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ABSTRACT  
One of the primary challenges in excavating underground in urban areas is controlling and mitigating ground surface 
displacement caused by Earth Pressure Balance (EPB) tunneling. It is crucial to avoid damaging historical monuments 
and buildings in these areas. This paper presents a new method for predicting the surface displacement caused by EPB in 
Seville. A spatiotemporal dataset was generated for this study using numerical simulation in FLAC3D. The simulation 
replicates the excavation process of the Seville metro line in real-time, and records the surface displacements at selected 
points in the dataset. The last 20-time steps of excavation are predicted, and the first 80-time steps are chosen for training 
and tuning hyperparameters, as the dataset is spatiotemporal. A recurrent neural network (RNN) is used to detect and 
predict patterns between surface displacement and input features at different time steps and locations of the excavation. 
After fine-tuning the RNN, the model achieved an accuracy of 0.91 for the evaluated R-squared (R2), indicating its 
practicality for real-time prediction of surface displacement in underground excavations in Seville. The model's 
performance can be further improved with a larger data range. By deploying it as a hazard detector, the model can issue 
a warning if the ground displacement exceeds the limit, thereby preventing potential hazards. This approach can help 
control and mitigate potential hazards in underground excavations in historical cities. 
 
Keywords: surface displacement; EPB; FLAC3D; hazard detection; RNN. 
 

1. Introduction 
The construction of tunnels is a complex process that 

presents various challenges, including the possibility of 
surface displacement due to excavation activities. As 
urban populations continue to grow, there is an 
increasing demand for underground excavation, resulting 
in controlled ground movements. Accurate prediction of 
ground movements and identification of danger zones in 
previous excavation steps are crucial for safe and 
effective tunnel excavation. Any potential risks should be 
reported, as tunnel excavation can have a major impact 
on neighboring surface buildings and infrastructure. To 
minimize potential hazards, it is important to reduce 
uncertainties, ensure safety, and mitigate risks. 
Empirical, numerical methods, and artificial intelligence 
have been developed to predict the surface displacement 
induced by underground excavation. 

1.1. Empirical and Numerical Methods 

Extensive research has been conducted on ground 
displacement caused by tunnel excavation using 
empirical methods based on experimental results 
(Chakeri and Ünver 2014; Cui et al. 2016; Franza and 
Marshall 2019; Lin et al. 2021; Lu et al. 2020). The 
empirical technique for predicting ground displacement 

may not always be reliable due to the challenges in 
measuring important factors in underground excavation 
such as geological conditions, excavation procedures, 
support methods and other uncertainties. Additionally, 
this methodology is inadequate for providing a precise 
analysis due tunnel excavation. On the other hand, 
numerical models offer several advantages over 
empirical models. They can enhance the accuracy of 
estimating ground displacement resulting from tunnel 
excavation. By studying of the correlation between 
different parameters and ground displacement, numerical 
models provide a better understanding of the excavation 
process. Furthermore, they  allow for analysis and 
monitoring of ground displacement throughout the 
excavation process (Oraee, Zandi, and Oraee 2013; 
Rahmani et al. 2012; Zhou et al. 2020).  

Several academic studies have used numerical 
modeling techniques to simulate underground excavation 
with mechanized methods (Alsahly, Stascheit, and 
Meschke 2016; Mollon, Dias, and Soubra 2013; Z. X. 
Zhang et al. 2016; Nematollahi and Dias 2022; Oreste et 
al. 2021; Kavvadas et al. 2017). These researchers 
thoroughly addressed real-world aspects such as 
excavation face pressure, burden load, and tunnel lining 
implementation at their actual locations. These studies 
aimed to improve the accuracy of the numerical models 
in simulating the excavation process by incorporating 
realistic properties. 



 

1.2. Machine learning  

In the field of geotechnics, machine learning and deep 
learning models offer several advantages over numerical 
modeling. These models can efficiently process large 
datasets, enabling them to make accurate predictions. 
They are also cost and time-efficient, capable of learning 
over time and identifying patterns and relationships that 
numerical modeling may overlook (Morgenroth, Khan, 
and Perras 2019; Baghbani et al. 2022; Phoon and Zhang 
2023; Durgapal, Bawa, and Sharma 2021). As a result, 
predictive processes in geotechnical engineering have 
become more accurate and efficient than ever before 
thanks to the use of artificial intelligence (AI) The use of 
AI in this field is a growing area of study. It is noteworthy 
that the artificial method has the highest value for 
predicting surface displacement and identifying 
excavation hazards and risks. Consequently, researchers 
attempted to predict the maximum surface displacement 
induced by the underground excavation. The researchers 
used geotechnical properties, tunnel geometry, 
excavation boundaries, and excavator parameters to 
mitigate errors and uncertainties in their excavation 
process (Santos and Celestino 2008; Suwansawat and 
Einstein 2006; Moeinossadat, Ahangari, and Shahriar 
2017; Chen et al. 2019; Lu et al. 2022). Some other 
researchers predict ground displacement by EPB in the 
urban area (Bouayad, D. Bouayad, and Emeriault 2017; 
Hasanipanah et al. 2016; Shuangshuang Ge et al. 2022).  

1.3. Integrating numerical modeling and 
machine learning  

The use of machine learning and deep learning in the 
field of excavation is challenging due to the limited 
availability of data and the difficulty in recording all 
important features in real-world situations. Furthermore, 
the integration of numerical modeling with artificial 
intelligence enables the creation of a dataset that includes 
all variables that are impractical to directly monitor them 
in real time excavation (Fu and Reiner 2023; Marcher et 
al. 2021; D. Zhang et al. 2022). 

Yong et al (2022) conducted a study on the analysis 
and prediction of diaphragm wall deflection induced by 
deep braced excavations. The study utilized the finite 
element method (FEM) in combination with artificial 
neural networks (ANN) optimized by metaheuristic 
algorithms. The aim of the study was to accurately 
predict of diaphragm wall deflection (DWD) to ensure 
the safety of surrounding structures in construction 
projects. The study investigated the behaviors of DWD 
through the analysis of 1120 finite elements. The authors 
propose two intelligent models: MLP-HHO (MLP 
optimized by Harris hawk’s optimization) and MLP-WO 
(MLP optimized by whale optimization). Both models 
demonstrate high accuracy in predicting DWD. 

Oh et al (2021) utilized machine learning techniques, 
specifically the Gradient Boost (XGB) and Multilayer 
Perceptron (MLP) algorithms, to predict the rate of 
settlement change for a piled raft caused by nearby 
tunneling. The research aimed to comprehend the 
interaction between tunnels and the foundations of 
structures in urban areas. The settlements of both the raft 

and piles were determined by conducting 3D numerical 
analysis and the change rate of settlement along the pile 
length was also calculated. A machine learning model 
was developed to predict the pile and construction 
displacement as well as the rate of settlement.  

Raja and Shukla (2021) utilized PLAXIS 3D, athree-
dimensional finite element simulation software to 
conduct numerical simulations, collecting a total of 475 
data points from which they derived a model, the ANN-
GWO, which predicts the settlement of geosynthetic-
reinforced soil foundations (GRSF) using a combination 
of the gray-wolf optimization (GWO) algorithm and an 
ANN. The model was then statistically tested and 
verified. 

D. Zhang et al (2022) present an auto machine learning 
(AutoML) approach for predicting the maximum surface 
displacement caused by underground excavation. The 
study utilizes a dataset generated from 183 numerical 
models.  

1.4. Novelty and limitation  

This research aims to predict ground displacement 
during underground excavation in Seville using the 
FLAC3D numerical model. This study analyses the 
ground displacement values throughout the excavation 
process and determines the optimized conditions of the 
EPB (Earth Pressure Balance) for tunnel excavation. 
Additionally, the research aims to predict surface 
displacement by considering the spatiotemporal aspects 
of underground excavation. Recurrent neural networks 
(RNNs) are used in this research because of their ability 
to capture patterns in sequential data. This algorithm is 
appropriate for spatiotemporal datasets of surface 
displacement in this context (Seng et al. 2021). Although 
this study is limited to specific excavation and 
geotechnical properties in Seville, efforts have been 
made to improve its comprehensiveness and applicability 
to more general excavation conditions for future projects. 

 

2. Case study and dataset 
The main goal of this study is to predict surface 

displacement during the underground excavation for 
metro lines in Seville, the capital of Andalusia, in 
southern Spain. Line 1 of the Seville metro line was 
completed in 2009, and future excavations are planned 
for other lines (Cagigal 2012; Mazo et al. 2009). During 
the excavation of Line 1 of the Seville metro line, the city 
was faced with some uncontrolled ground surface 
displacement in some neighborhoods and damaged 
construction buildings. Two notable incidents took place 
2005 in the Los Remedios neighborhood and in 2008 in 
the Puerta de Jerez area of Seville. These incidents posed 
a hazard to residents and traffic in the affected areas. 
Recognizing the value of surface displacement during the 
underground excavation and the location of the high 
amount of surface displacement is crucial in Seville (José 
Antonio Sánchez, n.d.). 

The Seville metro line's first section comprises twin 
tunnels excavated 6 meters apart, each with a diameter of 
6.3 meters. The first tunnel was excavated entirely before 



 

work began on the second tunnel in the opposite 
direction(Bahri et al. 2022; Soriano-Cuesta et al. 2023).  

Furthermore, in this study a dataset from the previous 
metro tunnel excavation was collected and used to 
simulate the underground excavation with EPB in Seville 
using FLAC3D.A total of 244 simulations were 
developed with different excavation parameter and 
geotechnical properties. Fig. 1 displays the twin tunnels 
in FLAC3D.  

 
Figure 1. Geometry of a twin tunnel in FLAC3D and 

selected point on the surface 

To simulate the underground excavation in FLAC3D 
for this study, various parameters are changed in different 

excavation simulations. These parameters include soil 
layer configuration, soil properties, burden load, the 
depth of the tunnel, the face pressure of the EPB, grout 
pressure, and the depth of the water table are parameters 
that are changing in different excavation simulations. 
Each model is excavated in 100-time step of excavation, 
with 50-time steps taken to excavate the second tunnel. 
The purpose of this excavation is to simulate the temporal 
aspect of underground excavation in the models. Figure 
1 shows that the surface of each FLAC3D model contains 
3,567 nodes. To simplify the analysis and avoid dealing 
with a large dataset in this study, we recorded the ground 
displacement for each time step of excavation at nodes X 
(-18, -12, -6, 0, 6) (Fig. 1). This resulted in the recording 
of ground displacement in 205 nodes across 100 
excavation steps for the 244 underground simulation. The 
dataset consists of excavation steps as the temporal 
component and nodal locations as the spatial component, 
resulting in a spatiotemporal dataset of the tunnel 
excavation. 

Table 1 illustrates the range of face pressure, grout 
pressure, burden load, and tunnel depth that were used in 
the simulations to predict surface displacement. 
Additionally, the table reports the output of surface 
displacement from the underground simulation, which 
ranges from 23.8 cm to 0.18 cm. Table 2 is generated to 
illustrate the varying physical and mechanical properties 
of the soil layers in these underground simulations. 

 

Table 1. Ranges of varying parameters in simulation models 

 Continuous data Categorical data 

 Face Pressure 
(kPa) 

Grout 
Pressure 

(kPa) 

Burden 
Load (kPa) 

Surface 
displacement 

(cm) 
 Water 

depth (m) 
Tunnel 

depth  (m) 

max 310.0 360.0 12.0 23.8 Max 14 5 
mean 185.1 231.3 72.8 3.62 Min 10 3 
min 50.0 100.0 133.0 0.18    

Table 2. Ranges of soil physical and mechanical properties in simulation models 

Soil 
Unit 

Density 
(Kg/m3) 

Young module 
(MPa) 

Poisson’s 

ratio 

Cohesion 

(kPa) 

Friction angle 
(degrees) 

Permeability 
(cm/s) 

Min. Max
. 

Min. Max
. 

Min. Max. Min. Max
. 

Min. Max. Min
. 

Max
. 

Layer 1 2.10 1.80 7.0 12.6 0.2 0.6 2.0 6.0 24.0 26.0 - 

Layer 2 2.20 2.00 29.0 45.0 0.2 0.4 4.0 10.0 30.0 40.0 2e-8 2e-6 

Layer 3 2.20 1.80 20.0 29.0 0.2 0.4 17.0 50.0 26.0 29.0 2e-5 2e-2 

Layer 4 2.20 2.00 40.0 70.0 0.2 0.4 0.0 0.0 35.0 39.0 5e-6 5e-2 

Layer 5 2.2 1.90 70.0 100.0 0.2 0.4 32.0 44.0 26.0 28.0 2e-9 3e-9 

 
The numerical model in FLAC3D was validated 

based on real-time monitor data to simulate real-time 
excavation in Seville. The model accurately follows all 
trends of dispersion, as demonstrated in the publication 

by Bahri et al. (2022), indicating its reliability and high 
accuracy.  



 

3. Methodology of AI  

3.1. Spatiotemporal dataset 

After generating a dataset in FLAC3D that is 
validated using real monitoring data, a prediction model 
should be developed to predict the surface displacement 
at selected points in different time steps of excavation. 
Since this generated dataset is based on spatial and 
temporal components, it is referred to as a spatio-
temporal dataset. Spatial components refer to details 
about physical locations or geographic areas, such as 
GPS coordinates or street addresses. Temporal data, on 
the other hand, refers to time-related information such as 
dates, times, and time intervals. Spatiotemporal data 
combines spatial and temporal components to provide 
information on how phenomena change and evolve over 
time and space. For instance, spatiotemporal data can 
contain measurements of air quality at different locations 
within a city over time or satellite imagery indicating 
changes in vegetation cover across a region over a year 
(Zhu et al. 2021; Amato et al. 2020; Rozemberczki et al. 
2021). 

3.2. Recurrent neural networks 

Because of the complex pattern between the 
geographical and temporal components of the 
spatiotemporal dataset, it would be challenging to detect 
and evaluate this pattern. Moreover, deep learning 
architectures show great potential to analyze and predict 
targets in timeseries and spatiotemporal datasets (LeCun, 
Bengio, and Hinton 2015; Goodfellow, Bengio, and 
Courville 2016). 

RNNs are highly suitable models for predicting 
sequential and time-dependent datasets. RNN are 
particularly effective in detecting and capturing time 
sequence data, making them unique for spatiotemporal 
datasets. They can successfully capture the underlying 
patterns and dynamics of this type of data (Seng et al. 
2021). 

Fig. 2 displays a basic structure of RNN. In this 
structure, xt represents the input vector at time step t, 
while ht indicates the hidden state of the RNN cell at the 
same time step. The computation of ht depends on both 
the hidden state (ht –1) from the previous time step (t–1) 
and the current input vector (xt) at the present time step 
(t). The output of the hidden units in the simple RNN is 
expressed in Eq. (1). 

ℎ! = tanh(𝑊" ⋅ 𝑥! +𝑊# ⋅ ℎ!$% + 𝑏)	 (1)	

Equation (1) shows that the hidden state at time step (t) 
is determined by applying the activation function of tanh 
to the sum of the input weight (𝑊" ⋅ 𝑥!) and hidden state 
weight of the previous time step (𝑊# ⋅ ℎ!$%) and a bias 
term (b). It is important to note that the output of the RNN 
is dependent on both the current and previous time steps, 
allowing it to utilize all sequence-based information. 
Furthermore, In the context of RNNs, the optimization 
and updating of weights and biases in the RNN 
architecture are achieved by minimizing the loss function 
through gradient-based optimization. However, the use 
of RNNS introduces the challenge of vanishing gradients. 

This phenomenon occurs when gradients become 
extremely small during training, which can impact the 
RNN´s ability to effectively capture long-term 
dependencies (Pascanu, Mikolov, and Bengio 2013). 

 
Figure 2. The structure of RNN 

3.3. Preprocessing dataset to train RNN 
architecture.  

After collecting the dataset from the FLAC3D model, 
some crucial steps should be taken. In order to predict the 
surface displacement in the following excavation, the 
dataset should be split into two sets: training and testing. 
The RNN model is then trained on the training dataset, 
and after tuning the RNN and finding the optimal model, 
the final model would predict the test dataset. For this 
study, we will use the first 80-time steps of excavation 
for training, and the last 20-time steps as a test dataset. 

Afterwards, the dataset was normalized using the 
min-max normalization approach (Eq. (2)), which 
rescaled all values to a range of 0 to 1. This method 
is commonly used to standardize input data and 
improve the effectiveness of artificial intelligence 
algorithms. 

Min-Max	Normalization:	 Xnorm =
*$*min

*max$*min
	 (2)	

 

3.4. Tuning of RNN hyperparameters  

The hyperparameters of RNN were tuned using K-
cross validation and using the Keras tuner in TensorFlow 
that is developed by Google AI. Since Keras Tuner is a 
user-friendly and efficient method for dealing with large 
datasets, it was chosen for this study(Banna et al. 2021; 
O’Malley et al. 2019). 

To train these architectures and achieve optimal 
performances, it is necessary to evaluate the best 
hyperparameters such as the number of nodes, number of 
hidden layers, dropout rate, learning rate, batch size, 
number of epochs, and activation function. Table 3 
provides definitions for these hyperparameters (LeCun, 
Bengio, and Hinton 2015; Goodfellow, Bengio, and 
Courville 2016). Additionally, Table 4 presents the range 
and values of RNN hyperparameters used in this study. 

 
 



 

Table 3. Definitions of hyperparameter for RNN 
architecture 

Hyperparameter Definitions 

Epoch One complete pass through the entire 
training dataset. 

Dropout rate 

A technique in neural network 
architecture where neurons are 
randomly ignored during the training 
dataset, which helps prevent 
overfitting. 

Learning rate 
The hyperparameter controlling the 
step size for weight updates during 
training 

Batch size The number of training examples used 
in each iteration of gradient descent. 

Activation 
function 

A function that determines the output 
of a neural network node, introducing 
non-linearity to the model. 

 
 

Table 4. Ranges of hyperparameter for deep learning 
architecture  

Hyperparameters Min Max Step Choices Default 
Number of Nodes 16 256 16   

Number of 
Hidden Layers 1 3 1   

Drop out    0-0.1-
0.5  

Regularization    0.01-0.1 l2 

Activation 
function    

tanh-
linear-

sigmoid 
 

Batch size     128 
Learning rate      

Number of epoch     60 
 

3.5. Evaluation metrics methods 

In this research, we evaluated the accuracy of the 
RNN structure using the coefficient of determination 
(R2), root mean square error (RMSE), and mean square 
error (MSE). The R2 value ranges from 0 to 1, indicating 
the correlation between observed and simulated values. 
Optimal performance is achieved when RMSE and MSE 
values approach 0 since surface displacement is a 
continuous value. 

4. Result and discussion  

4.1. Final prediction of surface displacement  
The final architecture of the RNN model is detailed 

in Table 4, after identifying the optimal hyperparameters 
and training the model for 41 epochs until convergence. 
Additionally, using the metric methods outlined in 
Section 3.6, the R2, RMSE, and MSE of the final model 
are reported as 0.91, 5.97e-3, and 3.57e-5, respectively. It's 
important to note that this model was trained on the first 
80-time steps of excavation and evaluated on the last 20-
time steps. 

 
 
 

Table 5. Hyperparameter of final RNN architecture 

 

4.2. Visualization of surface displacement 

In urban underground excavation using EPB, the 
relationship between face pressure and grout pressure 
exhibit with surface displacement is indirect, while the 
relationship between burden load is direct, as highlighted 
in (Bahri et al. 2022), with the support of this study. The 
focus of this analisys is to predict surface displacement 
based on the location and time step of excavation. To 
visualize surface displacement during different 
excavation steps, we generated 3D scatter plots that 
display surface displacement at specific study locations. 

As stated in Section 3.2, we selected five points (-18, 
-12, -6, and 0) on the X-axis to analyze surface 
displacement across all Y-axis points that corresponds to 
twin tunnel excavations. Fig. 3 displays surface 
displacement for selected points located on the X-axis (-
6), providing an interactive view of surface displacement 
during various excavation time steps. 
 

 
 
Figure 3. Surface displacement at point X= -6 

4.3. Visualization of surface displacement 
prediction  

Figure 4 provides a visual representation to enhance 
our understanding of the surface displacement prediction 
model across various underground simulations. This 
figure provides a detailed comparison between the real 
and predicted surface displacement for selected points 
located in the last 20 steps of the excavation process. The 
data presented in Figure 4 suggests that the RNN-based 
prediction model has good accuracy at certain points but 

Parameters  Values 
Units Layer 1 128 
Units Layer 2 64 
Units Layer 3 32 
Units Layer 4 16 
L2 Regularization 0.001 
Activation Function tanh  
Optimizer Stochastic Gradient 

Descent (SGD) 



 

deviates significantly at others with high and peak 
distances. 

 
Figure 4. Prediction and real value of surface displacement in last 20 step of excavation for some selected points

To address the relative error between the real and 
predicted values for surface displacement in underground 
excavation, a percentage error was introduced Eq. (3). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐸𝑟𝑟𝑜𝑟 = 	!"#$	&#$'"	()*"+,-."+	&#$'"
!"#$	&#$'"

× 100	 (3)	

Figure 5 presents the percentage error value, highlighting 
the model's performance. The majority of predictions fall 
within the -20% to 20% range of percentage error. In the 
future, it would be practical to increase the model's 
accuracy and reduce the percentage of error. 
 

 
Figure 5. Percentage error between real and predicted 

displacements 

5. Conclusion  

This study presents a dataset of underground excavation 
simulations in Seville generated by FLAC3D. The 
numerical model´s accuracy is validated by comparing it 
with real monitoring data. The dataset is structured based 
on excavation time steps and locations. The research 
employs an optimized recurrent neural network (RNN) as 
a predictive model fine-tuned during the first 80-time 
steps and evaluated against a test dataset representing the 
last 20 steps of excavation. Impressively the RNN model 

demonstrates high accuracy, with an R2 value of 0.91 and 
an RMSE of 5.97e-3.  

It is important to note that this study considers excavation 
properties and geotechnical parameters at selected points 
based on the step of excavation and location. By 
incorporating these parameters into the predictive model, 
our study successfully forecasts future excavation 
endeavors in Seville, particularly the expansion of the 
metro line. Furthermore, it provides insights into the 
expected surface displacement at specific points during 
the next excavation phases. However, this research has 
some limitations because this study used the Seville 
database, so it would only be applicable to Seville, Spain. 
Additionally, due to limited computational resources, the 
study only examines surface displacement at selected 
points and not at other locations. Therefore, the model's 
accuracy is limited outside of the excavation area. 
Additionally, it is important to mention that this study 
utilizes the RNN model to forecast surface displacement. 
In future research, other deep learning architectures 
suitable for predicting spatiotemporal datasets could be 
included to compare different models, improve 
prediction accuracy, and minimize the loss function. 
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