
A Testability and Observability Framework
to Assure Traceability Requirements on

System of Systems

Leticia Morales Trujillo1,∗, Miguel Ángel Olivero González1,2,
Francisco José Domínguez Mayo1, Julián Alberto García García1

and Manuel Mejías Risoto1

1Department of Languages and Computer Systems, Web Engineering and Early
Testing (IWT2) group, University of Seville, Spain
2Istituto di Scienza e Tecnologiedell’Informazione,
ConsiglioNazionaledellaRicerche, Italy
E-mail: leticia.morales@iwt2.org; miguel.olivero@iwt2.org; fjdominguez@us.es;
juliangg@us.es; risoto@us.es
∗Corresponding Author

Abstract

The advance in the digital world has caused a growth of complexity in 
innovation. Traditional approaches to innovation, based on reductionism, face 
greater difficulties. That is why we have witnessed the growth of those known 
as System of Systems (SoS). There is a wide variety of methodologies and 
domains of application in the literature to form framed solutions in the context 
of SoS, but there is no unified c onsensus f or i ts u se a nd e ven l ess when 
it comes to agile environments of continuous integration and deployment 
in which traceability requirements are critical. In recent years, the need to 
have traceability software that continuously records and monitors the trace of 
the entities that interact with it has become an essential feature. In addition, 
over the years there has been evidence of errors caused by poor traceability

Journal of Web Engineering, Vol. 19_2, 297–318.
doi: 10.13052/jwe1540-9589.1928



298 L. Morales Trujillo et al.

control. Therefore, this document presents an agile framework that aims to
guarantee the traceability of a SoS from the early stages. This framework
unifies the discovery, development and operations, providing full coverage
in the conformation of the solution. Finally, we present a case study as
future work, which is based on the application of our framework on smart
laboratories for assisted reproduction.

Keywords: System of Systems (SoS), traceability, framework.

1 Introduction

Today, progress in the digital world implies that technological products and
systems are increasingly interdependent, leading to increasing complexity in
design and challenges for innovation. Due to the increasing complexity, tra-
ditional innovation approaches based on reductionism, which focuses on the
decomposition of the system and the optimization of subsystems, components
and their interrelationships within existing products or systems, face greater
difficulties in the search of future innovation opportunities That is why, we
have witnessed the growth of those known as System of Systems (SoS) [1–4].

SoS are a collection of dedicated or task-oriented systems that combine
their resources and capabilities to create a new and more complex system
that offers more functionality and performance than simply the sum of the
constituent systems. They are created through a process of synthesis of
previously existing, but not related, independent systems [5–9]. This syn-
thesis creates value resulting in the new system improving the utilities or
functionalities of each of the previous systems or enabling novel functions
of the new holistic system. Some examples of Systems of Systems are the
management of air traffic, the European railway network, integrated land
transport, emergency service and personal health management, the means of
communication, among many others [10, 11].

System of systems engineering (SoSE) is the set of processes, tools and
development methods to design, redesign and implement solutions to system
challenges [12, 13]. It addresses the design, development and operations of
evolving programs. That is, it seeks to optimize the network of several legacy
interactive systems and new systems together to meet multiple objectives of
a program.

An effective software development methodology in SoSE should prepare
decision makers to design solutions for SoS problems. Due to the wide variety



A Testability and Observability Framework to Assure Traceability 299

of methodologies and application domains present in the literature, there is no
single unified consensus for the processes involved in Systems and Systems
Engineering [14].

In many sectors, it is essential to have traceability software that con-
tinuously records and monitors the trace of the entities that interact with
it. These entities can be objects, actors or activities. If we also want to
design a software solution that guarantees compliance with traceability in
an SoS environment, the complexity increases even more. We understand
traceability as a set of measures, actions and procedures that allow registering
and identifying an entity from its origin to its final destination [15, 16].

Over the years there have been several errors regarding poor traceability
control; in the field of medicine in general [17], in the field of food [18, 19],
in the field of assisted reproduction [20–23], among many others.

Therefore, it is intended to develop a solution that integrates a smart
contract (contract between two or more parties, which is capable of executing
and enforcing itself, autonomously and automatically) where each and every
traceability requirement identified in an SoS environment is collected, so
that entities can register and control themselves continuously in the value
chain. All this to guarantee in the future the control and monitoring of the
entities that interact with the systems, so that the risk of error is reduced to
minimum levels, making use of information technologies as the central axis
of the solution and increasing the trust of those involved.

To achieve this objective, this document presents an agile methodology
that aims to ensure the traceability of an SoS from the early stages, although
it may be applicable to simple systems. This framework unifies the discovery,
development and operations, which implies full coverage in the conformation
of the solution. This framework will, in the future, be applied in a smart
laboratorio for assisted reproduction. This case study is presented in this
article as future work.

The present work is structured as follows; In section 2, the background
of the work and the main objectives that are to be achieved both with this
work and in the future are presented. In section 3, the proposed frame-
work for the generation of software solutions that guarantee traceability
is presented. In section 4, related works are exposed, that is, publications
that consist of methodologies of discovery, development and operations,
already existing in the literature. Section 5 shows the general conclu-
sions of the work. Finally, in section 6, open lines of work are broadly
discussed.



300 L. Morales Trujillo et al.

2 Background and Objectives

Over the years there have been several errors regarding poor traceability
control; in the field of medicine in general, as the case revealed in a study
conducted by the College of American Pathologists in which the tissues
received from a patient in one or more containers, corresponding to the same
procedure, were assigned the same number of identification of access to
admission in the pathology department [17]. In the food sector, as in 1999
when Coca-Cola recognized that its soft drinks in Belgium were contami-
nated due to a fungicidal treatment, but cases of poisoning were detected in
Belgium, Holland and Luxembourg [18] or as in the case of contaminated
meat from listeriosis in Spain in 2019 [19].

In the field of assisted reproduction, human reproduction laboratories are
a clear example in which traceability should be known. It is necessary to know
at all times the trace followed by biological samples and test. In addiction,
human reproduction laboratories are within the context of SoS since there are
a large number of interconnected systems. As mentioned earlier, SoS are a
collection of dedicated or task-oriented systems that combine their resources
and capabilities to create a new and more complex system that offers more
functionality and performance than simply the sum of the constituent sys-
tems. Sample management is a critical aspect that requires all appropriate
mechanisms to ensure traceability continuously, avoiding fatal errors.

In the Netherlands in 1993, a white woman gave birth to a black child and
a white child after receiving “mixed sperm from a poorly sterilized pipette”
[20]; in the United States in 1998, a white woman white gave birth to a
black baby in what became known as the case of “scrambled eggs”. After
a “bitter battle for custody”, the black couple whose embryo was implanted
by mistake in the white woman won custody of the black baby [21]; in
October 2002 there was another confusion of IVF (in vitro fertilization) in
Britain. In April, two women received the “wrong embryos” in a confusion
that involved three women. One woman had her own “worst quality embryos”
implanted, while her “best quality partner” was assigned to another woman
whose embryos were mistakenly sent to a third woman. The women who
received the “wrong embryos” were “devastated” and “traumatized” after
undergoing an “emergency procedure to remove the embryos” [22]; in 2016,
the University Hospital of Utrecht made public the possible fertilization of
oocytes of 26 women with sperm outside their partner, that is, about twenty
women or couples have fathered children with the sperm of the man who was
not indicated. Finally, the center detected that the pipette that had been used



A Testability and Observability Framework to Assure Traceability 301

in some oocyte fertilization procedures was contaminated with the sperm of
another patient [23].

The traceability of a system translates as a series of requirements that
must be met. The requirements of a system arise from the needs of the client,
from the limitations of the environment where it is going to be implemented
or from the management of the information that the system must perform.
Normally they will represent values that must meet at least or at most
each one of the developed aspects. They serve to limit the functionality or
construction of the system, assuming limits for the design and listing all the
functionalities it should cover.

There are several types of requirements encompassed in two large groups:
(i) functional requirements that directly affect the main functionality of the
system and (ii) non-functional requirements, which do not represent the main
functionality of the system, but impose design or implementation restrictions.
They are properties or qualities that the system must have.

Traceability requirements are positioned within the group of non-
functional requirements and include all system actions, such as: actions of
which the traces (track), the format and the storage medium of each type
of trace should be stored, the management of the expiration of the traces
and their history, control and means of access to the traces of the system,
etc. Traceability could be defined as the actions that allow the monitoring
of different types of elements, through continuous monitoring of physical
parameters and thanks to the use of new technologies [24]. Traceability not
only covers the basic requirements that products can be traced along the value
chain, but also the possibility of specifying what they are made of and how
they have been processed.

To register the agreements made with a client during the development
of the system, the contracts are used. A contract is nothing more than an
agreement between two or more parties, an environment that defines what
can be done, how it can be done, what happens if something is not done, etc.
That is, some rules that allow parties that accept it to understand what the
interaction they will carry out will consist of [25–27].

So far, the contracts have been verbal documents or expensive documents,
subject to laws and jurisdictions that sometimes require notaries. That is,
more costs, time and third parties involved in the process. Because of this,
they are not accessible to anyone. Instead, a smart contract is a computer
program that facilitates, ensures, enforces and executes registered agreements
between two or more parties.



302 L. Morales Trujillo et al.

Smart contracts aim to provide superior security to traditional contract
law and reduce transaction costs associated with contracting, since they are
able to be maintained and enforced, autonomously and automatically, without
intermediaries or mediators.

For all the above, it is intended to develop a solution that integrates a
smart contract where each and every traceability requirement identified in an
SoS environment is collected, so that entities can register and continuously
monitor themselves in the value chain

In this context, the objective of this work is to propose an agile frame-
work, that is, to promote the continuous iteration of the software development
life cycle, framed within the context of System of Systems engineering, to
achieve the solution.

3 Proposed Framework

As mentioned above, our proposed framework is focused to guarantee the
traceability of a software solution framed in the context of SoS from the
early stages. That is, it ensures the continuous recording and control of
the interaction of different types of entities with a system, which allows
monitoring. To ensure traceability from the early stages it is necessary: to
validate, to verify and to monitor the registration and control of the solution
that will be created (Figure 1).

• Validate. Confirm that what is being done is being done well and the
intended objective is achieved. It helps us to know, a future, the registra-
tion and control of the entities is done well and the necessary is recorded
and monitored.

• Verify. Check that what is said is really done. It helps us to verify, a past,
what is supposed to be done, it is and works as expected.

• Monitor. Control the development of an action or an event through one
or more monitors. It helps us to know, in the present, the registration and
control of all entities.

Figure 1 Traceability concept and how to guarantee it.



A Testability and Observability Framework to Assure Traceability 303

These actions (validate, verify and monitor) are carried out throughout
the proposed framework in a preventive manner, that is, taking precautions or
measures in advance to avoid risks, and in a corrective manner, making the
necessary modifications to eliminate errors.

This methodological proposal is based on empirical methodologies and
it consists of three main stages: discovery (DIS), development (DEV) and
operations (OPS). On the one hand, in the discovery stage (Section 3.1)
a series of sub-stages proposed by the Design Thinking [28] process is
carried out and it is where the validation of the registration and the control
of the solution to be carried out is carried out. On the other hand, both
the development stage (Section 3.2) and the operations stage (Section 3.3)
proposed here follow the practices established in DevOps [29–31] and the
workflow of GitFlow [32–34], and it is where the verification and monitoring
of the registry and control of the solution to be created is carried out.

As mentioned earlier, the proposed framework is within the context of
the agile development methodology. Agile development methodologies are
the methodologies that promote continuous iteration of the development life
cycle and that follow a series of agile principles and values.

Figure 2 shows the continuous iteration that takes place between the gen-
eral process and between the different stages. New approaches are continually
being proposed in the discovery stage, in turn other approaches are being
developed in the development stage and the offering a service at the stage of
operations.

Figure 2 Iteration in the methodological proposal.



304 L. Morales Trujillo et al.

In addition, feedback arrows can be visualized, which help to confirm that
everything is done as planned and that the objectives set (DEV → DIS) are
achieved, to verify that the planned one is actually done (OPS → DEV) and
to control what It is provided as a service is necessary (OPS → DIS).

In this case, to ensure traceability, it is very important to validate, verify
and continuously monitor the registration and control of the entities that
interact with the system. These actions are typical of the figure of the tester,
so the principles and values that are followed in this framework are those
proposed in Agile Testing [35]:

• Building quality in: teams focus on preventing misunderstandings about
features behavior as well as preventing defects in the code.

• Guiding development with concrete examples: using practices likes
acceptance test-driven development (ATDD), behavior-driven develop-
ment (BDD), or specification by example (SBE).

• Including testing activities such as having conversations to build shared
understanding; asking questions to test ideas and assumptions; automat-
ing tests; performing exploratory testing; testing for quality attributes
like performance, reliability, and security; and learning from production
usage.

• Using whole-team retrospectives and small experiment to continually
improve testing and quality and find what works in their context.

As indicated throughout the work, the proposed framework consists of
three main stages (discovery, development and operation), which in turn are
formed by a series of sub-stages. Figure 3 shows the framework structure
in general, that is, the stages and substages of which they are composed
are shown. Regardless of the iterations between the different stages and
substages (Figure 2). It is also indicated by points, the sub-stages where the
validation, verification and monitoring actions are carried out, both preventive
and corrective.

3.1 Discovery

Its objective is to achieve knowledge and understanding of a problem in a
given domain, propose a solution and obtain as a result a solution proposal
validated by the end user. To achieve this goal, a series of stages proposed by
the Design Thinking process are carried out [28]:

• Empathize. This stage aims to meet the public to whom the efforts will
be directed.



A Testability and Observability Framework to Assure Traceability 305

Figure 3 Proposed framework.

• Define. All the information collected in the previous stage allows you to
specify one or several improvement opportunities. It will be the team’s
decision to prioritize which one will be attacked first and which in
subsequent actions.



306 L. Morales Trujillo et al.

• Ideate. Once the information has been analyzed and the problems are
defined according to the users, the ideas that will be filtered later will be
generated to prioritize the most plausible ones.

• Prototype. The purpose of this stage is to create realistic and economical
versions of the product or service, where the ideas of the previous stage
are applied.

• Test. Prototypes are used to test with users. The conclusions obtained
from them allow to iterate, that is to say: empathize even more, perfect
ideas, create prototypes again and try again to obtain solutions that really
respond correctly to the problems of the users. The validation of said
prototype is carried out with simulations [36], so that the end user can
validate that all the necessary traceability requirements are recorded
through continuous monitoring (preventive and corrective validation).

At this stage the validated solution prototype would be obtained, with all
the traceability requirements that must be met in the SoS environment.

3.2 Development

The objective of this stage is to obtain tangible and validated results of the
proposed solution. To achieve this goal, a series of stages are carried out:

• Specification. It is the task of describing the software in detail. The
specification is made in sufficient detail so that qualified develop-
ers can develop the solution with minimal additional effort. In this
task, all the requirements identified in the previous stage are defined
in detail using class diagrams, business diagrams, pseudocode, etc.
defined by widely used standards, such as those proposed by the OMG
(Object Management Group). Among other functionalities, it is speci-
fied how the monitoring will be carried out, that is, the visualization and
control of the registered entities (preventive monitoring). In addition,
the tests are defined following good practices defined by agile tests
(Technology-facing tests that guide development, business-facing test
that guide development, business-facing test that critique the product
and technology-facing test that critique the product) [35] that will be
carried out after the solution is developed to verify that everything is
registered and controlled as planned (preventive verification).

• Code. It is the task of translating the specification into code and
performing relevant tests in the developed module.

• Build. Action to integrate the implementation of the code generate in the
development environment.



A Testability and Observability Framework to Assure Traceability 307

• Test. Action to verify that the software responds/performs correctly the
tasks indicated in the specification, that is, to verify that what has been
specified is recorded and to control compliance with the provisions
(corrective verification). Based on the conclusions obtained from the
defined tests, iterations are performed to obtain solutions that really
respond to what is specified.

This stage is where the tangible software solution is obtained, validated
and verified based on what was agreed with the end user and is integrated into
the SoS context, but is not yet available for end user use because it is still in
the development environment.

3.3 Operation

This stage aims to ensure the correct functioning of the solution in production
environments once implemented. This stage covers everything related to
the functions of IT (Information Technology) that are not related to the
development and management of the application. To achieve this goal, a
series of task are carried out:

• Release/Hotfix. Deployment in the pre-production environment and
conducting the relevant tests to verify that what has been specified
is recorded and monitor compliance with the provisions (corrective
verification). According to the results obtained in the tests, there are
two options: successful result, implementation in the production envi-
ronment, failed result, return to the development environment and error
correction, as proposed in the Gitflow workflow [32].

• Deploy. Task deployment in the production environment.
• Operate. The product is operational and the end user is already using it.
• Monitor. Continuous monitoring task of aspects of the software solution

(corrective monitoring). The information that should be monitored and
how it should behave is previously defined in the stages of discovery and
development.

This stage is where the tangible software solution is obtained, validated,
verified and monitored based on what was agreed with the end user, integrated
in the SoS context, available and used by the end user.

4 Related Work

Along this work it has been described a methodology that guarantee data
traceability in a SoS context from early stages as a combination of other



308 L. Morales Trujillo et al.

methodologies. There are different methodologies and good practices to aid
in the process of capturing the software requirements, its development, its
testing, and its monitoring. In particular, this approach is inspired in (1)
the User-centered Design methodologies to capture the requirements and (2)
Agile development methodologies.

User-centered design methodologies are a set of methods and techniques
with the purpose of know and understand the users’ needs, limitations, behav-
ior and nature [42]. When applying such methodologies, potential or even
real final users are involved. The interaction with such potential final users
are carried out in a iterative-incremental process. On each incremental round
the software specifications are increasingly growing and fitting to final user
expectations. Design Thinking [28] or Design Sprint [43, 44] are two well-
known approaches among user-centered design methodologies. In particular,
the Design Sprint techniques has been successfully applied in previous work
in real industrial context in the healthcare context to define the software
specifications [45]. According to those previous experiences the use of these
methodologies, that consider involving final users in early definition stages,
produce a software specification that are less susceptible to modifications in
late stages in the software lifecycle.

The agile development methodologies are a set of operating guide-
lines under the agile manifesto recommendations [46]. Agile methodolo-
gies are those methodologies that meet certain requirements as described
in the manifesto. Such methodologies are Software Engineering meth-
ods based in a incremental and iterative development. The software is
developed in self-organized and multidisciplinary teams [47]. DevOps is
one of the most common sets of good agile development practices that
includes continuous implementation and integration [48]. Different stud-
ies have been conducted regarding the DevOps practice applied in the
industry and in the academia [49, 50]. Other researches, as the one con-
ducted by Virmani, brought closer continuous integration and continuous
delivery [51].

To the best of our knowledge, there are not approaches considering an
user-centered design strategy explicitly involving the the agile manifesto.

The traceability requirements are non-functional requirements that have
been studied since more than two decades ago. Studies dealing with trace-
ability aim to describe the behavior of a system at the time of attending the
changes on the data and functionalities [39]. Different approaches have been
conducted to enhance traceability requirements in ordinary systems. Such
requirements usually consider, systems modelling, and techniques for better



A Testability and Observability Framework to Assure Traceability 309

applying [40, 41]. Notwithstanding it is still a work in progress in the SoS
context.

The SoS is an emerging field and not many methodologies may be found
in the literature for these systems constructions. Authors have been focusing
the most in development methodologies among the already existing ones
applicables in SoS. DeLaurentis, for instance proposed a method on which
a SoS is abstracted, modelled, and analyzed in a method to detect behavior
patterns [14]. Mittal and Risco-Martin have proposed an unified development
process across different constituent systems [37]. Regarding non-functional
requirements in the SoS, the interest for security is growing. In recent years
it is being considered as a first-class feature, which promote new emerging
researches as the TeSSoS approach [38].

This work combine user-centered design, and agile manifesto perspec-
tives and tackles the traceability requirements in a user-centered agile
methodology. To characterize the relevance of traceability when sharing data,
the proposed methodology is designed by focusing in the SoS context.

5 Conclusions

The development of this work has involved the immersion in the depth of
the processes carried out in the methodologies of discovery, development and
agile operations in System of Systems contexts. Through the search for a
solution to solve the existing problem, referring to poor traceability control,
knowledge about the technologies being investigated and those that currently
exist is expanded. This work arises from this fundamental idea: how can
control of the traceability of the entities be increased within a System of
Systems context?

More and more sectors in which it is essential to have traceability soft-
ware that continuously records and monitors the trace of the entities that
interact with it and due to the progress in the digital world, products and
systems are increasingly interoperable and this makes Make your design
more complex. This interoperability between products and systems is what
is known as a System of Systems context.

To all this, the errors that refer to the poor control of traceability that has
been recorded over the years are added.

That is why in the future it is intended to develop a solution that integrates
a smart contract where each and every traceability requirement identified in
an SoS environment is compiled. In this way, entities can register and control
along the value line.



310 L. Morales Trujillo et al.

To achieve this objective, this document presents an agile framework
framed in the context of Systems of Systems Engineering.

Within this methodological framework, the discovery stage, which aims
to achieve knowledge and understanding of the problem in a given domain,
propose a solution and obtain a solution proposal validated by the end user;
the development stage, whose objective is to obtain tangible and validated
results of the proposed solution; and the operation stage, whose objective is to
guarantee the correct functioning of the solution in production environments
once implemented, continuously monitoring the interaction of the entities
with the systems, are unified.

The unification of the stages of discovery, development and operations
implies a total coverage of the conformation of the solution.

Each of the stages of the proposed framework, in turn, is composed of a
series of sub-stages.

As it is an agile framework, continuous iteration between its stages is
promoted and within each of the stages, continuous iteration between the sub-
stages is promoted and a series of agile principles and values are followed.

6 Future Works

This work is about the beginning of a doctoral thesis work. The final objective
of the doctoral thesis is to develop a solution that integrates a smart contract
where each and every traceability requirement identified in an SoS environ-
ment is collected, so that entities can register and continuously monitor in the
value chain.

The following lines of work proposed to expand this research begin in
greater detail in each of the stages and substages of which the framework
are composed, validating the proposed framework in a real context. Which
implies, the performance of all the tasks related to the discovery, all the tasks
related to the development and all the tasks related to the operation. Never
forgetting that we are in a context of System of Systems where the traceability
of the entities that interact with this solution must be recorded and monitored
continuously.

The context of the application will be framed in the commercial domain
of an assisted reproduction clinic, more specifically, in an intelligent repro-
duction laboratory.

Assisted reproduction has become a clinical service that more and more
people access. Current problems such as the delay in paternity age, single



A Testability and Observability Framework to Assure Traceability 311

parents, etc. options and the different treatments that are put at the service
of society have proliferated. A fundamental part of these processes lies in
laboratory work.

Human reproduction laboratories are exposed to multiple incidents, but
one of the most serious is the one that causes the incorrect identification of
biological samples (eggs, sperm and embryos), being incorrect identification
a common problem in all areas of health.

An identification error occurs when a patient is incorrectly combined with
a test, sample, treatment or procedure and is usually caused by stress, work
overload, multiple interruptions, material errors, among many factors.

Certain processes, such as the mixing of ovules and sperm, and the
transfer of embryos to the uterus, are considered critical, as they represent
“the point of no return.” If in the laboratories of assisted reproduction an
erroneous identification occurs, it can go unnoticed practically in each of
the steps of the process that involves gametes and embryos. The final result
will be catastrophic for the patient, the professional and the clinic, with legal
implications that can lead to sanctions and even, in extreme cases, to the
closure of the clinic.

For all this, it is necessary to know the traceability that follows the
biological samples and patient samples at all times within the laboratory. In an
intelligent laboratory, the interrelation between different systems is essential,
so we will find ourselves in an environment in the context of SoS.

When validating a proposal, we must always keep in mind that we can
find some threats. In this case, the greatest dawn we can face when validating
the proposed framework is when collecting information to define traceability
requirements.

As discussed throughout the document, the traceability requirements are
what will allow me to register and control at all times the entities that interact
with the different systems. Currently, it is not an extended practice among
software engineers to collect specific information of this type and, therefore,
customers are not accustomed to providing such information. It is not known
what is the best and most productive way to collect information of this
type.

On the other hand, an exhaustive study will be carried out to continue this
work and provide a clear explanation of the current state of traceability in
Systems of Systems environments.

Finally, once we ensure that the framework is applicable, it will be
extended to other application contexts.



312 L. Morales Trujillo et al.

Acknowledgements

This work has been partially supported by the Spanish Ministry of
Economy and Competitiveness (POLOLAS, TIN 2016-76956-C3-2-R) and
by the GAUSS national research project (MIUR, PRIN 2015, Contract
2015KWREMX).

References

[1] Popper, S. W., Bankes, S. C., Callaway, R., &DeLaurentis, D. (2004).
System of systems symposium: Report on a summer conversation.
Potomac Institute for Policy Studies, Arlington, VA, 320.

[2] Ameri, F., Summers, J. D., Mocko, G. M., & Porter, M. (2008). Engi-
neering design complexity: An experimental study of methods and
measures. Res. Eng. Des, 19(2–3), 161–179.

[3] De Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering systems:
Meeting human needs in a complex technological world. Mit Press.

[4] Luo, J., & Wood, K. L. (2017). The growing complexity in invention
process. Research in Engineering Design, 28(4), 421–435.

[5] Boardman, J., & Sauser, B. (2006, April). System of Systems-the mean-
ing of of. In 2006 IEEE/SMC International Conference on System of
Systems Engineering (pp. 6-pp). IEEE.

[6] DeLaurentis, D. (2007, July). Role of humans in complexity of a system-
of-systems. In International Conference on Digital Human Modeling
(pp. 363–371). Springer, Berlin, Heidelberg.

[7] Eisner, H., Marciniak, J., & McMillan, R. (1991, October). Computer-
aided system of systems (S2) engineering. In Conference Proceedings
1991 IEEE International Conference on Systems, Man, and Cybernetics
(pp. 531–537). IEEE.

[8] Jamshidi, M. O. (2008). System of systems engineering-New challenges
for the 21st century. IEEE Aerospace and Electronic Systems Magazine,
23(5), 4–19.

[9] Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford,
R., ... & Rabadi, G. (2003). System of systems engineering. Engineering
Management Journal, 15(3), 36–45.

[10] Feng Tian, "An agri-food supply chain traceability system for China
based on RFID &blockchain technology," 2016 13th International
Conference on Service Systems and Service Management (ICSSSM),
Kunming, 2016, pp. 1–6.



A Testability and Observability Framework to Assure Traceability 313

[11] Systems of Systems (SoS). (2019). https://www.sebokwiki.org/wiki/S
ystems_of_Systems_(SoS) (accessed February 21, 2020)

[12] Cureton, K. L., & Settles, F. S. (2005, October). Systems-of-systems
architecting: educational findings and implications. In 2005 IEEE
International Conference on Systems, Man and Cybernetics (Vol. 3,
pp. 2726–2731). IEEE.

[13] Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford,
R., ... &Rabadi, G. (2003). System of systems engineering. Engineering
Management Journal, 15(3), 36–45.

[14] DeLaurentis, D., Sindiy, O., & Stein, W. (2006). Developing Sustainable
Space Exploration via System-of-Systems Approach. In Space 2006
(p. 7248). (accessed December 19, 2019)

[15] TRAZABILIDAD. Según el Comité de SeguridadAlimentaria de
AECOC. (2016) https://docplayer.es/9988201-Trazabilidad-segun-
el-comite-de-seguridad-alimentaria-de-aecoc.html (accessed February
21, 2020)

[16] Trazabilidad. (2017) https://trazabilidadalimentaria.blogspot.com/
(accessed February 21, 2020)

[17] Nakhleh, R. E., Idowu, M. O., Souers, R. J., Meier, F. A., &Bekeris,
L. G. (2011). Mislabeling of cases, specimens, blocks, and slides: a
College of American Pathologists study of 136 institutions. Archives
of pathology & laboratory medicine, 135(8), 969–974.

[18] MECALUX ESMENA, El rastroconfuso de la trazabilidad. (2005) . http
s://www.mecalux.es/articulos-de-logistica/rastro-confuso-trazabilidad

[19] VITÓNICA, Trazabilidad y alertasalimentarias: qué ha podidosalir mal
en el recientecaso de listeriosis. (2019). https://www.vitonica.com/pre
vencion/trazabilidad-alertas-alimentarias-que-ha-podido-salir-mal-reci
ente-caso-listeriosis (accessed December 19, 2019)

[20] Spriggs, M. (2003). IVF mixup: white couple have black babies. Journal
of medical ethics, 29(2), 65–65.

[21] Dyer, O. (2002). Black twins are born to white parents after infertility
treatment. BMJ, 325(7355), 64.

[22] BBC NEWS, Embryo mix-up at IVF hospital, (n.d.). http://news.bbc.c
o.uk/2/hi/health/2367705.stm (accessed December 19, 2019).

[23] EL PAÍS, Holandainvestiga la posiblefecundación de 26 mujeres con
esperma equivocado |Internacional, (n.d.). https://elpais.com/interna
cional/2016/12/29/actualidad/1483021366_741815.html (accessed
December 19, 2019).

https://www.sebokwiki.org/wiki/Systems_of_Systems_(SoS)
https://www.sebokwiki.org/wiki/Systems_of_Systems_(SoS)
https://docplayer.es/9988201-Trazabilidad-segun-el-comite-de-seguridad-alimentaria-de-aecoc.html
https://docplayer.es/9988201-Trazabilidad-segun-el-comite-de-seguridad-alimentaria-de-aecoc.html
https://trazabilidadalimentaria.blogspot.com/
https://www.mecalux.es/articulos-de-logistica/rastro-confuso-trazabilidad
https://www.mecalux.es/articulos-de-logistica/rastro-confuso-trazabilidad
https://www.vitonica.com/prevencion/trazabilidad-alertas-alimentarias-que-ha-podido-salir-mal-reciente-caso-listeriosis
https://www.vitonica.com/prevencion/trazabilidad-alertas-alimentarias-que-ha-podido-salir-mal-reciente-caso-listeriosis
https://www.vitonica.com/prevencion/trazabilidad-alertas-alimentarias-que-ha-podido-salir-mal-reciente-caso-listeriosis
http://news.bbc.co.uk/2/hi/health/2367705.stm
http://news.bbc.co.uk/2/hi/health/2367705.stm
https://elpais.com/internacional/2016/12/29/actualidad/1483021366_741815.html
https://elpais.com/internacional/2016/12/29/actualidad/1483021366_741815.html


314 L. Morales Trujillo et al.

[24] INDRA, Trazabilidaden la cadena de valor de la Industria, 2018. https:
//www.minsait.com/es/actualidad/insights/trazabilidad-en-la-cadena-d
e-valor-de-la-industria (accessed December 19, 2019)

[25] Radziwill, N. (2018). Blockchain revolution: How the technology
behind Bitcoin is changing money, business, and the world. The Quality
Management Journal, 25(1), 64–65.

[26] Luu, L., Chu, D. H., Olickel, H., Saxena, P., &Hobor, A. (2016,
October). Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security
(pp. 254–269). ACM.

[27] Rojas, E. Qué son loscontratosinteligentes o “smart contracts”? (2019).
Guíacompleta. https://es.cointelegraph.com/explained/what-is-a-smart
-contract (accessed December 19, 2019)

[28] A. Ramos, R. Wert. (2014). Design thinking enespañol, http://www.desi
gnthinking.es/inicio/ (accessed December 19, 2019)

[29] O’REILLY RADAR, What is DevOps?. (2012). http://radar.oreilly.co
m/2012/06/what-is-devops.html (accessed December 19, 2019)

[30] DmitriySamovskiy’s Blog, The Rise of DevOps. (2010). http://www.so
mic.org/2010/03/02/the-rise-of-devops/ (accessed December 19, 2019)

[31] John Willis, DevOps Culture (Part 1) – IT Revolution. IT Revolution.
(2012). https://itrevolution.com/devops-culture-part-1/ (accessed
December 19, 2019).

[32] ATLASSIAN, Gitflow Workflow |Atlassian Git Tutorial. (2017). https:
//www.atlassian.com/git/tutorials/comparing-workflows/gitflow-work
flow (accessed December 19, 2019)

[33] Driessen, V. (2010). A successful Git branching model. URL http://nvie
.com/posts/a-successful-git-branching-model. (accessed December 19,
2019)

[34] Gerber, A., & Craig, C. (2015). Introducing Git. In Learn Android
Studio (pp. 145–187). Apress, Berkeley, CA.

[35] Janet Gregory, Lisa Crispin. Agile Testing Condensed: A Brief Intro-
duction, ISBN-10:199922051X

[36] Pandit, P., & Tahiliani, S. (2015). AgileUAT: A framework for user
acceptance testing based on user stories and acceptance criteria. Inter-
national Journal of Computer Applications, 120(10).

[37] Mittal, S., & Martín, J. L. R. (2018). Netcentric system of systems
engineering with DEVS unified process. CRC Press.

[38] Olivero, Miguel Angel, et al. “Security assessment of systems of
systems.” 2019 IEEE/ACM 7th International Workshop on Software

https://www.minsait.com/es/actualidad/insights/trazabilidad-en-la-cadena-de-valor-de-la-industria
https://www.minsait.com/es/actualidad/insights/trazabilidad-en-la-cadena-de-valor-de-la-industria
https://www.minsait.com/es/actualidad/insights/trazabilidad-en-la-cadena-de-valor-de-la-industria
https://es.cointelegraph.com/explained/what-is-a-smart-contract
https://es.cointelegraph.com/explained/what-is-a-smart-contract
http://www.designthinking.es/inicio/
http://www.designthinking.es/inicio/
http://radar.oreilly.com/2012/06/what-is-devops.html
http://radar.oreilly.com/2012/06/what-is-devops.html
http://www.somic.org/2010/03/02/the-rise-of-devops/
http://www.somic.org/2010/03/02/the-rise-of-devops/
https://itrevolution.com/devops-culture-part-1/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model


A Testability and Observability Framework to Assure Traceability 315

Engineering for Systems-of-Systems (SESoS) and 13th Workshop on
Distributed Software Development, Software Ecosystems and Systems-
of-Systems (WDES). IEEE, 2019

[39] Gotel, O. C., & Finkelstein, C. W. (1994, April). An analysis of the
requirements traceability problem. In Proceedings of IEEE International
Conference on Requirements Engineering (pp. 94–101). IEEE.

[40] Ramesh, B., &Jarke, M. (2001). Toward reference models for require-
ments traceability. IEEE transactions on software engineering, 27(1),
58–93.

[41] Pohl, K. (2010). Requirements engineering: fundamentals, principles,
and techniques. Springer Publishing Company, Incorporated.

[42] GraciaBandrés, M.A., GraciaMurugarren, J., Romero San Martín, D.
(2015) TecsMedia: Metodologías de diseñocentradasenusuarios

[43] Knapp, J. (2012). The Design Sprint.
[44] Banfield, R., Lombardo, C. T., & Wax, T. (2015). Design sprint: A prac-

tical guidebook for building great digital products. “O’Reilly Media,
Inc.”.

[45] Olivero, Miguel Angel; Morales-Trujillo, L; Domínguez-Mayo, F. J.;
Mejías, M., Systematic Development of ERP Modules using a Model-
Driven Strategy Focusing on the Users,4th International Special Session
on Advances Practices in Model-Driven Web Engineering in the 15th
International Conference on Web Information Systems and Technolo-
gies, 2019

[46] Agile Manifesto. https://agilemanifesto.org/. (accessed December 19,
2019)

[47] IMF Business School, Metodologíaságiles de desarrollo. https://blogs.
imf-formacion.com/blog/tecnologia/metodologias-agiles-de-desarroll
o-201801/ (accessed December 19, 2019)

[48] Schaefer, A., Reichenbach, M., & Fey, D. (2013). Continuous integra-
tion and automation for DevOps. In IAENG Transactions on Engineer-
ing Technologies (pp. 345–358). Springer, Dordrecht.

[49] De Bayser, M., Azevedo, L. G., &Cerqueira, R. (2015, May).
ResearchOps: The case for DevOps in scientific applications. In 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM) (pp. 1398–1404). IEEE.

[50] Erich, F. M. A., Amrit, C., & Daneva, M. (2017). A qualitative study of
DevOps usage in practice. Journal of Software: Evolution and Process,
29(6), e1885.

https://agilemanifesto.org/
https://blogs.imf-formacion.com/blog/tecnologia/metodologias-agiles-de-desarrollo-201801/
https://blogs.imf-formacion.com/blog/tecnologia/metodologias-agiles-de-desarrollo-201801/
https://blogs.imf-formacion.com/blog/tecnologia/metodologias-agiles-de-desarrollo-201801/


316 L. Morales Trujillo et al.

[51] Virmani, M. (2015, May). Understanding DevOps & bridging the gap
from continuous integration to continuous delivery. In Fifth International
Conference on the Innovative Computing Technology (INTECH 2015)
(pp. 78–82). IEEE.

Biographies

Leticia Morales Trujillo has a Bachelor’s Degree in Health Engineering
with a mention in Biomedical Engineering from the University of Seville
since 2016 and a Master’s Degree in Software and Technology Engineering
from the University of Seville since 2018. She is currently a PhD student.
Since 2016 researcher associated with the research group of Web Engineering
and Early Testing (IWT2), belonging to the Department of Languages and
Computer Systems of the University of Seville. She is currently enrolled
in the 2018–2019 doctoral program at the University of Seville. At the
researcher level, he has participated in several research projects at the national
level. Among his most important research results are several contributions to
national and international conferences and publications in JCR journals.

Miguel Ángel Olivero González is PhD candidate in Computer Science
at the University of Seville. He has participated in various projects as a



A Testability and Observability Framework to Assure Traceability 317

researcher as a member in the Web Engineering and Early Testing Group
(IWT2). He has been part of the organizing committee of different inter-
national conferences. He has made national and international stays and
participated in both national and international projects. His current research
interests are related to Model-Driven Engineering, Security, and the System
of Systems context. Further information about his research activities and his
list of publications can be found at https://investigacion.us.es/sisius/sis_sho
wpub.php?idpers=25279

Francisco José Domínguez Mayo received the Ph.D. degree in computer
science from the University of Seville, Seville, Spain, in July 2013. He is cur-
rently an associate professor with the Department of Computing Languages
and Systems, University of Seville. He collaborates with public and private
companies in software development quality and quality assurance. His lines
of interesting research are plotted in the areas of continuous quality improve-
ment and quality assurance on software products, and software development
processes.

Julián Alberto García García was awarded his PhD in Computer Science
by the University of Seville, Spain, in 2015. He is currently a Lecturer
and Researcher with the Department of Computing Languages and Systems,
University of Seville. Since 2008, he has participated in R&D projects as

https://investigacion.us.es/sisius/sis_showpub.php?idpers=25279
https://investigacion.us.es/sisius/sis_showpub.php?idpers=25279


318 L. Morales Trujillo et al.

a researcher in the Web Engineering and Early Testing Group (IWT2). His
current research interests include the areas of business process management,
business process modeling, Model-Driven Engineering and quality assurance.
Julian is responsible for the BPM area and responsible for security in IWT2.
He also participates as member of committee in several international confer-
ences and journals.

Manuel Mejías Risoto obtained his Ph.D degree in Industrial Engineering at
the University of Sevilla, Spain, in 1997. He has been several years teaching
and researching in the field of Software Engineering. His current lines of
research are plotted in the areas of methodological issues in software process,
quality assurance and reference models in software production.


	Introduction
	Background and Objectives
	Proposed Framework
	Discovery
	Development
	Operation

	Related Work
	Conclusions
	Future Works

