed 

by the examples with the highest values for s, which are considered the most useful in terms of inter-
nal representation and discrimination between classes. The pseudocode for Numerosity Reduction by Matrix  
Decomposition can be seen in Algorithm 9.

Algorithm 9. NRMD: Numerosity Reduction by Matrix Decomposition

    Data: D = (X, f), p ∈ [0, 1], dtype ∈ {SVD, NMF, PLU, QR, DICL, SPCA, FLDA}
    Result: DR = (S, g)
  1 Set n = ⌊p · |X|⌋;
  2 for k = 1, ···, c do
  3       Set the class k as Xk = {x ∈ X : f(x) = k};
  4       Calculate sXk

 as the result of applying Algorithm 8 to the matrix Xk;
  5 Obtain sX merging the score vectors sX1

, ···, sXc
;

  6 Calculate E as the one-hot encoding matrix of f;
  7 Set D = [X|E];
  8 Calculate sD as the result of applying Algorithm 8 to the matrix D;
  9 Calculate the final scores s = sX ⊙ sD;
10 Set the subset S ⊂ X with the n highest scores in s;
11 Set g = f |S;

4.4 Wrapper methods
All the data reduction methods described in the previous subsections are intended to be applied before train-
ing N, since they only need the information from D itself to extract D

R
. In this section, we describe a method 

that uses the information obtained during training of N to reduce D. This means that the data reduction  
is not done before the training, but is wrapped in the training process itself.

Forgetting Events Selection (FES). Forgetting Events Selection (FES) is a data reduction method that lever-
ages the evolution of accuracy throughout neural network training. During the training process, an example  
x ∈ X can be well classified after some epochs (we say that its current accuracy is a

x
 = 1) and misclassified 

after others (we say that a
x
 = 0). If a

x
 = 0 after epoch t − 1 but a

x
 = 1 after epoch t, we say that x has undergone  

a learning event. Conversely, if a
x
 = 1 after epoch t − 1 but a

x
 = 0 after epoch t, x has undergone a forgetting  

event. Unforgettable examples are those with a
x
 = 1 that never had a forgetting event.

The experiments in 17 show that unforgettable examples have less impact on network training than those that 
go through several forgetting events and that they can be removed from the training dataset without signifi-
cantly affecting the model performance. Based on this idea, the FES algorithm counts how many forgetting 
events each example undergoes during training and discards the examples with the lowest number of forgetting  
events. Examples that never get well classified are assigned an infinite number of forgetting events.

Following the ideas from 56, our FES implementation only counts the forgetting events during the  
first e

initial
 epochs of the training process. At that point, the algorithm reduces D by selecting examples with 

more forgetting events and performs the remaining epochs using only D
R
 as a training dataset. To ensure 

that all classes are well represented in D
R
, the selection is made class by class. Algorithm 10 shows how to  

apply FES selection during the training of a DL model N.
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Algorithm 10. FES: Forgetting Events Selection

     Data: D = (X, f), p ∈ [0, 1], N : ℝd → {1, ···, c}, einitial, etotal

     Result: DR = (S, g), N
  1 for x ∈ X do
  2      Set the current accuracy ax = 0;
  3      Set the number of forgetting events fx = 0;
  4 for e = 1, ···, einitial do
  5       Perform a training epoch on N using D;
  6       for x ∈ X do
  7           if N (x) = f(x) then
  8                Update ax = 1;
  9           else if ax = 1 then
10                Update fx = fx + 1;
11                Update ax = 0;
12 for x ∈ X do
13      if ax = fx = 0 then
14           Update fx = ∞
15 for k = 1, ···, c do
16      Set the class k as Xk = {x ∈ X : f(x) = k};
17      Set the number of examples to be selected as nk = ⌊p · |Xk|⌋;
18      Select a subset Sk ⊂ Xk with the nk highest values for fx;
19 Set S = ⋃k=1,···,c Sk;
20 Set g = f |S;
21 for e = einitial + 1, ···, etotal do
22      Perform a training epoch on N using DR = (S, g);

5 Experiments
In this section, we present the datasets used for the experiments, the parameter settings, the setup for the exper-
iments, and finally, the obtained results. The source code of the experiments is available in the GitHub  
repository9.

5.1 Experiments for tabular data classification
In this subsection, we describe the two experiments that we have developed to analyze the utility of data reduc-
tion for classification tasks with tabular datasets. In the first place, we detail the methodology to apply the 
different data reduction methods to a dataset and measure its efficiency, representativeness and perform-
ance. Then, we give some details on the two datasets we used. Finally, we show the results obtained for both  
experiments and discuss the main conclusions.

5.1.1 Datasets for classification
The two datasets that we have used in our experiments are:

Collision dataset This tabular dataset was provided by our colleagues Maurizio Mongelli and Sara Narteni,  
based on 57. It can be downloaded from the repository9, that also contains the code for the experiments and 
our results. The classification task consists of predicting whether a platoon of vehicles will collide based 
on features such as the number of cars and their speed. The dataset consists of 107,210 examples with  
25 numerical features and 2 classes:

•   �collision = 1, with 69,348 examples.

•   �collision = 0, with 37,862 examples.

We decided to use this dataset in experiments to test the usefulness of data reduction methods to reduce 
resource consumption in a task related to safe mobility. Before the experiments, we discarded the two features  
“N” and “m” since they are constant and do not help us in the classification task.
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Dry Bean dataset This dataset (see 58 and 59) was created by taking pictures of dry beans from 7 different 
types and calculating some geometric features from the images, such as the area, the perimeter and the eccen-
tricity. The classification task consists of predicting the type of dry bean based on these geometric features.  
The dataset contains 13,611 examples with 16 features and 7 classes:

•   �Barbunya, with 1,322 examples.

•   �Bombay, with 522 examples.

•   �Cali, with 1,630 examples.

•   �Dermason, with 3,546 examples.

•   �Horoz, with 1,928 examples.

•   �Seker, with 2,027 examples.

•   �Sira, with 2,636 examples.

The classes were encoded from 0 to 6 for the experimentation following the listed ordering. We decided to use 
this dataset to test the usefulness of data reduction methods for classification tasks with several unbalanced  
classes.

5.1.2 Methodology
The methodology of the experiments for both datasets consists of the following three steps:

1.   �Dataset preprocessing:

      �It is a common practice to scale or standardize a dataset before building the DL model because this 
increases the likelihood that the training process will be fast and will not be conditioned by some fea-
tures simply due to their greater magnitude60,61. In our case, we decided to apply the scikit-learn function  
MinMaxScaler62.

      �Each feature p
j
 has a maximum value p

j,max
 = max

xi∈X
 p

j
(x

i
) and a minimum value p

j,min
 = min

xi∈X
 p

j
(x

i
). We 

say that the range of p
j
 is the interval [p

j,min
, p

j,max
] because all its possible values lie in it. Rescaling with  

MinMaxScaler is just changing the example x
i
 ∈ X by:

                                   
1 1

1 1

, ,, , , ,
,

, ,, , , ,
, , , ,

T
i j j mini min i d mind

i scaled j jmax minmax min d max d min

x px px p
x p p p pp p

− − −
 = − −−  

� �                                   (19)

      �After scaling, the range of all the features is [0, 1]. That means that all of them have similar values and  
can be compared between them.

2.   �Fixing the architecture and hyperparameters:

      �In both experiments, we used a neural architecture with 10 layers with the following dimensions:

                                   3 5 6 7 8 9 101 2 450 45 40 35 30 25 20 15 10
f f f f ff f f f f

X O� � � � � � � � �                                     (20)

      �All layers except the last one, use the Rectified Linear Unit (ReLU) activation function  
ReLU(x) = max(0, x). Additionally, these layers use dropout as a regularization technique. The prob-
ability of zeroing a neuron during dropout each time is a hyperparameter called the dropout probability,  
which we have set equal to 0.50 for the experiment with the Collision dataset and equal to 0.25 for the 
experiment with the Dry Bean dataset. The differences in neural architecture for both experiments are  
in the last layer and in the output space O.

      �For the Collision dataset, the last layer has only one neuron (that is, O = ℝ), with sigmoid activation 
function σ(x) = 1/(1 + e−x). The output of N (also called the logit) for an input x

i
 is a number z

i
 ∈ [0, 1].  

The predicted class for x
i
 is:

                                                                      
0 if 0.5

( )
1 otherwise

i
i

z
xθ

<= 


N                                                                      (21)
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      �To train the network for the Collision dataset, we used the Binary Cross Entropy as a loss function.  
Given a neural network Nθ and a dataset D, it has the following formula:

                                    
1

1BCELoss( , ) ( ( ) log( ) (1 ( )) log(1 ))
N

i i i i
i

f x z f x z
N

θ
=

−= − ⋅ + ⋅ −∑D                                      (22)

      �For the Dry Bean dataset, the last layer has 7 neurons, one for each class (that is, O = ℝ7). The logits 
z

i,0
, ···, z

i,6
 for an input x

i
 are transformed into a probability distribution with the softmax activation  

function, given by , ,
6

0,, Softmax ( ) /i k i mz z
i ki k ms z e e== = ∑ , and the predicted class for x

i
 is:

                                                                       0, ,6
,( ) arg max i ki k

x sθ =
=


N                                                                       (23)

      �To train the network for the Dry Bean dataset, we used the Categorical Cross Entropy loss function.  
If we denote y

i,k
 = 1 if f(x

i
) = k and y

i,k
 = 0 otherwise, the formula of Categorical Cross Entropy is:

                                                     
6

1 0
, ,

1CCELoss( , ) log( )
N

ik k i k
i k

w y s
N

θ
==

= − ⋅ ⋅∑∑D                                                     (24)

      �Here, w
k
 = N/N

k
 is a weight assigned to class k to give more importance to the least populated classes  

and prevent a bias towards the most populated ones.

      �In both cases, we used the Adam optimizer63 to minimize the loss function, specifying a learning rate  
of γ = 0.001 and letting the default values for the rest of the required hyperparameters.

      �Regarding the other learning hyperparameters, the network for the Collision dataset was trained for  
n

e
 = 600 epochs with a batch size of β = 1, 024. When the FES reduction was applied, the model was 

trained for n
i
 = 200 epochs with the full training dataset and the remaining 400 epochs with the reduced 

dataset. For the Dry Bean dataset, the number of training epochs was n
e
 = 150 (n

i
 = 50 for the first  

part of training with FES reduction) and the batch size was of β = 32.

3.   �Data reduction and model training: Now that the dataset is scaled and the neural architecture and the 
learning hyperparameters have been set, in this step we analyze how the data reduction methods affect 
the efficiency and performance of the training of a neural network. This step is divided into the following  
4 sub-steps:

•   �Train-Test dataset split: The dataset D is randomly split into a training dataset D
train

 and a test 
dataset D

test
. The DL model will be trained using D

train
 and its performance will be evaluated using 

D
test

. The test dataset contains a proportion p
test

 ∈ (0, 1) of the total number of examples in D.  
For both experiments, we set p

test
 = 0.25.

•   �Training with no reduction: In this step the DL model is trained using the whole training dataset  
D

train
 with no reduction, and then, the computation time and carbon emission of the training  

are calculated. After that, the model is used to classify the test dataset D
train

 and the accuracy,  
macro average precision, macro average recall and macro average F1-score are computed.

•   �Training + reduction for non-wrapper methods: In this step, D
train

 is reduced getting D
train,R

 
as a result, and the ε-representativeness of D

train,R
 respect to D

train
 is computed. The model is then  

trained for n
e
 epochs using D

train,R
, and the total computation time and carbon emission of the 

reduction and the training are calculated. The model is used to classify D
test

 as in the previous  
step. This is repeated for each non-wrapper data reduction method (all but FES) and for each  
reduction percentage p ∈ {0.1, 0.2, ···, 0.9}.

•   �Training + reduction for FES: In this step, the DL model is trained using D
train

 for the first n
i
 

epochs. After applying the FES reduction, the model is trained for the remaining epochs using  
D

train,R
, and the ε-representativeness of D

train,R
 with respect to D

train
 is also computed. The total 

computation time and carbon emission of the training and the reduction are computed. The 
model is used to classify D

test
 as in the previous steps. This step is repeated for each reduction  

percentage p ∈ {0.1, 0.2, ···, 0.9}.

      �This last step is repeated 10 times to test how the data reduction works for different train-test splits and  
mitigate possible overfitting or bias caused by a specific split of the dataset.
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Algorithm 11 shows the experiment pipeline for tabular data classification.

Algorithm 11. Pipeline of the Experiments for Tabular Data Classification

Data: D = (X, f)
1 Dataset Preprocessing;
2 Scale D using MinMaxScaler;
3 Fixing the architecture and hyperparameters;
4 Set a test size proportion ptest ∈ (0, 1);
5 Set a neural architecture and create the DL model N;
6 Set a loss function L : Θ → ℝ+;
7 Set an optimization algorithm to minimize L and its associated hyperparameters;
8 Set a regularization technique and its associated hyperparameters;
9 Set a number of training epochs ne ∈ ℕ;
10 Set a number of initial training epochs for FES reduction ni ∈ ℕ, with ni < ne;
11 Set a batch size β ∈ ℕ;
12 Set a number of iterations niter ∈ ℕ;
13 Data reduction and model training;
14 for i = 1 to n_iter do
15      Train-Test dataset split;
16      Set Ntest = ⌊ptest · N⌋;
17      Split D into Dtrain and Dtest, being the size of Dtest equal to Ntest;
18      Training with no reduction;
19      Train N for ne epochs using Dtrain;
20      Calculate the computing time and carbon emission of the training;
21      �Validate the model with Dtest and calculate the accuracy, macro average precision, macro average recall and 

 macro average F1-score;
22      Training + reduction for non-wrapper methods:;
23      foreach non-wrapper method do
24            for p ∈ {0.1, 0.2, · · · , 0.9} do
25                  �Get Dtrain,R as the reduced dataset of Dtrain with the corresponding data reduction method and the 

 reduction ratio p;
26                  Calculate the ε-representativeness of Dtrain,R respect to Dtrain;
27                  Train N for ne epochs using Dtrain,R;
28                  Calculate the computing time and carbon emission of the reduction and the training;
29                  �Validate N using Dtest and calculate the accuracy, macro average precision, macro average recall and 

 macro average F1-score;
30      Training + reduction for FES;
31      for p ∈ {0.1, 0.2, · · · , 0.9} do
32            Train N  for ni epochs using Dtrain;
33            Get Dtrain,R as the reduced dataset of Dtrain with FES reduction and the reduction ratio p;
34            Calculate the ε-representativeness of Dtrain,R respect to Dtrain;
35            Train N for ne − ni epochs using Dtrain,R;
36            Calculate the computing time and carbon emission of the reduction and the training;
37            �Validate N using Dtest and calculate the accuracy, macro average precision, macro average recall and macro 

 average F1-score;

5.1.3 Results and discussion
All results in this Section are the median values after 10 repetitions. We chose to use the median for this experi-
ment because it provides a robust measure of central tendency that is less affected by outliers, ensuring that  
our analysis is not influenced by extreme values.
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Collision Dataset The median results we obtained for the efficiency metrics (computing time and carbon 
emission) can be seen in Figure 2 and Figure 3. The first thing that we can note is that both metrics express the  
same information since they are almost proportional. Approximately, each minute of computation during 
our experiment emitted 0.22 g of CO

2
 into the atmosphere. It is important to clarify that this occurs because we  

are primarily measuring CO2 emissions during the training time, which present the same characteristics regard-
less of the method used. However, as will be seen in the experiments for object detection, the CO

2
 emitted  

during the data reduction phase is not proportional to the computing time, because the reduction methods are 
not similar in terms of code. In general, the use of data reduction methods before network training helped 
to reduce the computing time and the carbon emission of model building with respect to the reference case 
(when the model is trained over the whole training dataset), but we find three particular exceptions. When the  
CLC reduction method is applied with a reduction ratio of 80% or superior, the efficiency metrics are worse 
than those obtained for the reference case. We have the same situation for MMS and DES when the reduction  

Figure 2. Collision: Reduction + training time.

Figure 3. Collision: Reduction + training carbon.
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ratio is equal to 90%. That suggests that, if we extract a reduced dataset with too many examples, it is possible 
that the time needed to compute the reduction does not compensate the time saved during the network training.  
Because of that, if the size of the dataset is equal to or larger than the size of the Collision dataset, we rec-
ommend applying the three reduction methods only to perform reductions with small reduction ratios. In 
all the other data reduction methods, we can observe that the efficiency metrics always improve those of the  
reference case. In the sense of efficiency, the two top data reduction methods are SRS and NRMD, with similar  
results in both the computation time and carbon emission. Additionally, we can see that the total time and  
carbon emission from the reduction and training are proportional to the number of examples in the reduced  
dataset. That indicates that the reduction takes a small time in the process, and almost all the measured time 
and carbon correspond to the network training. We observed that the efficiency of NRMD reduction depends  
on the type of matrix decomposition selected. We used SVD decomposition but the results may be different if  
we select another decomposition type.

About the ε-representativeness of the reduced datasets with respect to the whole training dataset, the median 
results can be seen in Figure 4. The first thing we can observe is that MMS reduction is always the best at  
preserving the ε-representativeness for all the possible reduction ratios, which seems natural if we recall the  
definition of ε-representativeness and the way the MMS method selects each new example in the reduced dataset.  
CLC reduction also gives us datasets with good ε values. In contrast, the data reduction method that has the  
highest ε values for all the possible reduction ratios is NRMD.

The results on accuracy, macro average precision, macro average recall and macro average F1-score can be 
seen in Figure 5, Figure 6, Figure 7 and Figure 8 respectively. With respect to the accuracy, we can see that the 
model trained with the whole training dataset has an median success probability of 91%. In general, all the data  
reduction methods work very well for this dataset. In fact, there are many specific cases where the model 
obtained with a reduced dataset performs better on the test dataset than the one trained with the complete training  
dataset. We observe that when the reduction ratio is above 50% the best performing method is FES, while in 
other cases it is DES. Most of the compared methods manage to maintain accuracy almost intact despite the  
significant reduction in training size. If we look at the results when we reduce the training dataset to 10% 
of its size, the model trained after applying DES loses 1.8% of accuracy, while the loss less than 3% when  
CLC and SRS are applied. In all cases, this loss in accuracy is more or less linear for all methods except for 
FES. In this case, the accuracy remains stable while the reduction ratio is high, but it undergoes a drastic  
drop when a high percentage of examples is removed.

We observe a similar situation when analyzing the macro average precision. FES is the best method to  
preserve this metric (even improving the reference case) when the reduction ratio is greater than 50%, while for 

Figure 4. Collision: Reduction + ε-representativeness.
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Figure 5. Collision: Reduction + Accuracy.

Figure 6. Collision: Reduction + macro average Precision.

other ratios the best one is DES. macro average precision dropping as training data set size decreases also 
appears to be approximately linear except for all the methods but FES, which suffers a significant drop when the  
reduction ratio is under 30%.

The results that we get when we analyze the macro average recall are quite different. As we saw with accu-
racy and macro average precision, this metric is generally well preserved even if the reduction ratio is very 
low, although it suffers a very significant drop when FES is applied with a reduction ratio under 30%. But con-
trary to what we have seen for the previous metrics, no method clearly outperforms the rest in terms of 
macro average recall. Depending on the reduction ratio, the method that best preserves the macro average 
recall is one or another. All methods except NRMD have given the best median result for some of the chosen  
percentages.
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Figure 7. Collision: Reduction + macro average Recall.

Figure 8. Collision: Reduction + macro average F1-score.

All the general observations we have made when analyzing accuracy and macro average precision can also 
be seen for the macro average F1-score. In general, all reduction methods preserve this metric well, being 
FES the best performing method when the reduction ratio is higher than 50% and DES otherwise. The drop 
in macro average F1-score is also noticeable when many examples are removed with the FES method, while this  
tendency is not as pronounced for the other data reduction methods.

Finally, we have found an interesting relationship between the ε-representativeness of the reduced datasets  
and the macro average F1-score of the models trained with them. Given any reduction ratio p = 0.1, ⋯ , 0.9,  
we have got the ε-representativeness and the macro average F1-score for each reduction method and each 
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iteration in the experiment (in total there are 6 reduction methods × 10 iterations = 60 pairs (ε,F1) for each  
p). We computed for each p the Spearman’s rank correlation coefficient64 of its respective cloud of 60 points 
to test if there exists a dependence between ε-representativeness and the macro average F1-score that can 
be described with a monotonic (always increasing or always decreasing) function. This coefficient is a real  
number ρ ∈ [−1, 1], where ρ close to 1 indicates a strong positive monotonic correlation, implying that as one 
variable increases, the other variable also increases, ρ close to −1 indicates a strong negative monotonic cor-
relation, and ρ similar to 0 indicates no monotonic correlation. We also compute the associated p-value to test  
if the correlation ρ is significantly different from 0. A p-value under a certain threshold (in our case 0.05, 
which is a standard choice) indicates that ρ is likely not null, while a p-value above it suggests that the  
observed correlation might be coincidental and not due to a true dependence between both variables. We per-
formed this statistical analysis independently for each p to eliminate the possible effect that the reduction  
ratio could have if we used all the possible pairs (ε, F1) altogether.

The results that we got can be seen in Table 3. All the computed ρ values are negative, although they are only 
significantly different from zero when the reduction ratio is below 40%. That indicates that, when data reduc-
tion methods remove a large number of examples, the best-performing models are those trained with the 
reduced datasets that best preserve the ε-representativeness of the entire training set. In few words, when we 
reduce the Collision dataset with a small reduction percentage, the smaller the ε value, the better the model will  
perform.

Dry Bean Dataset The median results for the computing time and carbon emission can be seen in Figure 9  
and Figure 10. There is also a proportional relation between the computation time and the carbon emis-
sion in this experiment since each minute of computations emitted approximately 0.21 g of CO

2
 into the atmos-

phere. As happened with the Collision dataset, the use of data reduction methods prior to network training  
helped to reduce the computation time and the carbon emission of the model building with respect to the ref-
erence case. The only exception to this rule is when we apply PRD reduction with a reduction ratio greater than 
70% (see in Figure 9 and Figure 10). In that situation, both the computation time and the carbon emission  

Table 3. Collision: Correlation between ε-representativeness and macro 
average F1-score. This table displays the non-parametric Spearman correlation 
coefficient and its p-value. We have marked in green the columns with a significative 
correlation setting a significance level of 5%, that is with a p-value less or equal than 
0.05.

10% 20% 30% 40% 50% 60% 70% 80% 90%

Spearman’s ρ -0.38 -0.43 -0.42 -0.39 -0.22 -0.15 -0.19 -0.07 -0.14

p-value 0.0 0.0 0.0 0.0 0.1 0.24 0.14 0.58 0.3

Figure 9. Dry Bean: Reduction + training time.
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of reduction and training exceed those of the reference case. There is no reduction method that runs faster 
than all the others for this dataset. SRS, MMS, DES, NRMD and even CLC reduction(all of these are  
overlappingby NRMD in these figures), which was the slowest method for the Collision dataset, run equally 
fast for the Dry Bean dataset. They hardly need any time to reduce the training data set, so almost all the  
measured time and, therefore, the carbon emission correspond to the network training.

The median values on the ε-representativeness, which can be seen in Figure 11, show us similar results 
to those observed with the Collision dataset. MMS is still the best data reduction method to preserve the  
ε-representativeness with respect to the full training dataset, being CLC the second best option. On the  
contrary, NRMD and PRD are the two methods that generally give the less ε-representative reduced datasets.

The median results on accuracy, macro average precision, macro average recall and macro average F1-score  
for the Dry Bean dataset can be seen in Figure 12, Figure 13, Figure 14 and Figure 15 respectively. In this  
experiment, the reference case has a median accuracy in the test dataset of 89.9% and, contrary to the Col-
lision dataset, no model trained on a reduced dataset improves this value. No reduction method outperforms  
the others for every reduction ratio in terms of accuracy. What we observe is that, while, in general, the accu-
racy is well preserved when the reduction ratio is high, it suffers a drastic drop when many examples are removed  
from the training dataset. If we wanted to lose at most 5% of accuracy (i.e., have at least 84.9%) we would have 
to select at least 40% of the data, and not all reduction methods would guarantee that maximum accuracy  
loss.

With respect to macro average precision, we also find that no method is clearly better than the rest for all reduc-
tion ratios, although FES seems to dominate the statistics for the central ratios (30% ≤ p ≤ 60%). Here, the  
drop in the metric as the reduction ratio decreases is not as pronounced as it is for accuracy. This could be  
because the macro average precision is a more robust measure as it is less influenced by the larger classes.

We can see similar results when analyzing the details on macro average recall. No method outperforms all the  
rest, and SRS, PRD, CLC, PHL and FES give the best result for at least one reduction ratio.

Finally, when analyzing the macro average F1-score, we observe that four methods (PRD, CLC, PHL and 
FES) give the best score for some reduction ratio, but FES seems to give the best performing reduced datasets  
for 30% ≤ p ≤ 70%. As we said when we analyzed the accuracy, it is not possible to extract a reduced dataset  
with 30% of its size or less without losing more than 5% of macro average F1-score.

Figure 10. Dry Bean: Reduction + training carbon.
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Figure 11. Dry Bean: Reduction + Epsilon.

Figure 12. Dry Bean: Reduction + Accuracy.

Figure 13. Dry Bean: Reduction + Precision.
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Description of data structure for accessing the final results The results of both experiments were saved in 
a Python dictionary with a nested structure, which we will call the results dictionary. On the first level, the  
result dictionary is composed of 10 dictionaries containing a dictionary for each iteration. The dictionary of each 
iteration has a dictionary for each data reduction method used. The dictionary of each data reduction method  
contains an item for each reduction ratio p = 0.1, ⋯ , 1.0, and each one of them is a dictionary containing all the 
results obtained for that data reduction method and the p value in that iteration. The results obtained when 
the training dataset is not reduced are saved in the item with key p = 1.0. Finally, the dictionary associated  
with a specific iteration, data reduction method, and reduction ratio, contains a key for the following metrics:

•   �time: To store the computing time in seconds of reduction and training (only training when p = 1.0)

•   �carbon: To store the carbon emission in kg of CO
2
 of reduction and training (only training when p = 1.0)

•   �epsilon: To store the ε-representativeness of D
train,R

 with respect to D
train

•   �acc: To store the accuracy of the model over D
test

•   �For each class k:

–   �pre_k: To store the model precision for class k over D
test

Figure 14. Dry Bean: Reduction + Recall.

Figure 15. Dry Bean: Reduction + F1-Score.
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–   �rec_k: To store the model recall for class k over D
test

–   �f1_k: To store the model F1-score for class k over D
test

•   �pre_avg: To store the model macro average precision for class k over D
test

•   �rec_avg: To store the model macro average recall for class k over D
test

•   �f1_avg: To store the model macro average F1-score for class k over D
test

Once we have this results dictionary, the next step is to summarize the information of all the iterations in a 
more simple dictionary. This object, which we will call the median results dictionary, has the same struc-
ture as the entry that we got for each iteration in the results dictionary. For each data reduction method and each  
reduction ratio, the entry of a specific metric is the median value of the 10 metrics obtained during the 10 dif-
ferent iterations of the experiment. This way we can obtain a more stable representation of the performance  
of each method across iterations, mitigating the potential influence of outliers or variability in each individual  
run. All the Figures that we have seen in this subsection present the metrics from the median results dictionary.

5.2 Experiments for object detection
In this subsection, we describe the methodology we have used in our experiments to extend data reduction tech-
niques to images. Observe that we need to adapt the methodology depending on the type of data reduction  
method. Later, we present the datasets used for the experiments done on object detection, including the  
parameter settings and the setup, and finally, we discuss the results that we have obtained.

5.2.1 Methodology
The proposed methodology for the data-dependent methods, illustrated in Figure 16, consists of the following  
five steps:

1.   �Feature extraction: The objective of this stage is to convert the raw pixel values of images into a set of 
meaningful and concise features that capture pertinent information. These features should empower 
the model to distinguish between different patterns, objects, or structures within the images. This proc-
ess entails utilizing a computer vision model, to extract features from all the images in the train-
ing set. In our case, we used a pre-trained YOLOv5 model on the COCO dataset (Common Objects in  
Context)65, a widely used collection in computer vision. The COCO dataset, consisting of approxi-
mately 330,000 annotated images with object location and category information, is one of the largest  
and most diverse datasets available for object detection and segmentation tasks. Utilizing pre-trained 
models on COCO proves advantageous because of its scale and diversity. This pre-training allows  
models to learn generic features and representations from a vast array of real-world images, enhanc-
ing their ability to generalize across various downstream tasks. This approach can lead to improved  
performance and efficiency when fine-tuning or adapting these models to specific applications.

Figure 16. Diagram of the workflow for the proposed methodology to apply data reduction techniques on 
images dataset.
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2.   �Categorizing images: In this step, we categorize each image based on the objects present in them. 
This categorization is essential for applying data reduction techniques, as explained in Section 5.2.2,  
where we detail how each dataset is categorized.

3.   �Global Average Pooling: Regarding the output of Step 1, we apply Global Average Pooling10,66 to the 
output of the last layer of the backbone, in order to transform the features maps into an n-dimensional  
vector representing their extracted features. Subsequently, these feature vectors can be used to  
calculate distances or similarities between images, and reduction methods can be applied to them.

4.   �Applying data reduction technique: Reduction techniques are applied to decrease the amount of sam-
ples in the dataset with a specified reduction rate on the matrix produced in Step 3, comprising x images  
and n dimensions, along with the labels from Step 2.

5.   �Fine tuning with the reduced dataset: This step allows us to assess whether satisfactory perform-
ance is achieved, potentially maintaining the same level as with the complete training set. Perform-
ance evaluation is conducted on the test set using YOLOv5 pre-trained on the COCO dataset, with 
the backbone frozen. In this context, “fine-tuning with a specific part frozen” implies that some of the 
model’s parameters are kept fixed during the training process on the new task. This approach lever-
ages prior knowledge gained during initial training, enabling more efficient adaptation to the new task  
without completely discarding previously learned information.

When employing wrapper methods, we must adopt a slightly different methodology than the one previously 
described (see Figure 17). Initially, we must categorize the images, similar to the preceding methodology, as 
these images are intended for object detection and lack specific labels, instead featuring multiple elements within 
them. Subsequently, we create a straightforward classification model, incorporating the reduction technique dur-
ing training to yield the reduced dataset. Finally, we train the YOLOv5 detection model using the reduced  
dataset, aligning with the objective of Step 5 in the aforementioned methodology.

Additionally, to apply the CLC method to images, we introduce a slight modification by employing KMeans67  
on X with c (the number of classes) clusters. Then, we determine the number of samples closest (based on the 
Euclidean distance) to each centroid, resulting in our reduced dataset D

R
 guided by the specified reduction  

rate. This adjustment is necessary because the centroids generated by the KMeans method, derived from 
the representations obtained by our image methodology, do not correspond to specific images from our  
dataset. Consequently, they do not convey information about what we genuinely aim to detect and localize. This  
modification is called Representative KMeans (RKM).

5.2.2 Datasets for object detection
Roboflow The dataset Roboflow1 68 comprises 514 RGB images, each 416 pixels in both height and width. These  
images feature pedestrians and people in wheelchairs. The training dataset comprises 463 RGB images, in which 

Figure 17. Diagram of the workflow for the proposed methodology to apply wrapper methods.

1https://universe.roboflow.com/2458761304-qq-com/wheelchair-detection
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a total of 499 pedestrians (annotated as P) and 616 wheelchair users (annotated as W) appear. The test data-
set is composed of 51 RGB images, in which a total of 55 pedestrians and 65 wheelchair users appear. To  
label this dataset, we stick to the following criteria:

Number of P Number of W label

0 1 0

≥ 1 0 1

≥ 1 ≥ 1 2

0 ≥ 2 3

Mobility Aid The dataset Mobility Aid2 69 is composed of 17079 RGB images, 10961 are part of the train-
ing dataset and the 6118 remaining are part of the test dataset. In this dataset we can find five types of objects: 
pedestrians (8371, it will be annotated as P), wheelchair users (6458, it will be annotated as W), person pushing  
a wheelchair (3323, it will be annotated as PW), person with crutches (5374, it will be annotated as C) and  
person with a walking-frame (7649, it will be annotated as WF). The test dataset is composed of 6208 P,  
1993 W, 782 PW, 1883 C, and 2174 WF. To label this dataset, we stick to the following criteria:

Number of P/PW Number of W/C/WF label

1 0 1

0 1 2

≥ 1 0 3

0 ≥ 1 4

≥ 1 ≥ 1 5

5.2.3 Parameter setting
For the fine-tuning of YOLOv5, we maintain the backbone frozen (pretrained on the COCO dataset) while train-
ing the remaining parts of the model. We configure the training with 100 epochs for the Roboflow dataset and 
50 epochs for the Mobility Aid dataset. The batch size is set at 16, and the image size is fixed at 640. We employ 
the SGD optimizer, and the learning rate is set to 0.01 for both datasets. The number of classes (nc) is adjusted  
based on the specific dataset, such as 2 for the Roboflow dataset and 5 for the Mobility Aid dataset.

5.2.4 Experiments setup
We utilized Python 3.9 and PyTorch27 on Ubuntu 20.04 to conduct our experiments. The training phase was 
executed on an NVIDIA QUADRO RTX 4000 with 8 GB of RAM and an Intel Xeon Silver 4210 preprocessor.  
Data partitioning followed the default specifications for each dataset.

To assess the performance difference between the full training set and the reduced set, we conducted train-
ing five times for the reduced training dataset. We calculated the arithmetic mean and standard deviation of 
the results for the test set to gauge the performance of each reduction method. For the Roboflow dataset, given 
its limited sample size, we applied rate reductions of 50% and 75%. In contrast, for the Mobility Aid dataset  
with a larger sample size, we implemented rate reductions of 75% and 90%.

5.2.5 Comparison metrics
We use five metrics to assess the performance of training YOLOv5 with the complete dataset compared to train-
ing it with different reduction methods and reduction rates. Initially, we employ three performance metrics:  
precision, recall, and mean average precision setting a confidence threshold of 0.5 (mAP@0.5), which means 
that only detections with a confidence of 50% or more are considered. These metrics are computed individually  
for each class and globally by averaging the values across all classes. Additionally, we consider the time 
required for data reduction, measured in seconds for each reduction method, and the model fine-tuning time.  
Our primary goal with these metrics is to determine whether we can maintain similar performance while  
considering the time saved.

2http://mobility-aids.informatik.uni-freiburg.de/
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Furthermore, we calculate ε-representativeness to gauge how well the reduced dataset D
R
 represents the 

original dataset D. We also compute carbon emissions during both the data reduction process and during  
fine-tuning.

5.2.6 Results and discussion
The source code to implement data reduction techniques in these datasets is available at 9 in the folder  
ObjectDetection.

Roboflow Dataset In our initial experiment, we compared the performance of fine-tuning with the com-
plete training dataset against training with a reduced dataset using various reduction methods. Table 4 dis-
plays the reduction time, ε-representativeness of the D

r
, training time, model performance, and CO

2
 emissions  

during the training and reduction phases at a 50% reduction rate. We can observe that, despite training with 
only 50% of the data, we maintained performance comparable to using the entire dataset. Additionally, we  
reduced the training time by approximately 40%, decreasing from 9 minutes and 20 seconds to around 5 minutes  
and 45 seconds with 50% of the samples. This time reduction was accompanied by a similar decrease (about  
40%) in CO

2
 emissions throughout the process. The emission during the application of the reduction methods  

was small compared to the training time. Notably, effective methods in this scenario include SRS, DES,  
MMS, RKM, and FES. On the contrary, NRMD and PHL perform worse, with a slight loss of perform-
ance. Data reduction times were generally light, except for FES, which exhibited excessive duration compared  
to other methods. Conversely, a lower ε-representativeness did not seem decisive for performance improvement  
or degradation.

Table 4. Table results for Roboflow dataset and 50% reduction rate. The ’Precision’, ’Recall’ and ’mAP@.5’ 
columns display mean and standard deviation values for the specified variables. The ’CO2(g)’ column indicates 
the grams of CO2 emitted during the application of the reduction method and during the fine-tuning. The ’R 
Time(s)’ column shows the time in seconds for data reduction, while the ’FT Time’ column displays the time 
spent on fine-tuning the model. We have highlighted in red the values obtained during fine-tuning with the 
complete dataset,which serve as the reference. Additionally, in green, we highlight the best reduction method 
for each metric.

Method R Time(s) ε FT Time Precision Recall mAP@.5 CO2(g)

- - - 9m 19s
A: 0.951±0.001 
P: 0.926±0.022 
W: 0.976±0.015

A: 0.897±0.019 
P: 0.832±0.031 
W: 0.96±0.018

A: 0.944±0.009 
P: 0.906±0.014 
W:0.984±0.005

5.5

SRS 0.002 2.58 5m 44s
A: 0.945±0.021 
P: 0.921 ±0.035 
W: 0.97±0.011

A:0.897 ±0.019 
P: 0.836±0.03 

W: 0.958±0.015

A:0.897 ±0.019 
P: 0.836±0.03 

W: 0.958±0.015
0+3.3

DES 0.29 3.12 5m 44s
A: 0.94±0.001 

P: 0.925±0.015 
W: 0.95±0.015

A: 0.885±0.015 
P: 0.795±0.03 

W: 0.975±0.015

A: 0.945±0.005 
P:0.905±0.005 

W: 0.985±0.005
0.002+3.3

NRMD 0.09 2.27 5m 47s
A: 0.925±0.015 
P: 0.905±0.02 
W: 0.945±0.02

A: 0.89±0.016 
P: 0.82±0.014 

W: 0.956±0.019

A: 0.932±0.009 
P: 0.892±0.016 
W: 0.972±0.007

0.001+3.3

MMS 0.09 1.99 5m 46s
A: 0.951±0.01 

P: 0.921±0.017 
W: 0.981 ±0.005

A: 0.894±0.015 
P: 0.821±0.029 

W: 0.967±0.011)

A: 0.939±0.006 
P:0.9±0.011 

W: 0.981±0.006
0.0004+3.26

RKM 1.26 1.25 5m 45s
A: 0.948±0.005 
P:0.907±0.015 
W: 0.99 ±0.009

A: 0.895±0.017 
P: 0.819±0.032 
W: 0.971±0.008

A: 0.94±0 
P: 0.894±0.003 
W: 0.985±0.002

0.005+3.3

PRD 0.92 1.67 5m 44s
A: 0.944±0.02 
P: 0.916±0.04 
W: 0.97±0.008

A: 0.89±0.015 
P: 0.814±0.025 
W: 0.965±0.008

A: 0.937±0.007 
P: 0.894±0.015 
W: 0.974±0.008

0.002+3.29

PHL 0.64 2.85 5m 38s
A: 0.942±0.028 

P: 0.9±0.045 
W: 0.982±0.014

A: 0.863±0.21 
P: 0.773±0.041 
W: 0.954±0.01

A: 0.927±0.006 
P: 0.875±0.017 
W: 0.978±0.011

0.004+3.24

FES 8.14 2.28 5m 39s
A:0.921±0.013 
P: 0.871±0.026 
W: 0.972±0.017

A: 0.903±0.011 
P: 0.844±0.018 
W: 0.962±0.006

A: 0.948±0.004 
P: 0.913±0.009 
W: 0.986±0.003

0.08+3.24
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Table 5 presents the same analysis with a 75% reduction rate, where the overall training time was reduced 
from 9.5 minutes to approximately 4 minutes, a 60% increase in speed. Data reduction time remained insig-
nificant, with some methods displaying longer computation times, such as FES. Despite a slight performance  
reduction across all metrics with all methods, SRS, MMS, RKMEANS, and PHL emerged as more resilient 
options. In particular, SRS is the one that best maintains precision and mAP. On the contrary, NRMD showed  
the most significant performance loss. A lower ε-representativeness did not appear to be a determining factor  
for better or worse performance. CO

2
 emissions were also reduced by 60%. On average, the overall mAP for  

reduction methods saw only a 3% reduction compared to the substantial computational time and CO
2
 emis-

sion savings of 60%. In Figure 18, the mean mAP values for each category and method, along with the full  
dataset, illustrate the best-performing methods. At a 50% reduction rate, performance is nearly maintained, 
while at a 75% reduction, some performance loss is evident. SRS stands out as the most effective method.  
Additionally, a general improvement in accuracy is observed for Wheelchairs compared to People, poten-
tially attributed to a slight imbalance in the dataset between the two categories. We only present the mAP  
figure (Figure 18) because it is the most comprehensive performance metric for object detection evaluation.

Based on the outcomes obtained from this dataset, we can affirm that employing reduction methods within 
the proposed methodology, followed by fine-tuning YOLOv5 for object detection, led to a substantial reduc-
tion in CO

2
 emissions and computation time. Importantly, this reduction did not adversely affect the model’s  

performance in localization and object detection tasks.

Table 5. Table results for Roboflow dataset and 75% reduction rate. The Precision’, ’Recall’ and ’mAP@.5’ 
columns display mean and standard deviation values for the specified variables. The ’CO2(g)’ column indicates 
the grams of CO2 emitted during the application of the reduction method and during the fine-tuning. The ’R 
Time(s)’ column shows the time in seconds for data reduction, while the ’FT Time’ column displays the time 
spent on fine-tuning the model. We have highlighted in red the values obtained during fine-tuning with the 
complete dataset,which serve as the reference. Additionally, in green, we highlight the best reduction method 
for each metric.

Method R Time(s) ϵ FT Time Precision Recall mAP@.5 CO2(g)

- - - 9m 19s
A: 0.951±0.001 
P: 0.926±0.022 
W: 0.976±0.015

A: 0.897±0.019 
P: 0.832±0.031 
W: 0.96±0.018

A: 0.944±0.009 
P: 0.906±0.014 
W :0.984±0.005

5.5

SRS 0.001 2.7 4m 2s
A: 0.931±0.013 

P:0.9±0.017 
W: 0.963±0.021

A: 0.886±0.013 
P: 0.815±0.016 
W: 0.957±0.01

A: 0.937±0.005 
P: 0.906±0.008 
W: 0.968±0.004

0+2.25

DES 0.24 3.21 3m 59s
A: 0.894±0.022 
P: 0.824±0.04 
W: 0.964±0.03

A: 0.86±0.031 
P: 0.761±0.045 
W: 0.96±0.019

A: 0.919±0.006 
P: 0.855±0.009 
W: 0.984±0.005

0.002+2.24

NRMD 0.09 2.3 3m 58s
A: 0.901±0.016 
P: 0.887±0.021 
W: 0.914±0.023

A: 0.846±0.018 
P: 0.743±0.043 
W: 0.949±0.011

A: 0.908±0.009 
P: 0.857±0.016 
W: 0.958±0.003

0.001+2.23

MMS 0.05 2.3 4m
A: 0.935±0.012 
P: 0.927±0.017 
W: 0.943±0.015

A: 0.858±0.009 
P: 0.776±0.002 
W: 0.94±0.01

A: 0.922±0.01 
P: 0.885±0.019 
W: 0.958±0.006

0.0004+2.23

RKM 1.22 1.18 3m 52s
A: 0.908±0.015 
P: 0.821±0.029 
W: 0.995±0.006

A: 0.881±0.009 
P: 0.829±0.019 
W: 0.934±0.009

A: 0.927±0.007 
P: 0.881±0.015 
W: 0.972±0.004

0.005+2.18

PRD 0.38 2.68 4m
A: 0.895±0.024 
P: 0.849±0.038 
W: 0.941±0.02

A: 0.872±0.033 
P: 0.793±0.066 
W: 0.951±0.011

A: 0.916±0.013 
P: 0.856±0.022 
W: 0.967±0.014

0.001+2.22

PHL 0.67 3.74 3m 59s
A: 0.897±0.02 

P: 0.816±0.034 
W: 0.977±0.017

A: 0.887±0.016 
P: 0.834±0.023 
W: 0.941±0.016

A: 0.923±0.004 
P: 0.877±0.007 
W: 0.97±0.004

0.004+2.23

FES 8.63 3.12 3m 55s
A: 0.884±0.002 
P: 0.824±0.033 
W: 0.945±0.016

A: 0.874±0.014 
P: 0.796±0.024 
W: 0.951±0.009

A: 0.911±0.008 
P: 0.854±0.013 
W: 0.968±0.004

0.08+2.17
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Mobility Aid Dataset Initially, we observe the training benchmark results with the complete dataset compris-
ing 10,961 instances. This yields commendable outcomes, such as a mean average precision of 0.93, with a nar-
row standard deviation of 0.003 across all classes. Notably, the performance stands out in the category of 
people in wheelchairs (W), surpassing the overall average, while performance in other categories is notewor-
thy. Other categories were not included in Table 6 and Table 7 In general, superior performance is evident 
for the wheelchair, push-wheelchair, and walking-frame categories compared to the pedestrian and crutches  
categories, which exhibit below-average performance.

Moving to Table 6, which illustrates the results for a reduction rate of 75%, we observe a significant reduc-
tion in training time, approximately 50%. Reduction times are just seconds for most methods, extending to  
minutes for PRD, PHL and FES. CO

2
 emissions also witness a substantial decrease, around 55% for all meth-

ods, except for PRD, PHL and FES, which emit more CO
2
 due to an extended computation time during data  

reduction. Finally, across all methods, we managed to maintain the performance achieved with the complete  
training set. This underscores the practical significance of these methods in reducing computation time  
and consequently lowering CO

2
 emissions during model fine-tuning. The exceptions are the RKM and NRMD  

methods, which exhibit a performance drop.

In Table 7, we present similar findings, but this time with a reduction rate of 90%. The primary observa-
tion is a decrease in performance across various metrics, including precision, recall, and mean average precision.  
Notably, while there is an overall performance loss due to reduced metrics in other categories, the decline in the 
wheelchair category is comparatively less pronounced. Despite this reduction in performance, we managed  
to cut down the training time to 43 minutes, representing about 67% of the training time without data-
set reduction. A corresponding decrease in CO

2
 consumption is observed. Despite the general decline, certain  

methods, such as SRS, MMS, PRD, PHL and FES, demonstrate a relatively robust maintenance of performance.

A visual representation of the mean mAP values for wheelchairs, overall, and for each method alongside the full 
dataset is provided in Figure 19. This visualization offers a clearer insight into the methods that yield opti-
mal results. With a reduction rate of 75%, we almost maintain performance in all methods, except NRMD 
and RKM. However, at a rate of reduction 90%, some performance loss is evident, highlighting the effi-
cacy of methods such as SRS, MMS, PRD, PHL and FES. In particular, the drop in performance for the wheel-
chair category is less pronounced compared to other categories. We only present the mAP figure (Figure 19), as it  
serves as the most comprehensive performance metric for object detection evaluation.

With these results obtained for this dataset, we can confirm that the use of reduction methods within the 
proposed methodology, followed by fine-tuning YOLOv5 for object detection, led to a substantial reduc-
tion in both CO

2
 emissions and computation time. Importantly, this reduction did not affect the model  

performance in object detection and localization.

Figure 18. mAP values on Roboflow dataset when using a 50% reduction rate (first column) and when using 
a 75 percent reduction rate (second column).
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Table 6. Table results for Mobility Aid dataset and 75% reduction rate. The ’Precision’, ’Recall’ and ’mAP@.5’ 
columns display mean and standard deviation values for the specified variables. The ’CO2(g)’ column indicates the 
grams of CO2 emitted during the application of the reduction method and during the fine-tuning. The ’R Time(s)’ 
column shows the time in seconds for data reduction, while the ’FT Time’ column displays the time spent on fine-
tuning the model. We have highlighted in red the values obtained during fine-tuning with the complete dataset, 
which serve as the reference. Additionally, in green, we highlight the best reduction method for each metric.

Method R Time(s) ϵ FT Time Precision Recall mAP@.5 CO2(g)

- - - 2h 8m A: 0.91±0.008 
W: 0.994±0.001

A: 0.875±0.007 
W: 0.896±0.01

A: 0.93±0.003 
W: 0.941±0.003

73.85

SRS 0.006 0.86 1h 2m A: 0.912±0.007 
W: 0.979±0.029

A: 0.876±0.007 
W: 0.887±0.011

A: 0.932±0.004 
W: 0.94±0.003

0+34.12

DES 7.98 0.87 1h 2m A: 0.91±0.009 
W: 0.989±0.005

A: 0.876±0.006 
W: 0.893±0.004

A: 0.93±0.006 
W: 0.941±0.001

0.04+34.1

NRMD 3.83 1.04 1h 2m A: 0.857±0.004 
W: 0.986±0.007

A: 0.83±0.006 
W: 0.865±0.031

A: 0.903±0.004 
W: 0.932±0.002

0.015+33.94

MMS 5.88 0.66 1h 2m A: 0.911±0.006 
W: 0.994±0.003

A: 0.875±0.004 
W: 0.891±0.007

A: 0.928±0.005 
W: 0.939±0.005

0.03+34.13

RKM 31 0.74 1h 2m A: 0.845±0.013 
W: 0.961(0.008

A: 0.795±0.006 
W: 0.871±0.008

A: 0.89±0.006 
W: 0.92±0.005

0.023+34.1

PRD 457 0.59 1h 1m A: 0.912±0.011 
W: 0.989±0.005

A: 0.876±0.007 
W: 0.889±0.008

A: 0.931±0.004 
W: 0.939±0.002

1.82+33.91

PHL 314 0.9 1h 3m A: 0.912±0.007 
W: 0.994±0.003

A: 0.875±0.009 
W: 0.896±0.003

A: 0.931±0.003 
W: 0.38±0.001

1.79+35.09

FES 289 1 56m 
33s

A: 0.912±0.004 
W: 0.993±0.001

A: 0.875±0.005 
W: 0.887±0.009

A: 0.928±0.004 
W: 0.939±0.003

2.9+31.83

Table 7. Table results for Mobility Aid dataset and 90% reduction rate. The ’Precision’, ’Recall’ and ’mAP@.5’ 
columns display mean and standard deviation values for the specified variables. The ’CO2(g)’ column indicates the 
grams of CO2 emitted during the application of the reduction method and during the fine-tuning. The ’R Time(s)’ 
column shows the time in seconds for data reduction, while the ’FT Time’ column displays the time spent on fine-
tuning the model. We have highlighted in red the values obtained during fine-tuning with the complete dataset, 
which serves as the reference. Additionally, in green, we highlight the best reduction method for each metric.

Method R 
Time(s)

ε FT Time Precision Recall mAP@.5 CO2(g)

- - - 2h 8m A: 0.91±0.008 
W: 0.994±0.001

A: 0.875±0.007 
W: 0.896±0.01

A: 0.93±0.003 
W: 0.941±0.003

73.85

SRS 0.018 1.15 48m 31s A: 0.894±0.01 
W: 0.993±0.003

A: 0.867±0.007 
W: 0.886±0.015

A: 0.926±0.002 
W: 0.942±0.002

0+26.13

DES 8.13 1 43m 28s A: 0.875±0.014 
W: 0.971±0.02

A: 0.862±0.007 
W: 0.893±0.011

A: 0.917±0.006 
W: 0.94±0.003

0.04+24.06

NRMD 2.69 1.18 43m 17s A: 0.826±0.005 
W: 0.976±0.008

A: 0.773±0.02 
W: 0.846±0.02

A: 0.873±0.009 
W: 0.923±0.005

0.017+23.93

MMS 2.9 0.84 43m 26s A: 0.904±0.006 
W: 0.996±0.001

A: 0.875±0.004 
W: 0.87±0.01

A: 0.927±0.004 
W: 0.935±0.002

0.017+24.06

RKM 22.92 0.95 43m 26s A: 0.812±0.008 
W: 0.968±0.007

A: 0.767±0.012 
W: 0.855±0.024

A: 0.858±0.004 
W: 0.918±0.003

0.024+24.04

PRD 66.4 1 43m 28s A: 0.908±0.01 
W: 0.99±0.006

A: 0.868±0.007 
W: 0.883±0.01

A: 0.926±0.007 
W: 0.938±0.004

0.29+24.05

PHL 317 1.04 43m 36s A: 0.898±0.006 
W: 0.989±0.005

A: 0.869±0.005 
W: 0.889±0.007

A: 0.926±0.003 
W: 0.937±0.002

1.35+24.11

FES 269 1.46 43m 29s A: 0.906±0.007 
W: 0.992±0.005

A: 0.87±0.005 
W: 0.875±0.033

A: 0.927±0.003 
W: 0.936±0.002

2.69+24.02
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Figure 19. mAP values on Mobility Aid dataset when using a 75% reduction rate(first column) and when 
using a 90% of reduction rate (second column).

Data availability
•   �Collision: It consists of predicting whether a platoon of vehicles will collide based on features such as 

the number of cars and their speed. The dataset consists of 107,210 examples with 25 numerical features  
and 2 classes; collision = 1 and collision = 0. This dataset is available at https://doi.org/10.5281/ 
zenodo.1084447670.

     �Data are available under the terms of the Creative Commons Attribution 4.0 International license  
(CC-BY 4.0).

•   �Dry Bean: This dataset was created by taking pictures of dry beans from 7 different types and calcu-
lating some geometric features from the images, such as the area, the perimeter and the eccentricity. con-
sists of predicting the type of dry bean based on these geometric features. The dataset contains 13,611  
examples with 16 features and 7 classes. This dataset is available at https://doi.org/10.24432/C50S4B58.

     �Data are available under the terms of the Creative Commons Attribution 4.0 International license  
(CC-BY 4.0).

•   �Roboflow: It comprises 514 RGB images, each 416 pixels in both height and width. These images fea-
ture pedestrians and people in wheelchairs. The training dataset comprises 463 RGB images, in which a 
total of 499 pedestrians (annotated as P) and 616 wheelchair users (annotated as W) appear. The test data-
set is composed of 51 RGB images, in which a total of 55 pedestrians and 65 wheelchair users appear.  
This dataset is available at https://universe.roboflow.com/2458761304-qq-com/wheelchair-detection.

     �Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 
4.0).

•   �Mobility Aid: The dataset Mobility Aid 269 is composed of 17079 RGB images, 10961 are part of the 
training dataset and the 6118 remaining are part of the test dataset. In this dataset we can find five types 
of objects: pedestrians (8371), wheelchair users (6458), person pushing a wheelchair (3323), person with 
crutches (5374) and person with a walking-frame (7649). This dataset is available at http://mobility-aids. 
informatik.uni-freiburg.de/.

Code availability
Source code is available at https://doi.org/10.5281/zenodo.1084455871

https://github.com/Cimagroup/Experiments-SurveyGreenAI

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements
A previous version of this article was published on arXiv: https://arxiv.org/pdf/2403.15150.pdf.

Page 37 of 39

Open Research Europe 2024, 4:101 Last updated: 05 JUL 2024

https://doi.org/10.5281/zenodo.10844476
https://doi.org/10.5281/zenodo.10844476
https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.24432/C50S4B
https://universe.roboflow.com/2458761304-qq-com/wheelchair-detection
https://creativecommons.org/licenses/by/4.0/
http://mobility-aids.informatik.uni-freiburg.de/
http://mobility-aids.informatik.uni-freiburg.de/
https://doi.org/10.5281/zenodo.10844558
https://github.com/Cimagroup/Experiments-SurveyGreenAI
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/pdf/2403.15150.pdf


References

1.	 Schwartz R, Dodge J, Smith NA, et al.: Green AI. Commun ACM. 
2020; 63(12): 54–63.  
Publisher Full Text 

2.	 Zha D, Bhat ZP, Lai KH, et al.: Data-centric Artificial Intelligence: 
a survey. arXiv: 2303.10158 [cs], 2023.  
Publisher Full Text 

3.	 Xu J, Zhou W, Fu Z, et al.: A survey on green deep learning. arXiv. 
2021.  
Publisher Full Text 

4.	 Verdecchia R, Cruz L, Sallou J, et al.: Data-centric green AI an 
exploratory empirical study. In: 2022 International Conference on 
ICT for Sustainability (ICT4S). IEEE, 2022; 35–45.  
Publisher Full Text 

5.	 O’Shea K, Nash R: An introduction to convolutional neural 
networks. 2015.  
Publisher Full Text 

6.	 Ren S, He K, Girshick R, et al.: Faster R-CNN: towards real-time 
object detection with region proposal networks. IEEE Trans 
Pattern Anal Mach Intell. 2017; 39(6): 1137–1149.  
PubMed Abstract | Publisher Full Text 

7.	 Redmon J, Divvala SK, Girshick RB, et al.: You only look once: 
unified, real-time object detection. 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 2016; 779–788. 
Publisher Full Text 

8.	 Perera Lago J, Paluzo Hidalgo E, Toscano Durán V: Repository 
survey green AI. [Code], 2024.  
Publisher Full Text 

9.	 Toscano Durán V, Lago JP, Hidalgo EP: Repository experiments 
Survey Green AI. [Code], 2024.  
Publisher Full Text 

10.	 Gholamalinezhad H, Khosravi H: Pooling methods in deep 
neural networks, a review. ArXiv. 2020; abs/2009.07485. 
Publisher Full Text 

11.	 Gurumoorthy KS, Dhurandhar A, Cecchi G, et al.: Efficient data 
representation by selecting prototypes with importance 
weights. In: 2019 IEEE International Conference on Data Mining 
(ICDM). IEEE, 2019; 260–269.  
Publisher Full Text 

12.	 Olvera-López JA, Carrasco-Ochoa JA, Martínez-Trinidad JF, et al.: A 
review of instance selection methods. Artif Intell Rev. 2010; 34: 
133–143.  
Publisher Full Text 

13.	 Lacombe C, Hammoud I, Messud J, et al.: Data-driven method for 
training data selection for deep learning. In: 82nd EAGE Annual 
Conference & Exhibition. European Association of Geoscientists & 
Engineers, 2021; 2021: 1–5.  
Publisher Full Text 

14.	 Li Y, Chao X: Distance-entropy: an effective indicator for 
selecting informative data. Front Plant Sci. 2022; 12: 818895. 
PubMed Abstract | Publisher Full Text | Free Full Text 

15.	 Stolz BJ: Outlier-robust subsampling techniques for persistent 
homology. J Mach Learn Res. 2023.  
Publisher Full Text 

16.	 Ghojogh B, Crowley M: Instance ranking and numerosity 
reduction using matrix decomposition and subspace learning. 
In: Canadian Conference on Artificial Intelligence. 2019; 160–172. 
Publisher Full Text 

17.	 Toneva M, Sordoni A, des Combes RT, et al.: An empirical study 
of example forgetting during deep neural network learning. 
arXiv. 2018.  
Publisher Full Text 

18.	 Surdeanu M, Valenzuela-Escárcega MA: Feed-forward neural 
networks. Cambridge University Press, 2024; 73–86.  
Publisher Full Text 

19.	 Agostinelli F, Hoffman MD, Sadowski P, et al.: Learning activation 
functions to improve deep neural networks. arXiv: Neural and 
Evolutionary Computing. 2014.  
Publisher Full Text 

20.	 Wang Q, Ma Y, Zhao K, et al.: A comprehensive survey of loss 
functions in machine learning. Ann Data Sci. 2022; 9: 187–212. 
Publisher Full Text 

21.	 Mao A, Mohri M, Zhong Y: Cross-entropy loss functions: 
theoretical analysis and applications. ArXiv. abs/2304.07288, 
2023. 
Publisher Full Text 

22.	 Ruder S: An overview of gradient descent optimization 
algorithms. ArXiv. abs/1609.04747, 2016.  
Publisher Full Text 

23.	 Islam M, Chen G, Jin S: An overview of neural network. American 
Journal of Neural Networks and Applications. 2019; 5(1): 7–11. 
Publisher Full Text 

24.	 Zaidi SSA, Ansari MS, Aslam A, et al.: A survey of modern deep 
learning based object detection models. Digit Signal Process. 
2022; 126: 103514.  
Publisher Full Text 

25.	 Jocher G: Yolov5 by ultralytics. 2020.  
Publisher Full Text 

26.	 Salawetz J: What is yolov5? a guide for beginners. 2020. 
Reference Source

27.	 Paszke A, Gross S, Massa F, et al.: Pytorch: an imperative 
style, high-performance deep learning library. In: Adv Neural 
Inf Process Syst. Curran Associates, Inc, 2019; 32: 8024–8035. 
Publisher Full Text 

28.	 Wang CY, Mark Liao HY, Wu YH, et al.: CSPNet: a new backbone 
that can enhance learning capability of CNN. 2020 IEEE/
CVF Conference on Computer Vision and Pattern Recognition 
Workshops(CVPRW). 2019; 1571–1580.  
Publisher Full Text 

29.	 Jiang T, Frøseth G, Rønnquist A: A robust bridge rivet 
identification method using deep learning and computer 
vision. Eng Struct. 2023; 283: 115809.  
Publisher Full Text 

30.	 He K, Zhang X, Ren S, et al.: Spatial pyramid pooling in deep 
convolutional networks for visual recognition. IEEE Trans 
Pattern Anal Mach Intell. 2014; 37(9): 1904–16.  
PubMed Abstract | Publisher Full Text 

31.	 Liu S, Qi L, Qin H, et al.: Path Aggregation Network for instance 
segmentation. In: 2018 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2018; 8759–8768.  
Publisher Full Text 

32.	 Buslaev A, Iglovikov VI, Khvedchenya E, et al.: Albumentations: 
fast and flexible image augmentations. Information. 2020; 
11(2): 125.  
Publisher Full Text 

33.	 Gonzalez-Diaz R, Gutiérrez-Naranjo MA, Paluzo-Hidalgo E: 
Topology-based representative datasets to reduce neural 
network training resources. Neural Comput Appl. 2022; 34(17): 
14397–14413.  
Publisher Full Text 

34.	 Brodersen KH, Ong CS, Stephan KE, et al.: The balanced accuracy 
and its posterior distribution. In: 2010 20th international 
conference on pattern recognition. IEEE, 2010; 3121–3124. 
Publisher Full Text 

35.	 Sokolova M, Lapalme G: A systematic analysis of performance 
measures for classification tasks. Inform Process Manag. 2009; 
45(4): 427–437.  
Publisher Full Text 

36.	 Opitz J, Burst S: Macro F1 and macro F1. arXiv. 2019.  
Publisher Full Text 

37.	 Rezatofighi SH, Tsoi N, Gwak JY, et al.: Generalized intersection 
over union: a metric and a loss for bounding box regression. 
2019 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). 2019; 658–666.  
Publisher Full Text 

38.	 Henderson P, Ferrari V: End-to-end training of object class 
detectors for Mean Average Precision. In: Computer Vision–ACCV 
2016: 13th Asian Conference on Computer Vision. Taipei, Taiwan, 
November 20-24, 2016, Revised Selected Papers, Part V 13, 2017; 
198–213.  
Publisher Full Text 

39.	 Shah D: Mean average precision (map) explained: everything 
you need to know. 2022; Retrieved November, 4:2022.  
Reference Source

40.	 Myhre G, Shindell D, Pongratz J: Anthropogenic and natural 
radiative forcing. Cambridge University Press; 2014.  
Publisher Full Text 

41.	 Stocker TF, Qin D, Plattner GK, et al.: Technical summary. In: 
Climate Change 2013: the Physical Science Basis. Contribution 
of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge University 
Press, 2013; 33–115.  
Publisher Full Text 

42.	 CodeCarbon contributors: Codecarbon: A python library for 
carbon emission quantification.  
Reference Source

43.	 Lottick K, Susai S, Friedler SA, et al.: Energy usage reports: 

Page 38 of 39

Open Research Europe 2024, 4:101 Last updated: 05 JUL 2024

http://dx.doi.org/10.1145/3381831
http://dx.doi.org/10.48550/arXiv.2303.10158
http://dx.doi.org/10.48550/arXiv.2111.05193
http://dx.doi.org/10.1109/ICT4S55073.2022.00015
http://dx.doi.org/10.48550/arXiv.1511.08458
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.5281/zenodo.10844558
http://dx.doi.org/10.5281/zenodo.10844476
http://dx.doi.org/10.48550/arXiv.2009.07485
http://dx.doi.org/10.1109/ICDM.2019.00036
http://dx.doi.org/10.1007/s10462-010-9165-y
http://dx.doi.org/10.3997/2214-4609.202112817
http://www.ncbi.nlm.nih.gov/pubmed/35095987
http://dx.doi.org/10.3389/fpls.2021.818895
http://www.ncbi.nlm.nih.gov/pmc/articles/8792929
http://dx.doi.org/10.48550/arXiv.2103.14743
http://dx.doi.org/10.1007/978-3-030-18305-9_13
http://dx.doi.org/10.48550/arXiv.1812.05159
http://dx.doi.org/10.1017/9781009026222.006
http://dx.doi.org/10.48550/arXiv.1412.6830
http://dx.doi.org/10.1007/s40745-020-00253-5
http://dx.doi.org/10.48550/arXiv.2304.07288
http://dx.doi.org/10.48550/arXiv.1609.04747
http://dx.doi.org/10.11648/j.ajnna.20190501.12
http://dx.doi.org/10.1016/j.dsp.2022.103514
http://dx.doi.org/10.5281/zenodo.3908559
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
http://dx.doi.org/10.48550/arXiv.1912.01703
http://dx.doi.org/10.1109/CVPRW50498.2020.00203
http://dx.doi.org/10.1016/j.engstruct.2023.115809
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/CVPR.2018.00913
http://dx.doi.org/10.3390/info11020125
http://dx.doi.org/10.1007/s00521-022-07252-y
http://dx.doi.org/10.1109/ICPR.2010.764
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.48550/arXiv.1911.03347
http://dx.doi.org/10.1109/CVPR.2019.00075
http://dx.doi.org/10.1007/978-3-319-54193-8_13
https://www.v7labs.com/blog/mean-average-precision
http://dx.doi.org/10.1017/CBO9781107415324.018
http://dx.doi.org/10.1017/CBO9781107415324
https://codecarbon.io/


environmental awareness as part of algorithmic 
accountability. In: NeurIPS 2019 Workshop on Tackling Climate 
Change with Machine Learning. 2019.  
Publisher Full Text 

44.	 Xu R, Wunsch D: Clustering. John Wiley & Sons, 2008. 
Reference Source

45.	 Bezdek JC, Kuncheva LI: Nearest prototype classifier designs: 
an experimental study. Int J Intell Syst. 2001; 16(12): 1445–1473. 
Publisher Full Text 

46.	 Liu H, Motoda H: On issues of instance selection. Data Min Knowl 
Discov. 2002; 6(2): 115.  
Publisher Full Text 

47.	 Chawla S, Gionis A: k-means–: a unified approach to clustering 
and outlier detection. In: Proceedings of the 2013 SIAM 
international conference on data mining. SIAM, 2013; 189–197. 
Publisher Full Text 

48.	 Li HG, Wu GQ, Hu XG, et al.: K-means clustering with bagging 
and mapreduce. In: 2011 44th Hawaii International Conference on 
System Sciences. IEEE, 2011; 1–8.  
Publisher Full Text 

49.	 Silva V, Carlsson G: Topological estimation using witness 
complexes. Proc Sympos Point-Based Graphics. 2004; 157–166. 
Publisher Full Text 

50.	 Golub GH, Reinsch C: Singular value decomposition and least 
squares solutions. In: Handbook for Automatic Computation: 
Volume II: Linear Algebra. 1971; 134–151.  
Publisher Full Text 

51.	 Lee D, Seung HS: Algorithms for non-negative matrix 
factorization. Adv Neural Inf Process Syst. 2000; 13.  
Reference Source

52.	 Golub GH, Van Loan CF: Matrix computations - 4th edition. 
Johns Hopkins University Press, Philadelphia, PA, 2013.  
Reference Source

53.	 Mairal J, Bach F, Ponce J, et al.: Online dictionary learning for 
sparse coding. In: Proceedings of the 26th annual international 
conference on machine learning. 2009; 689–696.  
Publisher Full Text 

54.	 Barshan E, Ghodsi A, Azimifar Z, et al.: Supervised principal 
component analysis: visualization, classification and 
regression on subspaces and submanifolds. Pattern Recogn. 
2011; 44(7): 1357–1371.  
Publisher Full Text 

55.	 Xanthopoulos P, Pardalos PM, Trafalis TB, et al.: Linear 
discriminant analysis. Robust data mining. 2013; 27–33. 
Publisher Full Text 

56.	 Coleman C, Yeh C, Mussmann S, et al.: Selection via proxy: 
efficient data selection for deep learning. arXiv. 2019. 
Publisher Full Text 

57.	 Mongelli M, Ferrari E, Muselli M, et al.: Performance validation 
of vehicle platooning through intelligible analytics. IET 

Cyber-Physical Systems: Theory & Applications. 2019; 4(2): 120–127. 
Publisher Full Text 

58.	 [Dataset] Dry bean dataset. UCI Machine Learning Repository, 
2020.  
http://www.doi.org/10.24432/C50S4B

59.	 Koklu M, Ozkan IA: Multiclass classification of dry beans using 
computer vision and machine learning techniques. Comput 
Electron Agric. 2020; 174: 105507.  
Publisher Full Text 

60.	 Ahsan MM, Mahmud MAP, Saha PK, et al.: Effect of data scaling 
methods on machine learning algorithms and model 
performance. Technologies. 2021; 9(3): 52.  
Publisher Full Text 

61.	 Sharma V: A study on data scaling methods for Machine 
Learning. Int J Global Acad Sci Res. 2022; 1(1): 31–42.  
Publisher Full Text 

62.	 Pedregosa F, Varoquaux G, Gramfort A, et al.: Scikit-learn: 
machine learning in Python. J Mach Learn Res. 2011; 12:  
2825–2830.  
Publisher Full Text 

63.	 Kingma DP, Ba J: Adam: a method for stochastic optimization. 
CoRR. 2014; abs/1412.6980.  
Publisher Full Text 

64.	 Spearman C: The proof and measurement of association 
between two things. Am J Psychol. 1904; 15(1): 72–101.  
Publisher Full Text 

65.	 Lin TY, Maire M, Belongie S, et al.: Microsoft coco: common 
objects in context. 2015.  
Publisher Full Text 

66.	 Lin M, Chen Q, Yan S: Network In Network. 2014.  
Publisher Full Text 

67.	 Ikotun AM, Ezugwu AE, Abualigah L, et al.: K-means clustering 
algorithms: a comprehensive review, variants analysis, and 
advances in the era of big data. Inform Sciences. 2023; 622: 
178–210.  
Publisher Full Text 

68.	 2458761304@qq.com: [dataset] wheelchair detection dataset. 
2021.  
Reference Source

69.	 Vasquez A, Kollmitz M, Eitel A, et al.: Deep detection of people 
and their mobility aids for a hospital robot. In: Proc of the IEEE 
Eur Conf on Mobile Robotics (ECMR). 2017.  
Publisher Full Text 

70.	 victosdur77: Cimagroup/Experiments-SurveyGreenAI: V1.0 
Experiments for REXASI-PRO (V1.0). [Data], Zenodo. 2024.  
http://www.doi.org/10.5281/zenodo.10844476

71.	 Perera-Lago J, EduPH: Cimagroup/SurveyGreenAI: V1.0 Code for 
Deliverable 6.2 REXASI-PRO (V1.0). [Code], Zenodo. 2024.  
http://www.doi.org/10.5281/zenodo.10844558

Page 39 of 39

Open Research Europe 2024, 4:101 Last updated: 05 JUL 2024

http://dx.doi.org/10.48550/arXiv.1911.08354
https://books.google.co.in/books/about/Clustering.html?id=kYC3YCyl_tkC&redir_esc=y
http://dx.doi.org/10.1002/int.1068
http://dx.doi.org/10.1023/A:1014056429969
http://dx.doi.org/10.1137/1.9781611972832.21
http://dx.doi.org/10.1109/HICSS.2011.265
http://dx.doi.org/10.2312/SPBG/SPBG04/157-166
http://dx.doi.org/10.1007/978-3-642-86940-2_10
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://epubs.siam.org/doi/book/10.1137/1.9781421407944
http://dx.doi.org/10.1145/1553374.1553463
http://dx.doi.org/10.1016/j.patcog.2010.12.015
http://dx.doi.org/10.1007/978-1-4419-9878-1_4
http://dx.doi.org/10.48550/arXiv.1906.11829
http://dx.doi.org/10.1049/iet-cps.2018.5055
http://www.doi.org/10.24432/C50S4B
http://dx.doi.org/10.1016/j.compag.2020.105507
http://dx.doi.org/10.3390/technologies9030052
http://dx.doi.org/10.55938/ijgasr.v1i1.4
http://dx.doi.org/10.48550/arXiv.1201.0490
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.2307/1412159
http://dx.doi.org/10.48550/arXiv.1405.0312
http://dx.doi.org/10.48550/arXiv.1312.4400
http://dx.doi.org/10.1016/j.ins.2022.11.139
https://universe.roboflow.com/2458761304-qq-com/wheelchair-detection
http://dx.doi.org/10.1109/ECMR.2017.8098665
http://www.doi.org/10.5281/zenodo.10844476
http://www.doi.org/10.5281/zenodo.10844558

