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Abstract. The widespread adoption of Robotic Process Automation
(RPA) to automate repetitive tasks has surged, utilizing front-end inter-
faces to replicate human actions. Task mining is integral to the RPA life-
cycle, capturing and analyzing fine-grained user interactions. As opposed
to traditional process mining, which focuses on business processes, task
mining relies on low-level events from user interface (UI) logs. Bridging
the gap between task mining and process mining, this paper introduces
a novel approach to generate two-level process models from UI logs. This
method addresses challenges related to granularity and screen ambigu-
ities by considering two levels of abstraction. It identifies each activity
at the screen level for a comprehensive overview and delves into fine-
grained user actions for a deeper understanding. This dual-level model
aids in resolving ambiguities in inferred user intention, offering labeled
activities for enhanced understandability. The proposed method was val-
idated using synthetically generated UI event logs for an example with
real-world characteristics. The research highlights the importance of con-
textual information in UI event logs and provides a solution to effectively
map low-level UI interactions to higher-level user activities for meaning-
ful analysis and automation.

Keywords: Robotic process automation · Hierarchical business
process models · Event abstraction · Process discovery

1 Introduction

Robotic Process Automation (RPA) has received attention for automating repet-
itive tasks by mimicking human actions through front-end interfaces [9,16,18]. 
Task mining, crucial in the RPA lifecycle [1], captures fine-grained user interac-
tions using UI event logs. In contrast to traditional process mining focusing on 
end-to-end business processes (BPs), task mining relies on low-level UI events c© 
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like mouse clicks and keystrokes, allowing for detailed insights and the identifica-
tion of automation candidates [12]. However, the abundance of fine-grained event
data poses challenges in obtaining a holistic understanding of BPs, which is indis-
pensable for any process automation, requiring manual inspection of models for
accurate automation. Abstracting low-level UI interactions to higher-level user
activities is crucial for meaningful analysis and automation [2]. Different process
stakeholders may prioritize varying levels of detail. Moreover, in processes with
complex user interfaces, ambiguity can arise from similar sequences of low-level
events leading to different outcomes. Incorporating multiple granularity levels
can resolve such ambiguities, providing a nuanced understanding of user inten-
tions and enhancing user-friendliness and adaptability in the analysis [8]. Such
an integration would allow bridging the gap between task mining (with its focus
on understanding how tasks are performed) and process mining (with its focus
on obtaining an end-to-end view of a BPs).

Existing process mining literature (e.g., [24,27,30]) predominantly focuses on
BP abstraction, with some works emphasizing event log abstraction through clus-
tering or hierarchical representation (e.g., [10,20,21,28]). Notably, these works
overlook UI event logs, which pose an additional challenge due to the importance
of event context, specifically the user screen and its information. In this regard,
the same screen may be used for different purposes (e.g., the same screen is used
for both opening and closing a case). Hence, ambiguity regarding user intentions
[22] might exist, which may be better inferred, for example, after checking subse-
quent user actions (e.g., the button pushed). In this context, providing semantics
to activities that aid in inferring the intention behind is vital for enhancing model
understandability.

This paper introduces a method to generate two-level process models from
UI event logs, where each event is associated with a screenshot [16]. Although a
screen-level analysis of the log may produce useful models for a general under-
standing of the process —serving as an analytical level, e.g., to assess the suit-
ability of the process to be automated— it may not reveal further concrete details
that might be required at a functional level (e.g., to design and implement the
automation effectively). For this, the current approach operates at two abstrac-
tion levels. At the higher level, each screen serves as a proxy for an activity,
providing a comprehensive overview of the process model and capturing the flow
between screens, which is particularly valuable in RPA processes. For the lower
level of abstraction, standard process mining is applied individually for each
screen, considering all relevant low-level events. This granular analysis addresses
ambiguities in inferred user intentions. To improve clarity, providing meaningful
names to all activities in the generated models is proposed.

The current work builds on our prior work on discovering flat models from UI
event logs [16] by discovering two-level process models instead of flat ones, offer-
ing a more detailed view of process behavior. These two-level models overcome
activity ambiguity issues seen in [16], where similar screens led to the incorrect
identification of distinct activities. This proposal also adds labels to activities,
improving model interpretation.
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Therefore, the primary research question (PRQ) addressed in this paper is:
Can the proposed approach improve the analysis phase of an RPA project?

The paper is structured as follows: Sect. 2 provides a succinct overview of
related works. Section 3 provides insights into the process of generating an
event log along a running example. Section 4 outlines our proposed methodology.
Experimental results are presented in Sect. 5. The paper concludes in Sect. 6.

2 Related Work

This section presents related work on (1) event abstraction, (2) routine segmen-
tation, (3) BP model discovery from UI event logs, and (4) hierarchical BP model
discovery.

[30] investigates approaches to handle event logs with different granularity
levels in the context of process mining. Usually, the granularity level is fixed dur-
ing log preprocessing using event abstraction techniques [11,24,29], abstracting
data based on factors like temporal proximity. Furthermore, there exist pro-
posals for event abstraction that explore hierarchical clustering for events or
event classes [13,14,25]. These hierarchical clustering methods rely on various
techniques, including event correlation, predictive clustering trees, and spatial
proximity of events within the log. In contrast, our method utilizes an image-
similarity clustering algorithm, ensuring that events with similar screenshots are
assigned to the same screen ID [16].

In the context of RPA, dealing with segmentation in the management of UI
event logs has been identified as a significant challenge [4,19]. Addressing this
challenge, studies such as [5] have delved into routine segmentation. This involves
automatically analyzing which user actions contribute to which routines inside
a UI event log and cluster such user actions into well-bounded routine traces.
In the proposed approach we consider separating the stream of user actions into
different cases (i.e., into different routine traces), ensuring that each event in
the log is associated with a unique case identifier necessary for the subsequent
process mining tasks. This is performed by considering a predefined sequence of
events that delineate the start and the end of the cases [16]. However, unlike
[5], we do not analyze the particular routine associated with each case since this
is not required for the proposed approach. It is important to note that we are
focusing on scenarios where a UI event log documents numerous executions of
diverse routines, with certain user actions recurring across these routines.

In the realm of discovering BP models from UI event logs, the approach pre-
sented in [16] associates each activity with one screen during process mining,
creating process models at the screen level (cf. Sect. 3.3). Such approach is then
used as our baseline for addressing research question 1 in Sect. 5. Additionally, [9]
proposes a methodology for RPA task selection based on UI event logs and pro-
cess mining, whereas [26] incorporates large language models for task grouping,
activity labeling, and connector recommendation. However, none of these works
considers more than one level of hierarchy in the discovery of process models
from UI event logs.
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Fig. 1. Overview of the framework for process model discovery (adapted from [16]).

[28] focuses on the discovery of hierarchical BPMN models from logs that
contain basic information such as caseID, task name, start time, and end time.
[28] detects multi-instance models and builds a hierarchy tree of events and
uses heuristic miner for the discovery of the sub-models. Similarly, [10] obtains
BPMN models with sub-processes and multi-instances, but the logs need to
contain certain data attributes (e.g., primary and foreign keys) to discover event
dependencies, not being observable in many logs. In a related way, [21] proposes
FlexHMiner, which is based on activity trees to define the components (activities
or sub-processes) of the (sub)processes. FlexHMiner achieves better results if
domain knowledge is provided, as explained in Sects. 3.3 and 5.4. [21] further
allows for randomly grouping components of (sub)processes. Finally, [20] defines
Hierarchical Petri Nets (HPNs) and proposes an approach to discover HPNs from
event logs with lifecycle information, enabling the detection of nesting activity
relations. Unlike these works, the proposed approach starts from UI event logs
and considers the particularities of this kind of logs (e.g., image-similarity of
screenshots) as valuable information for generating the process model.

3 Event Log Generation for a Running Example

As running example we consider a business context in which a process with three
variants needs to be executed to manage client requests (see [7] for the related
BPMN model): (1) the client requests unsubscription; after checking that she is
up to date with payments, the unsubscription is performed (the client is notified
by e-mail); (2) the client requests unsubscription; after checking that she is not
up to date with payments, the unsubscription is not performed (the client is
notified by e-mail); and (3) the client requests billing information related to her
last payment receipt; this receipt is sent to her by e-mail.

Although the process is not real, it simulates a realistic situation based on
our experience and previous RPA work. The chosen scenario presents a common
challenge in real-world scenarios: the screens have an n : m relationship with
business activities, meaning the same screen is used for different goals. This
introduces ambiguity in inferred user intentions (cf. Sect. 1). If we model screens
as activities [16], the resulting model may depict distinct goals represented by
the same activity (screen). To be more precise, within this context, we define a
process activity as ambiguous if it can be utilized for different purposes, i.e., if the
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user’s intention for it is varied. When screens are used as process activities, the
same meaning of ambiguity is applied to the screens. For instance, in the example
[7], the same screen, “S5”, is linked to business activities “Get Client Information”
and “Delete Client”, leading to potential confusion and compromising the quality
of the model. To gain comprehensive insights into process execution, it is crucial
to analyze the actions within each screen, focusing on user interactions.

Regarding the running example, we presume that the input UI event log is
clean [16], i.e., all log traces represent sequences of events related to the consid-
ered process variants. This suggests, for instance, that if the worker checks her
email, we can infer that it is necessary for managing the ongoing case.

To address the analysis of this process, the framework described in [16] can be
used (cf. Fig. 1). Unlike similar frameworks for process mining in RPA [3,12,16]
considers the information in the screen valuable. At a glance, it consists of three
main phases, i.e., (a) behavior monitoring of the users executing the process
(cf. Sect. 3.1), (b) image-similarity clustering of the behavior to infer similar
activities and cases (cf. Sect. 3.2), and (c) process model discovery to represent
the observed behavior with a BP model (cf. Sect. 3.3).

Initially, we build upon our prior work [16] for steps (a) and (b), and subse-
quently extend step (c) to handle ambiguities, meaningful labels, and multiple
granularity levels when discovering the process model.

3.1 Behavior Monitoring

The BP is supported by an IT system. As suggested by different authors [3,16,
19], recording the user interactions while the user is executing the BP might be
more efficient, comprehensive, and less error-prone than conducting traditional
interviews with the users. For this, a monitoring tool (cf. Fig. 1a) can be used to
record the events produced by the user on the graphical user interface. Several
tools are available for such respect [3,19] that produce UI event logs. To be more
precise, we consider UI event logs containing the following attributes per event:

– timestamp: time at which the action took place.
– actionType: action performed by the user. For this attribute, we consider val-

ues Click, Keystroke, and RightClick. This categorization aligns with common
distinctions in literature, where actions are frequently classified into mouse
and keyboard inputs [2].

– UIElementID : id related to the UI element the action is performed on, e.g.,
Button1.

– UIElementContent : data contained within the element of the UI on which
the action is performed, e.g., ’Send Form’.

– softApp: application used for the action, e.g., ’Excel sheet 1’.
– inputValue: the data or information provided by a user as input to a system

or application, e.g., text the user writes into a text field.
– screenShot : image of the screen (and its content) at the moment the event

took place (related to the UI Hierarchy attribute [2]).
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Fig. 2. Example of Extended UI Event Log.

Based on this, we generated an entire dataset, i.e., an event log —aligned
with the proposal presented in [2]— simulating the execution of the process
with its different variants.1

3.2 Image-Similarity Clustering

Before applying process discovery algorithms, the previous log may include
case IDs —identifying different instances of the process—, and activity IDs
—identifying different activities. To facilitate this distinction, we leverage the
screenID attribute, as introduced in [16]. Two events share the same screenID if
their screenshots exhibit similarity. At a glance, to calculate the screenID (1) all
screenshots are hashed into an array of bits (aka. fingerprint), (2) the hashes are
clustered using a similarity function called Hamming distance [15] (i.e., counting
the number of bits two hashes differ), and then (3) two screenshots are considered
similar if they are in the same cluster. In [16], this screenID was used to identify
the activities, which means that each low-level event was related to a higher-level
group. Altogether, the considered UI event log attributes can be grouped [18,24]
in process-related attributes (timestamp, caseID, screenID), context attributes
(actionType, softApp, screenShot, UIElementID, UIElementContent), and data
attributes (inputValue). Figure 2 shows an example UI event log related to 3
cases of the process detailed in [7]. The 3 cases were collected by monitoring
the behavior and adding the derived attributes, i.e., it is a subset of the gener-
ated dataset. Note that the highlighted columns (i.e., UIElementContentHF and
ActivityID) are also included as part of the proposed approach (cf. Sect. 4.1).

1 The dataset and the related mockups of the IT system are available in [7].
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3.3 Process Model Discovery

For applying a process mining algorithm to the UI event log2, the activity and
case columns need to be identified. The model discovered from the UI event
log, considering screenIDs as activities, shows the flow between screens, but is
missing the detailed actions performed on them and lacking of semantics in the
activities. This approach (denoted as FlatScreen from now on) is used as one of
the baselines (cf. Sect. 4.2) and considered in the evaluation (cf. Sect. 5). A more
recent approach [21] allows discovering models with a hierarchical representa-
tion, which effectively bridges the gap between low-level operational details and
high-level process insights. However, the efficacy of this approach significantly
depends on the incorporation of business knowledge for the meaningful grouping
of low-level activities. [21] further allows for randomly grouping components of
(sub)processes. This approach (denoted as RandomHier from now on) is also
used as one of the baselines (cf. Sect. 4.2) and considered in the evaluation (cf.
Sect. 5). In conclusion, although hierarchical mining offers a more comprehensive
perspective, it poses the following challenges:

1. The absence of business knowledge can significantly hinder the ability to
group low-level activities in a meaningful way. This knowledge is crucial for
understanding and accurately representing the relationships within the pro-
cess as well as for properly dealing with ambiguity.

2. When event logs lack descriptive labels, the process model might not truly
reflect the underlying process. Descriptive labels are essential for providing
context and clarity, enabling the hierarchical model to capture the process
accurately.

4 From UI Event Logs to Two-Level BP Models

As mentioned, improving the analysis phase of an RPA project involves tack-
ling distinct challenges. These encompass dealing with (1) low-level events from
front-end user interfaces to create a multi-granular and easily understandable
model, and (2) resolving ambiguities in inferred user intentions. To tackle these
challenges, we propose a method for uncovering two-level BP models from UI
event logs. Our approach comprises following key steps:

1. Generating extended UI event logs (cf. Sect. 4.1). This step entails enriching
the properties of each event by incorporating additional information necessary
for subsequent stages.

2. Discovering hierarchical BP models (cf. Sect. 4.2). This step outlines the pro-
cess of uncovering two-level BP models from the extended UI event log. It
elucidates how activities at various granularity levels are labeled to enhance
understandability.

2 We consider using Inductive Miner due to its ability to guarantee sound process
models and its balance to capture essential process behavior while maintaining model
simplicity [17].
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Algorithm 1. Generating Extended UI Event Logs
1: procedure ExtendUILog(Input: UIEventLog, Output: Modified UIEventLog)
2: addAttributes(UIEventLog, ”UIElementContentHF”, ”ActivityID”)
3: freqThreshold ← calculateFreqThres(UIElementContent, UIEventLog)
4: for each entry e in UIEventLog do
5: if frequency(e.UIElementContent, UIEventLog) ≥ freqThreshold then
6: valueUIElementContentHF ← e.UIElementContent
7: else
8: valueUIElementContentHF ← ∅
9: end if

10: valueActivityID ← concatenate(e.softApp, e.screenID, e.actionType,
e.UIElementID, valueUIElementContentHF )

11: extend(UIEventLog, e, valueUIElementContentHF, valueActivityID)
12: end for
13: end procedure

4.1 Generating Extended UI Event Logs

Before delving into the discovery of two-level BP models, several preparatory
steps are essential including the extension of the UI event log (cf. Algorithm
1). Specifically, the creation of a distinct identifier for user actions, denoted
as ActivityID attribute, shall represent the activities at the most fine-grained
level (Line 2 of Algorithm 1). This identifier serves a dual purpose—supporting
process discovery at the user action level and providing semantics to activities
in the discovered model.

To formulate the user action ID, we must identify relevant properties within
the log while ignoring irrelevant ones. As stated in [2], a user action is defined by
both the performed action (i.e., the actionType attribute) and the target object
the action is executed on. In the considered event log, this target object can
be unambiguously identified by attributes UIElementID, softApp, and screenID.
While these attributes suffice for identifying user actions, adding semantics to
related activities in discovered models can benefit from including the UIEle-
mentContent attribute. Specifically, the contents of UIElementContent serve a
dual role in describing user actions. When it involves elements associated with
the consistent labeling of UI components (e.g., button labels like “See cases”
or “Open”), its content becomes essential for conveying meaning. In such cases,
this content frequently occurs in the log. Conversely, when UIElementContent
contains data-dependent elements (e.g., names or surnames), its contribution
to action descriptions is minimal, with infrequent occurrences. To selectively
consider the content crucial for describing user actions, a new attribute, UIEle-
mentContentHF, is introduced (Line 2 of Algorithm 1). This attribute replicates
the value of UIElementContent only when its frequency in the UI event log
exceeds a threshold calculated from the input data, otherwise it remains empty
(Lines 3–9 of Algorithm 1). This inclusion is based on the consideration that the
content is relevant for providing semantics to the associated user action. Alto-
gether, the new attribute ActivityID is computed by concatenating the values
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Algorithm 2. Discovering Two-level BP Models
1: procedure DiscoverHierModels(Input: Extended UIEventLog, Output:

Two-level BP Model hierModel)
2: screens ← getDifferentScreens(UIEventLog)
3: for each screen in screens do
4: newLabelScreen ← generateLabelScreen(UIEventLog, screen)
5: replace(UIEventLog, screen, newLabelScreen)
6: end for
7: highLevelModel ← discover(UIEventLog, ”ScreenID”)
8: hierModel ← createTwoLevelModelHL(highLevelModel)
9: for each highLevelAct in highLevelModel do

10: filteredLog ← filterLog(UIEventLog, highLevelAct)
11: lowLevelModel ← discover(filteredLog, ”ActivityID”)
12: replaceLabels(lowLevelModel)
13: addSubprocess(hierModel, highLevelAct, lowLevelModel)
14: end for
15: end procedure

from softApp, screenID, actionType, UIElementID, and UIElementContentHF
(Line 10 of Algorithm 1), see Fig. 2 for examples. Subsequently, the event infor-
mation is expanded by incorporating the previously computed values for both
UIElementContentHF and ActivityID (Line 11 of Algorithm 1).

When we generate the fine-grained model by applying process mining directly
to the extended UI event log using ActivityID as the activity ID, this results in a
model resolving ambiguity, but lacking semantics. However, the model discovered
when considering screenID as activity ID is more coarse-grained, but presents
ambiguity issues and lacks label semantics.

4.2 Discovering Two-Level BP Models

This section delineates the procedure for discovering two-level BP models from
the expanded UI event log (cf. Algorithm 2). These models, unlike flat models
that can be directly learned from the raw UI event log, enable the analysis of
the process at two levels of granularity while assigning semantics to the different
activities they encompass to improve understandability.

In the realm of RPA, processes typically entail a sequence of steps or actions
executed across various screens or interfaces. Consequently, we find it fitting to
construct the process model by treating each screen as an individual activity.
To achieve this, first, for the sake of understandability, we label each screenID
as follows (Lines 2–6 in Algorithm 2): for every sequence of events sharing the
same screenID within the same case, we take the last one with a non-empty value
of UIElementContentHF, as it reflects one of the possible goals of the process
behind the screen. The set of values obtained for the complete log can be used
to define the semantics of the screen. Therefore, we concatenate these values
and use them as the label of the screen. Additionally, we add at the beginning
the appName to each group of UIElementContentHF values associated with
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Fig. 3. Two-level model that is discovered for the running example, showcasing sub-
processes associated with screens “CLI-Search” and “MAIL-Send”.

the same application. In case several screens have the same label, we follow
the approach presented in [24] and use other attributes to disambiguate the
different classes obtained. If multiple screens still have the same label, we use
the UIElementID attribute of the same event as the UIElementContentHF value,
which is more screen-specific. Finally, if there are still several screens with the
same label, we add the screenID value to resolve the ambiguity.

Then, we suggest process mining on an extended UI event log, where the
screen ID is treated as the activity ID to unveil a high-level model (Line 7 in
Algorithm 2) that shows the flow between screens.

While the preceding step yields a high-level model depicting the flow between
screens, the diverse roles within a process entail varying user interests at dif-
ferent levels of detail. Operational teams, for instance, may demand detailed
insights at lower granularity levels, facilitating a nuanced understanding of spe-
cific user interactions and finer subprocesses. Additionally, ambiguity in inferred
user actions might arise from distinct activities with different aims, but being
identified as the same activity due to screen similarities.

To tackle both multigranularity and ambiguity, we suggest creating distinct
event logs for each screen, exclusively containing the events relevant to that
specific screen (Line 10 in Algorithm 2). Subsequently, process mining is applied
to the filtered logs, considering attribute ActivityID as the activity ID, to unveil
the subprocess related to each screen (Lines 11–13 in Algorithm 2).

When labeling the activities in the resulting model, attributes softApp and
screenID are irrelevant as user actions linked to the same screen ID share identi-
cal values in these attributes, i.e., these values do not contribute to identify the
user actions performed during screen processing. On the contrary, the content
of the actionType attribute is highly relevant for adding semantics to the user
action. Similarly, the UIElementContentHF attribute is appropriate for giving
semantics to the user action when it contains content (cf. Sect. 4.1). However,
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Fig. 4. Labels given to some user actions related to screen S2.

as this attribute may be empty in some events, the UIElementID attribute is
considered being a proper substitute for composing the user action name in such
situations. Therefore, to name each user action, we propose concatenating the
content of the actionType and UIElementContentHF attributes when UIEle-
mentContentHF is not empty. Conversely, if UIElementContentHF is empty,
concatenation involves the actionType and UIElementID attributes. To improve
the clarity of user action labels, we suggest replacing the identifier used for action
types (Line 11 in Algorithm 2). Given that the values of this attribute are {Click,
Keystroke, RightClick} (consistent with most related works [2]), we find it more
descriptive to use the term “Press” in place of “Click” and the term “Write”
instead of “Keystroke.” Therefore, in the post-composition phase, such replace-
ment is performed to enhance clarity. Figure 4 illustrates the labels assigned to
some user actions associated with screen S2.

In Fig. 3, which shows the two-level model discovered for the running exam-
ple when considering the UI event log as input and using the proposed approach
(denoted as ScreenHier from now on), the high-level model and the labels gen-
erated for the high-level activities can be observed. It also contains the models
of the subprocesses associated to screens “CLI-Search” and “MAIL-Send”. We
opted for these screens as illustrations as they represent the two subprocesses
with the highest control-flow complexity and size.

Note that with some small adaptations the proposed approach can also be
used in combination with FlexHMiner [21] by providing domain knowledge in
such a way that user actions are grouped by screenID (approach denoted as
KnowScreenHier from now on). However, FlexHMiner cannot independently dis-
cover the models aligned with the previously provided motivation; instead, its
functionality is embedded within the framework detailed in this article.

5 Evaluation

As motivated in Sect. 1, this work addresses the following Primary Research
Question (PRQ): Can the proposed approach improve the analysis phase of
an RPA project? This inquiry can be tested by comparing the quality and
understandability of process models generated from UI event logs with exist-
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ing approaches against those produced using the proposed approach. To answer
the PRQ, the evaluation explores the following Research Questions (RQs):

(RQ1): Do the models that can be generated with the proposed approach
describe the process behind an UI event log better than other proposals
for generating flat models in the area of RPA?

(RQ2): Do the models that can be generated with the proposed approach
describe the process behind an UI event log better than other proposals
for generating hierarchical models in the area of process mining?

5.1 Case Selection

We assess our approach by applying it to the BP exemplified in Sect. 3. This
example is well-suited for evaluation as both the model directly derived by
applying process mining to the raw UI event log level and the model obtained
by considering screenIDs as activity IDs [16] are inadequate for comprehending
the underlying process within the UI event log. Moreover, an n : m relationship
exists between activities and screen IDs (see [7]), posing a challenge in generating
process models from UI event logs (cf. Sect. 1).

5.2 Experiment Design

As explained in Sect. 4.2, the proposed approach gives rise to ScreenHier and
KnowScreenHier (cf. Sect. 4.2)–both discovering two-level models with activity
names that carry semantic meaning.

To address RQ1, we compare the results obtained with the proposed approach
with those obtained with FlatScreen (cf. Sect. 3.3). FlatScreen is the most closely
related proposal in literature for generating process models from UI event logs in
the context of RPA. In the model obtained with FlatScreen, the activity names
lack semantics.

Regarding RQ2, we assess the results of the proposed approach against those
obtained with RandomHier (cf. Sect. 3.3). We chose this approach as baseline
as it is the most comparable proposal in literature for generating hierarchical
process models from event logs. RandomHier discovers a hierarchical model by
using FlexHMiner3 [21] in ProM4, where activities are randomly grouped based
on user actions as activity IDs. The resulting model also suffers from a lack of
semantics in its activity names.

As response variables for both RQ1 and RQ2 we consider quality and under-
standability of the generated models. For evaluating the quality of a model M
concerning a log L we consider the following quality measures [21]:

– Fitness Fi(M,L) ∈ [0, 1]: represents the proportion of events in the event log
that are correctly captured by the model.

3 It is accessible at github.com/xxlu/prom-FlexHMiner.
4 http://www.promtools.org/.

http://www.promtools.org/
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– Precision Pr(M,L) ∈ [0, 1]: measures the proportion of activities modeled by
process discovery that actually belong to the underlying process.

– F1-score F1(M,L) ∈ [0, 1] (F-measure [20]): is the harmonic mean of fitness
and precision: F1(M,L) = 2 ∗ Fi(L,M)∗Pr(L,M)

Fi(L,M)+Pr(L,M) .
– Generalization Ge(M,L) ∈ [0, 1]: evaluates how well the discovered model

generalizes to new instances or variants of the process that were not present in
the original event log. We adopt the same methodology as described in [6,21].
Specifically, we partition the log into k = 3 subsets: L is randomly divided into
L1, L2, and L3. Subsequently, Ge(L,M) = 1

3

∑
1≤i≤3 2 ∗ Fi(Li,Mi)∗Pr(L,Mi)

Fi(Li,Mi)+Pr(L,Mi)

with Mi corresponding to Li.

The evaluation of understandability of a model is intricately linked to its
complexity. For this study, following [6,21], we assess complexity using both the
control-flow complexity CFC(M) and the size (i.e., number of nodes) Size(M)
of a model as response variables.

For the proposals that generate hierarchical models, the values of the response
variables are computed as the mean values of the individual measurements for
each subprocess within the hierarchical model and the root process.

For the 4 aforementioned approaches, the Inductive Miner algorithm with a
0.2 path filtering threshold is employed for mining the log.

5.3 Dataset

The experiments involve a synthetic UI event log tailored to the selected case5,
created through a method supported by specialized tools [23]. This log encap-
sulates diverse variations witnessed during the execution of business activities
in the running example [7] with corresponding mockups (see [7]). To be more
specific, we generate an UI event log comprising 90 cases (30 for each process
variant). Each case encompasses an average of 32.73 events (min=23, max=41),
featuring 13 distinct screenIDs and 39 unique activityIDs.

5.4 Results

Table 1 shows the values that are obtained for each response variable when con-
sidering the aforementioned approaches.

Concerning RQ1 our results show that both newly proposed approaches,
i.e., ScreenHier and KnowScreenHier, exhibit substantial improvement over one
of the baselines (i.e., FlatScreen) when focusing on both quality and complexity
metrics. This enhancement is attributed to hierarchical models usually delivering
better results than flat models for these metrics.

Concerning RQ2, ScreenHier and KnowScreenHier outperform RandomHier
in general when focusing on quality and complexity metrics. This superiority
arises from the consideration of screens for grouping user actions, as proposed

5 Available at: [7].
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Table 1. Values that are obtained for the response variables.

Approach Fi Pr F1 Ge CFC Size

FlatScreen 0.571 0.605 0.588 0.595 28.00 52.00
RandomHier 0.964 0.674 0.765 0.809 9.40 31.00
ScreenHier 0.967 0.839 0.885 0.888 5.14 13.64
KnowScreenHier 0.997 0.813 0.870 0.885 4.21 14.43

in this work, leading to two-level models that surpass random grouping. Met-
rics combining precision and fitness (i.e., F1-score and generalization) also favor
KnowScreenHier over RandomHier.

Additionally, although not empirically demonstrated in this study, providing
semantics to activities, as done in ScreenHier and KnowScreenHier, is likely to
further improve the comprehension of the generated models.

5.5 Threats to Validity and Limitations

Concerning construct validity, we assert that the conducted experiments align
well with the intended objective of assessing the efficacy of the proposed app-
roach in enhancing the analysis phase of an RPA project. The chosen response
variables and the generated UI event log are deemed appropriate for addressing
research questions RQ1 and RQ2. Nevertheless, additional response variables
and cases could be defined to broaden the analysis performed. Regarding exter-
nal validity, we believe that the study findings can be generalized to scenarios
adhering to the outlined assumptions in Sect. 3. Though the proposed approach
is described along the running example, its applicability extends to other sce-
narios that present similar characteristics. The running example encapsulates
typical characteristics frequently encountered in common legacy system scenar-
ios. Additionally, the attributes considered for each event in the UI event log
align seamlessly with other significant works in the RPA field [2,18,24].

The UI event log in our experiments was synthetically generated from real-
istic screenshots, introducing potential bias as it simulates expected behavior
rather than precisely reflecting real-world scenarios. However, the tool used for
screenshot generation has been validated in previous research, closely replicating
events and screenshots from the original log. Additionally, the tool’s configurabil-
ity enables the consideration of various generated configurations, helping to miti-
gate this potential bias. Additionally, we acknowledge the limitation of analyzing
results related to only one process scenario. Evaluating the proposed approach
in diverse process scenarios of increasing complexity, preferably real ones, would
contribute to a more comprehensive understanding of the proposed approach.
Moreover, we consider partially evaluating the understandability of the gener-
ated models through analyzing their complexity. Nevertheless, we recognize the
importance of conducting controlled experiments involving real users to achieve
a more comprehensive evaluation of model understandability. Furthermore, to
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generate the two-level models, we have considered FlexHMiner [21], although
there are other options that could be investigated.

6 Summary and Outlook

This paper presents a novel method for extracting two-level BP models from UI
event logs. The approach works at two levels: for a comprehensive overview it
captures activities at the screen level and delves into detailed user actions for
deeper insights. This dual-level model not only support multi-granularity, but
helps addressing ambiguities in inferred user intention and improves clarity with
labeled activities. The method was validated using synthetically generated UI
event logs, demonstrating that the proposed approach yields improved models
in terms of both quality and complexity. For future work, we aim to evaluate our
approach using real-world scenarios. Additionally, we plan to explore incorpo-
rating more levels of granularity in the discovered models and consider UI event
logs with supplementary information, such as database logs.
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