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A B S T R A C T

Building upon the methodology developed in prior studies, which utilized the Lekhnitskii formalism to address
composite plates featuring cutouts, varying thicknesses, and different stacking sequences, the present work
introduces the incorporation of stiffeners. The structural configuration comprises plates and stringers, with
each stringer positioned between two plate regions and subjected to both stretching and bending loads. It is
important to note that no coupling between the bending and stretching responses is accounted for; therefore,
lay-ups must be symmetric, and stringers must be embedded and bisymmetric. The stringers are modeled
using the Euler–Bernoulli formulation with the free torsion hypothesis, while the plates are modeled using
the Kirchhoff–Love formulation. Several benchmark problems are analyzed, and the results are compared with
those obtained using finite element analysis (utilizing Abaqus software), demonstrating a satisfactory agreement
while also showcasing competitive computational efficiency. Thus, the present methodology provides the
industry with a novel tool that enables efficient parametric analysis and facilitates the most promising
configurations during the initial phases of the design to be selected by engineers.
1. Introduction

In many engineering applications, it is usual to find structural
elements formed by a combination of beams and shells. They are called
stiffened panels resulting in a significant weight reduction of structures.
Shell component is usually identified as the skin, and the beams as the
stringers (see Fig. 1). The external structures of the wings and fuselage
of aircrafts or the structure of a ship’s hull are significant examples of
structures constituted by this type of elements.

Although the final design is typically verified using sophisticated
models, often based on Finite Element Analysis (FEA), numerous de-
cisions need to be made in the early design stages. In such situations,
where certain data may be unknown, it becomes attractive to utilize
alternative tools that enable quick estimations of the effects of several
alternatives, or the development of some parametric analysis. It is dur-
ing these initial stages that analytical or pseudo-analytical formulations
prove to be highly beneficial.

In this context, the authors developed a Lekhnitskii-based closed-
form methodology for analyzing composite plates with elliptical cutouts
in Pastorino et al. [1,2,3,4] for stretching, and in Pastorino et al.
[5] for bending problems. Building upon these previous works, this
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paper extends the methodology to the analysis of stiffened flat panels.
Specifically, it focuses on the case of embedded stiffeners and sym-
metric laminates, thus maintaining the decoupling between membrane
and bending effects. The inclusion of one-dimensional stringers into
this methodology is a clear enhancement that increases its range of
applicability.

The plate model described in Pastorino et al. [5] adopts the
Kirchhoff–Love plate theory. Coherently, the beam model considered
here will follow the Euler–Bernoulli beam theory, which is the simplest
model for a beam. This model is based on the assumption that the
transversal section does not deform in its own plane and remains plane
and perpendicular to the deformed axis of the beam. Despite its relative
simplicity, the application of this model to anisotropic beams involves
some difficulties in the estimation of the equivalent elastic modulus and
the bending stiffness. In this regard, Vinson and Sierakowski [6], Omri
and Vladimir [7], Bauchau and Craig [8], Kassapoglou [9] and Librescu
and Song [10] should be considered.

In the frame of analytical or semi-analytical methodologies, very
few investigations link one-dimensional formulations together with
two-dimensional formulations for plates with or without cutouts.
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Fig. 1. Thermoplastic composite panel stiffened by five T-section longitudinal stringers.

In Oden and Ripperger [11] it is assumed a shear lag mechanism,
the skin developing mainly shear stress and the stringer axial stress.
For stiffened flat panels, Lekhnitskii [12] considers a homogeneous
equivalent plate modifying the stiffness properties of the structure.
Similarly, Kassapoglou [9] provides a method for considering stiffened
skins by smearing the stiffness properties of both the skin and the
stringers in order to consider an equivalent section stiffness. In previous
work, Kassapoglou [13] develops an energy-based closed-form method-
ology for the estimation of the stresses at the skin–stringer interface.
However, these methodologies are rough approximations based on very
simplified assumptions that provide a general and imprecise estimate
of the solution to the problem, suitable mainly for obtaining qualitative
and overall results, but not for fine details or exact precision. In
contrast, the methodology proposed here identifies each stiffener and
each area of the plate individually, providing very satisfactory results
of the displacements and the section force distributions in each of them.

2. Definition of the generic stiffened plate under study

To the best of the authors’ knowledge, there is no closed-form
methodologies in the peer-reviewed literature that couples the formu-
lation of anisotropic plates with cutouts and a one-dimensional beam
under axial, bending, and torsional loads. Hence, the contents of this
article will result in an innovative contribution to the current state of
the art.

The formulation here presented considers the following hypotheses:

1. Geometry is comprised of a set of plate regions and stringers so
that each stringer is always placed between two plate regions.
Each plate region can have a cutout or none.

2. The structures might be subjected to stretching (or membrane),
and bending loads, but no transverse load (pressure).

3. One-dimensional beam is considered based upon the Euler–
Bernoulli formulation and free torsion hypothesis, warping being
negligible; and two-dimensional plate structures are based upon
the Kirchhoff–Love formulation.

4. There is no bending–stretching coupled response. Hence, the
stringers are straight, the shear center and the barycenter of the
beams coincide each other (bi-symmetrical section), and they are
placed in the middle plane of the plates which is a symmetric
material plane.

Fig. 2 illustrates a generic example of the problem under consid-
eration. The case shown in the figure comprises five regions and two
stringers. Each component has its own set of axes, with all of them
featuring axes 𝐱3 perpendicular to the mid-plane of the structure and
pointing in the same direction. Laminated sequences may vary between
regions, and different sections of the beam can be considered for the
stringers.
2

Fig. 2. Generic example of a plate with cutouts and embedded stringers.

The following section is dedicated to recalling the Euler–Bernoulli
beam model, which is considered for each stringer, and the Kirchhoff–
Love plate theory, which is considered for each subplate (with or
without cutouts). This is with the main purpose of showing the notation
used by Bauchau and Craig [8] which is employed here. Next, the close-
form methodology presented for plates with cutouts in the authors’
previous works, Pastorino et al. [4],Pastorino [14], are extended to
stiffened plates, paying special attention to the coupling between beam
and plate models. Some benchmark problems are considered for valida-
tion. Finally, a section is dedicated to the conclusions and subsequent
developments.

3. Beam formulation

Let us define a local coordinate system located at the barycenter
of each section. The 𝐱1 axis aligns with the undeformed beam axis,
while the 𝐱3 axis is perpendicular to the plane of the stiffened plate.
The 𝐱2 axis is oriented to form a rectangular right-hand system. The
combination of the Euler–Bernoulli and the free torsion hypotheses
implies that the cross-section is rigid in its own plane and it remains
plane and normal to the beam axis after deformation. Thus four degrees
of freedom are used to describe the kinematic of the beam: 𝑢1, 𝑢2, 𝑢3,
𝜙1. Overline marks indicate that the variable is defined at the section
level, which means it is a function of 𝑥1 coordinate only (dependence
is omitted for concision).

In the beam model, assuming a homogeneous cross-section, 𝜎11 =
𝐸1𝜀11, where 𝐸1 is the elastic modulus of the material in the axial
direction of the beam; and 𝜏1𝑠 = 𝐺1𝑠𝛾1𝑠, with 𝑠 = 2, 3 denoting the
direction of tangential stresses, and 𝐺1𝑠 representing the corresponding
shear modulus of the material. The relationships between stresses and
strains become more intricate for a composite laminate. When consid-
ering thin-walled sections, the direction 𝑠 follows the mid-line of the
wall, let 𝐸(𝑘)

1 and 𝐺(𝑘)
1𝑠 represent, respectively, the elastic modulus in

the axial direction and the shear modulus in the plane 1𝑠 of the 𝑘th
layer, as proposed by Kassapoglou [9]:

𝐸(𝑘)
1 = 1

ℎ(𝑘)𝑎(𝑘)11

𝐺(𝑘)
1𝑠 = 1

ℎ(𝑘)𝑎(𝑘)66

(1)

where ℎ(𝑘) is the thickness of the ply, and 𝑎(𝑘)11 and 𝑎(𝑘)66 are, respectively,
the first and sixth diagonal terms of the inverse of the extensional
stiffness matrix. Considering this, it is appropriate to redefine the
barycenter based on a definition weighted by the elastic modulus. In
other words, the origin of the local coordinate system is that point for
which the following conditions hold:
𝐾
∑

𝑘=1

(

∫𝑘

𝑥2𝐸
(𝑘)
1 d𝑎

)

= 0 (2a)

𝐾
∑

(

∫ 𝑥3𝐸
(𝑘)
1 d𝑎

)

= 0 (2b)

𝑘=1 𝑘
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𝑞

𝑞

𝑢

𝑢

𝑢

where 𝐾 is the number of layers of the laminate, and 𝑘 is the
cross-sectional area of the 𝑘 ply.

Following the nomenclature proposed by Bauchau and Craig [8],
and considering that there is no bending coupling, the section forces
become:

𝑁̄1 =
𝐾
∑

𝑘=1
∫𝑘

𝜎11d𝑎 = 𝑆0𝜀1 (3a)

𝑀̄2 =
𝐾
∑

𝑘=1
∫𝑘

𝑥3𝜎11d𝑎 = 𝐻𝑐
22𝜅2 (3b)

𝑀̄3 =
𝐾
∑

𝑘=1
∫𝑘

(−𝑥2)𝜎11d𝑎 = 𝐻𝑐
33𝜅3 (3c)

𝑀̄1 =
𝐾
∑

𝑘=1
∫𝑘

(

𝜏13𝑥2 − 𝜏12𝑥3
)

d𝑎 = 𝐻𝑐
11𝜅1 (3d)

where

𝑆0 =
𝐾
∑

𝑘=1

(

∫𝑘

𝐸(𝑘)
1 d𝑎

)

(4a)

𝐻𝑐
22 =

𝐾
∑

𝑘=1

(

∫𝑘

𝑥23𝐸
(𝑘)
1 d𝑎

)

(4b)

𝐻𝑐
33 =

𝐾
∑

𝑘=1

(

∫𝑘

𝑥22𝐸
(𝑘)
1 d𝑎

)

(4c)

𝐻𝑐
11 =

𝐽
𝐴

𝐾
∑

𝑘=1

(

∫𝑘

𝐺(𝑘)
1𝑠 d𝑎

)

(4d)

The parameter 𝑆0 represents the axial stiffness, 𝐻𝑐
22 and 𝐻𝑐

33 denote
the bending stiffnesses about the 𝑥2 and 𝑥3 axes, respectively, and 𝐻𝑐

11
represents the torsion stiffness. Notably, in accordance with hypothesis
4 detailed in Section 2, the term corresponding to cross-bending stiff-
ness (𝐻𝑐

23 in the notation used) is null, as there is no coupling between
bending in the plane of the plate and in the plane perpendicular to
the plate. The superscript 𝑐 is employed to indicate that the bending
stiffnesses are calculated at the barycenter. Expressions for torsion
constants, 𝐽 , corresponding to different section shapes can be found
in [15], or for an open thin-walled section in [8].

The system is completed with the equilibrium equations where the
external applied distributed beam loads: 𝑝̄1, 𝑝̄2, 𝑝̄3, 𝑔̄1, 𝑔̄2 and 𝑔̄3 appear.
Loads 𝑝̄1, 𝑝̄2 and 𝑝̄3 are distributed forces along each axes, and 𝑔̄1, 𝑔̄2
and 𝑔̄3 are distributed moments around each axes.

After some basic substitutions, the here-considered beam model is
governed by the following equations:

𝑆0
d2𝑢̄1
d𝑥21

+ 𝑝̄1 = 0 (5a)

𝐻𝑐
33
d4𝑢̄2
d𝑥41

+ 𝑞3 = 0 (5b)

𝐻𝑐
22
d4𝑢̄3
d𝑥41

+ 𝑞2 = 0 (5c)

𝐻𝑐
11
d2𝜙̄1

d𝑥21
+ 𝑔̄1 = 0 (5d)

where the new external loads, 𝑞2 and 𝑞3, are given by:

̄2 = −𝑝̄3 −
d𝑔̄2
d𝑥1

(6a)

̄3 = −𝑝̄2 +
d𝑔̄3
d𝑥1

(6b)

Eqs. (5a)a and (5a)b belong to the stretching problems, and (5a)c and
(5a)d belong to the bending problem, and they are decoupled each
other in the case considered here.
3

Fig. 3. Component geometry and cutout parameters definition.

In order to approximate the kinematics of the beam, although there
are many possibilities, polynomial series are selected in this work:

̄1(𝑠) = 𝑓10 +
𝑁𝑏
∑

𝑛=1

(

𝑓1𝑛𝑠
𝑛) (7a)

̄2(𝑠) = 𝑓20 +
𝑁𝑏
∑

𝑛=1

(

𝑓2𝑛𝑠
𝑛) (7b)

̄3(𝑠) = 𝑓30 +
𝑁𝑏
∑

𝑛=1

(

𝑓3𝑛𝑠
𝑛) (7c)

𝜙̄1(𝑠) = 𝑓40 +
𝑁𝑏
∑

𝑛=1

(

𝑓4𝑛𝑠
𝑛) (7d)

Here, 𝑠 represents a coordinate along the bar axis, while 𝑁𝑏 denotes the
order of the approximation, and the coefficients of the approximation
function are denoted as 𝑓𝑖𝑗 with 𝑖 = 1,… , 4 and 𝑗 = 0, 1,… , 𝑁𝑏. In
Eqs. (7), the same order is applied to all movements; however, it is not
mandatory to use the same order for all kinematic variables.

4. Kirchhoff–Love plate theory

The formulation of the plates has been presented in previous articles
addressing membrane [4] and bending [5] problems. In essence, the
approach involves dividing the plate into regions, each featuring either
one elliptical cutout or none. Each subplate must be composed of
the same material (laminate setup), although the material may differ
from one region to another. The incorporation of the Lekhnitskii for-
malism for infinite plates with cutouts [12], along with the utilization
of Ogonowski’s formulation [16] for considering finite sizes on each
subplate, and the incorporation of corresponding boundary conditions
along the interfaces, completes the problem. While the specific details
are available in [4,5], a summary is provided below for completeness.

Each plate is defined by an arbitrary external shape (𝛤𝐸) and an
elliptically shaped internal cutout (𝛤𝐶 ) as shown in Fig. 3. The ellipse
major and minor semi-axes are denoted by 𝑎 and 𝑏. A local coordinate
system (𝐱1, 𝐱2) is defined by the ellipse axes.

Both 𝛤𝐸 and 𝛤𝐶 contours are covered by the arc-length 𝑠, which is
directed counter-clockwise at the internal and clockwise at the external
boundary. Tangential (𝐬) and normal (𝐧) directions comprise a set of
coordinates that follow the boundary, 𝐧 being always directed outward
from the component.

According to the Classical Laminate Theory (CLT) hypotheses, the
segment perpendicular to the mid-plane of the plate remains straight,
undeformed, and perpendicular to the deformed mid-surface. Thus, the
kinematics of the plate can be defined by 3 degrees of freedom: 𝑢̂1, 𝑢̂2,
and 𝑢̂ .
3
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Hat marks indicate that the variable is defined at the thickness
segment level, which means it is a function of 𝑥1 and 𝑥2 coordinates
(dependence is omitted for concision).

Strains can be obtained directly from the small strains 𝜀 − 𝑢 equa-
tions, and stresses from the constitutive law for each layer.

Section forces are obtained by integrating the stresses:

𝑁̂1 = ∫

ℎ∕2

−ℎ∕2
𝜎11d𝑥3 = 𝐴11𝜀̂1 + 𝐴12𝜀̂2 + 𝐴13𝛾̂12 (8a)

𝑁̂2 = ∫

ℎ∕2

−ℎ∕2
𝜎22d𝑥3 = 𝐴21𝜀̂1 + 𝐴22𝜀̂2 + 𝐴23𝛾̂12 (8b)

𝑁̂12 = ∫

ℎ∕2

−ℎ∕2
𝜎12d𝑥3 = 𝐴31𝜀̂1 + 𝐴32𝜀̂2 + 𝐴33𝛾̂12 (8c)

𝑀̂1 = ∫

ℎ∕2

−ℎ∕2
𝑥3𝜎11d𝑥3 = 𝐷11𝜅̂1 +𝐷12𝜅̂2 +𝐷13𝜅̂12 (8d)

𝑀̂2 = ∫

ℎ∕2

−ℎ∕2
𝑥3𝜎22d𝑥3 = 𝐷21𝜅̂1 +𝐷22𝜅̂2 +𝐷23𝜅̂12 (8e)

𝑀̂12 = ∫

ℎ∕2

−ℎ∕2
𝑥3𝜎12d𝑥3 = 𝐷31𝜅̂1 +𝐷32𝜅̂2 +𝐷33𝜅̂12 (8f)

The variables 𝜀̂1 and 𝜀̂2 are the unit elongations along 𝑥1 and 𝑥2
axis respectively, and with 𝛾̂12 are variables of the stretching problem.
The variables 𝜅̂1 and 𝜅̂2 correspond to the curvatures of the deformed
surface of the plate in 13 and 23 planes respectively, and with the
cross curvature 𝜅̂12 are variables of the bending problem. Here, 𝐴𝑖𝑗
and 𝐷𝑖𝑗 are components of the stiffness matrix of the plate, [17]. It
is noteworthy that no coupling terms (𝐵𝑖𝑗) are considered in this work,
assuming hypothesis 4 outlined in Section 2.

The system is complemented by the Equilibrium equations
that for plates under membrane loads can be rewritten in terms of

an Airy stress function 𝜑, Lekhnitskii [12].

𝑎22
𝜕4𝜑
𝜕𝑥41

− 2𝑎26
𝜕4𝜑

𝜕𝑥31𝜕𝑥2
+
(

2𝑎12 + 𝑎66
) 𝜕4𝜑
𝜕𝑥21𝜕𝑥

2
2

+

2𝑎16
𝜕4𝜑

𝜕𝑥1𝜕𝑥32
+ 𝑎11

𝜕4𝜑
𝜕𝑥42

= 0 (9)

ection forces 𝑁̂1, 𝑁̂2 and 𝑁̂12 are obtained from 𝜑:

̂ 1 =
𝜕2𝜑
𝜕𝑥22

𝑁̂2 =
𝜕2𝜑
𝜕𝑥21

𝑁̂12 = −
𝜕2𝜑

𝜕𝑥1𝜕𝑥2
(10)

While the equilibrium equation in the transverse direction was
eveloped in Pastorino et al. [5] in terms of the deflection 𝑤 (notice
hat 𝑤 = 𝑢̂3) as follows,

11
𝜕4𝑤
𝜕𝑥41

+ 4𝐷16
𝜕4𝑤

𝜕𝑥31𝜕𝑥2
+ 2

(

𝐷12 + 2𝐷66
) 𝜕4𝑤
𝜕𝑥21𝜕𝑥

2
2

+

4𝐷26
𝜕4𝑤

𝜕𝑥1𝜕𝑥32
+𝐷22

𝜕4𝑤
𝜕𝑥42

= 0 (11)

Bending problem section forces 𝑀̂1, 𝑀̂2 and 𝑀̂12 are obtained from
Eqs. (8d) to (8f), and 𝑄̂1 and 𝑄̂2 from the equations of equilibrium of
bending moments.

Both (9) and (11) are fourth-order homogeneous partial derivative
equations, that can be expressed in the form:

𝐴1
𝜕4𝑊
𝜕𝑥41

+ 𝐴2
𝜕4𝑊
𝜕𝑥31𝜕𝑥2

+ 𝐴3
𝜕4𝑊
𝜕𝑥21𝜕𝑥

2
2

+

𝐴4
𝜕4𝑊
𝜕𝑥1𝜕𝑥32

+ 𝐴5
𝜕4𝑊
𝜕𝑥42

= 0. (12)

being 𝜑 for the stretching problem or 𝑤 for the bending problem,
ith the proper 𝐴𝑖, 𝑖 = 1,… , 5, that can be easily deduced.

This differential equation can be integrated using four first-order
perators (see [4,5,12]):
(

𝐹
(

𝐹
(

𝐹 𝑊
)))

= 0, (13)
4

1 2 3 4 ( ) e
𝑗 being:

𝑗 =
𝜕
𝜕𝑥2

− 𝜇𝑗
𝜕
𝜕𝑥1

, (14)

where 𝜇𝑗 are the roots of the characteristic equation:

𝐴5𝜇
4 + 𝐴4𝜇

3 + 𝐴3𝜇
2 + 𝐴2𝜇 + 𝐴1 = 0. (15)

Four roots, 𝜇𝑗 with 𝑗 = 1,… , 4, are obtained from (15), which are
complex and conjugated in pairs [12]. Let us ordering them in the way
that 𝜇3 = 𝜇̄1 and 𝜇4 = 𝜇̄2.

Following Lekhnitskii [12], integrating with the operators one at a
time on the basis of Eq. (13),

𝐹4(𝜑) = 𝐺3, 𝐹3(𝐺3) = 𝐺2, 𝐹2(𝐺2) = 𝐺1,

𝐹1 =
𝜕𝐺1
𝜕𝑥2

− 𝜇𝑗
𝜕𝐺1
𝜕𝑥1

, (16)

From the last equation of (16) it follows that:

1 = 𝑓1(𝑥1 + 𝜇1𝑥2) (17)

here 𝑓1 is any arbitrary function dependent on 𝑥1 + 𝜇1𝑥2. The step-
y-step integration of Eqs. (16) results in the general solution of (12),
ee [12,18], as the sum of four complex function 𝑊𝑗 (𝑧𝑗 ), being 𝑧𝑗 =
1 + 𝜇𝑗𝑥2 for 𝑗 = 1,… , 4 and being 𝑧3 = 𝑧̄1 and 𝑧4 = 𝑧̄2:

𝑊 (𝑥1, 𝑥2) =
4
∑

𝑗=1
𝑊𝑗 (𝑧𝑗 ) (18)

Following the procedure developed by Lekhnitskii [12], the follow-
ng conformal mapping:

𝑗 (𝑧𝑗 ) =
𝑧𝑗 ±

√

𝑧2𝑗 − 𝑎2 − 𝑏2𝜇2
𝑗

𝑎 − 𝑖𝑏𝜇𝑗
. (19)

transforms an elliptic hole of semiaxis lengths 𝑎 and 𝑏 in the real
plane, (𝑥1, 𝑥2), into a unitary circular one in the transformed complex
lane, 𝜁𝑗 . It has to be mentioned that the selection of the sign ahead
f the square root is not straight forward and the algorithm developed
y Koussios [19] is used.

Now, based on the Lekhnitskii formalism, the formulation is redefined
sing the derivatives of the functions 𝑊𝑗 (𝑧𝑗 ). Let us call them 𝛺𝑗 (𝑧𝑗 ) =
𝑊𝑗∕d𝑧𝑗 , 𝑗 = 1,… , 4, and define 𝛺(𝑥1, 𝑥2) as the sum of the 𝛺𝑗 (𝑧𝑗 ).
aken into account that 𝛺3(𝑧3) = 𝛺̄1(𝑧̄1) and 𝛺4(𝑧4) = 𝛺̄2(𝑧̄2), it results
hat 𝛺(𝑥1, 𝑥2) is a real function:

(𝑥1, 𝑥2) =
4
∑

𝑗=1
𝛺𝑗 (𝑧𝑗 ) = 2Re

[ 2
∑

𝑗=1
𝛺𝑗 (𝑧𝑗 )

]

(20)

This formulation allows a straightforward definition of the bound-
ry conditions. However, it precludes using the boundary conditions in
erms of 𝑊 . This is unimportant for the stretching problem, but not for
he bending problem, where the boundary conditions in deflection must
e replaced by another one more or less equivalent condition affecting
he slope at the edges in both normal and tangential directions. This is
conventional approach to the problem in the existing literature [12,

0,21].
To consider that the plate is finite the work of Ogonowski [16] is

ollowed, using Laurent series to approximate 𝛺𝑗 , [4,5,22,23]:

𝛺𝑗 (𝑧𝑗 ) = 𝐶0𝑗 +
(

𝐶 ′
0𝑗 + 𝐶 ′′

0𝑗𝑧𝑗
)

ln(𝜁𝑗 )+

+
𝑁
∑

𝑛=1

(

𝐶𝑛𝑗𝜁
−𝑛
𝑗 + 𝐶∗

𝑛𝑗𝜁
𝑛
𝑗

) (21)

here 𝐶0𝑗 , 𝐶 ′
0𝑗 , 𝐶

′′
0𝑗 , 𝐶𝑛𝑗 , and 𝐶∗

𝑛𝑗 are unknown coefficients determined
y imposing the boundary conditions, and 𝑁 represents the number
f approximation functions to be used. It is important to note that
he term 𝐶0𝑗 solely influences displacements, not forces. Additionally,
he logarithmic term is associated with unbalanced forces (𝐶 ′

0𝑗) and
oments (𝐶 ′′

0𝑗) at the cutout [12,24], (notice that 𝐶 ′′
0𝑗 = 0 for the

tretching problem). The logarithmic terms and terms with negative

xponent are omitted in plates without a cutout.
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𝑢

𝑢

𝑢

Fig. 4. Force and displacement diagrams for the stretching problem.

5. Boundary conditions

Boundary conditions along the cutout boundaries, external bound-
aries, and shared boundaries between two regions are extensively
discussed in [4,5]. They are imposed on sets of collocation points
distributed along the boundaries of each subplate, producing a system
of equations to obtain the coefficients 𝐶0𝑗 , 𝐶 ′

0𝑗 , 𝐶
′′
0𝑗 , 𝐶𝑛𝑗 , and 𝐶∗

𝑛𝑗 for
each area. Here, we provide a concise overview, thus focusing on
the conditions established between plate regions and the intervening
stringer.

Typically, the conditions along the cutout boundaries establish an
analytical relationship between 𝛺1 and 𝛺2. As a result, no collocation
points are needed, which directly enables the calculation of the coeffi-
cients of the logarithmic terms and reduces the number of unknown
coefficients for the exponential terms by half. Specifically, for self-
equilibrated loads on 𝛤𝐶 , it implies 𝐶 ′

0𝑗 = 0 with 𝑗 = 1,… , 4 for the
stretching problem (𝛺 = d𝜑∕d𝑧𝑗), and 𝐶 ′

0𝑗 = 𝐶 ′′
0𝑗 = 0 with 𝑗 = 1,… , 4

for the bending problem (𝛺 = d𝑤∕d𝑧𝑗).
Along the external boundaries, conditions involve imposing a proper

combination of resultant forces or translations, and moments or rota-
tions of the thickness line at any point (𝑠) along 𝛤𝐸 . This is achieved
using collocation points. Shared boundaries between regions require
the imposition of the principle of action–reaction between section
forces and the continuity of displacements and rotations. Collocation
points are also utilized for this purpose. The number of collocation
points placed along external and shared boundaries has to be selected
to ensure that the number of equations in each boundary exceeds the
number of unknowns, the resulting system of equations being solved
using the least squared method. The number of collocation points is a
parameter of the proposed procedure.

Figs. 4 and 5 illustrate the force and moment diagrams on one
side, and the displacement diagram on the other side, for establishing
the conditions between plate regions and the intervening stringer in
stretching and bending problems, respectively. The reference system
considered is oriented parallel to the beam system, i.e., 𝐬 = 𝐱1, 𝐧 = 𝐱2,
and 𝐳 = 𝐱3, with subplate 1 located at the positive 𝑥2 coordinate
and subplate 2 at the negative 𝑥2 coordinate. It is worth noting that,
considering the beam as a one-dimensional element, the distributed
moments 𝑔̄𝑛 and 𝑔̄𝑧 are null.

The distributed loads transferred from the subplate regions to the
beam are as follows (coordinate dependencies are omitted for concise-
ness):

𝑝̄𝑠 = 𝑁̂ (1)
𝑠𝑛 − 𝑁̂ (2)

𝑠𝑛 (22a)

𝑝̄𝑛 = 𝑁̂ (1)
𝑛 − 𝑁̂ (2)

𝑛 (22b)

𝑝̄ = 𝑉 (1) − 𝑉 (2) (22c)
5

𝑧 𝑛 𝑛
Fig. 5. Force and displacement diagrams for the bending problem.

𝑔̄𝑠 = 𝑀̂ (1)
𝑛 − 𝑀̂ (2)

𝑛 (22d)

As usual in plate problems, 𝑉𝑛 is the effective transverse shear force:
𝑉𝑛 = 𝑄̂𝑛 + 𝜕𝑀̂𝑠𝑛∕𝜕𝑠.

The compatibility condition implies the identification of all the
movements of the plates and the beam along the beam axis. It should
be noted that the equations involving the displacement 𝑢𝑧, which repre-
sents the deflection of the plate and the beam, need to be reconsidered
due to the bending problem being formulated in terms of the derivative
of the deflection. To address this, a manipulation, analogous to [5],
based on the derivative with respect to 𝑠 is employed. While some
information may be lost, it can be easily proven that it does not affect
the stress and resultants, nor the load transfer between the plates and
the beam. Additionally, assuming negligible shear deformations, the
conditions between rotations around the beam axis should be expressed
in terms of the derivative of the deflection.

̂(1)𝑠 = 𝑢̂(2)𝑠 = 𝑢̄𝑠 (23a)

̂(1)𝑛 = 𝑢̂(2)𝑛 = 𝑢̄𝑛 (23b)

̂(1)𝑧 = 𝑢̂(2)𝑧 = 𝑢̄𝑧 ⟹
𝜕𝑢̂(1)𝑧
𝜕𝑠

=
𝜕𝑢̂(2)𝑧
𝜕𝑠

=
𝜕𝑢̄𝑧
𝜕𝑠

(23c)

𝜙̂(1)
𝑠 = 𝜙̂(2)

𝑠 = 𝜙̄𝑠 ⟹
𝜕𝑢̂(1)𝑧
𝜕𝑛

=
𝜕𝑢̂(2)𝑧
𝜕𝑛

= 𝜙̄𝑠 (23d)

Therefore, it is necessary to enforce twelve equations along the
stringer. This is accomplished by employing a set of collocation points
distributed along the stringer, and the resultant system is solved using
the least squares method. Preliminary tests have demonstrated that a
logarithmic distribution of collocation points, with increased density
near the corners, is preferable to a uniform one (as is used for other
boundaries). Special attention should be directed to the endpoints of
the beam, where two collocation points must be considered, one at each
end, to apply correctly the conditions at the extremes of the beam.

6. Model verification - benchmark

The closed-form formulation developed for the analysis of
anisotropic stiffened plates has been implemented by using the mathe-
matical software Matlab 2018a, under the aforementioned hypotheses.
The methodology developed is validated in this section by comparing
its results with those obtained by finite element (FE) analysis. To elim-
inate other possible sources of discrepancies, FE models incorporate
beam elements that adhere to the Euler–Bernoulli hypothesis and plate
elements that adhere to the Kirchhoff–Love hypothesis in the problems
of plate bending. Specifically, in the Abaqus 6.14 software, which is the
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Table 1
Mechanical properties of a lamina.
𝐸11 𝐸22 𝐺12 𝜈12 Thickness

140 GPa 9 GPa 4.65 GPa 0.3 0.184 mm

Table 2
Lay-ups used in the benchmark exercises.

Ref. Lay-up

LU1 [45,−45, 0, 90, 0]2S
LU2 [45,−45, 0, 90, 0, 0,−45, 45]2S
LU3 [45,−45, 0, 90, 0, 0,−45, 45, 0]2S
LU4 [45,−45, 0, 90, 0, 0,−45, 45, 45,−45, 0,−45, 45]2S
LU5 [−45, 45, 0, 90, 0]S
LU6 [45,−45,−45, 45, 0, 90]2S

Fig. 6. Geometry, loads and lay-up for exercise 1.

one used in this study, these elements are referred to as B33 (linear
line, 2 nodes, and 6 degrees of freedom per node) for beams, and
STRI3 (linear triangular, 3 nodes and 5 degrees of freedom per node)
or STRI65 (quadratic quadrilateral, 6 nodes, and 5 degrees of freedom
per node) for plates [25]. Nevertheless, for stretching problems, any
element of the standard library can be considered, for example, S8R
(quadratic quadrilateral, 8 nodes and 6 degrees of freedom per node).

Table 1 presents the mechanical properties of the material consid-
ered in the examples, and Table 2 collects the lay-ups.

Initially, a series of tests should be conducted to identify the opti-
mal combination of parameters, ensuring both accurate solutions and
efficiency. These parameters include the number of functions used to
approximate the solution within each region of the plate (𝑁), the
equation-unknown ratio (𝑅𝑢), or equivalently, the number of colloca-
tion points, and the number of functions utilized to approximate the
solution on the stringer (𝑁𝑏). Previous studies dedicated to stretch-
ing [4] and bending [5] problems have established that a suitable
balance is achieved with 𝑁 = 20 and 𝑅𝑢 = 2. The first benchmark exer-
cise presented below is employed to select the number of functions to
be used to describe the behavior of the stringer. The same combination
is applied to the remaining exercises.

6.1. Benchmark exercise 1

The first exercise to be presented involves the structure depicted in
Fig. 6. It comprises a plate with two circular cutouts and a stringer with
I-section. The plate is divided into four regions, each featuring distinct
lay-ups. The figure also illustrates the section and layup of the stringer.
The structure is subjected to a combination of boundary conditions in
the plane, with kinematic conditions in red, distributed loads in blue,
and a concentrated load at one end of the stringer in green, resulting
in a stretching problem.

The combination of parameters 𝑁 , 𝑅𝑢, and 𝑁𝑏 characterizes the
solution process. According to Pastorino et al. [4,5], a satisfactory
6

Fig. 7. Relative difference (𝑅𝑑 ) and computational time plotted against the truncation
order for the beam (𝑁𝑏).

balance between precision and time is achieved with 𝑁 = 20 and
𝑅𝑢 = 2. Consequently, for stiffened plates, these values are adopted.
However, another parameter arises, namely, the number of functions
to describe the behavior of the beam, denoted as 𝑁𝑏. To determine a
suitable value, a series of tests are conducted by varying 𝑁𝑏 from 2
to 40. It is important to note that this variation will also impact the
number of collocation points along the beam axis, as determined by
𝑅𝑢.

To evaluate the accuracy of the results, we use the parameter 𝑅𝑑 ,
which is defined as the relative difference in axial force in the beam
compared to the value obtained from a reference solution with 𝑁𝑏 =
100:

𝑅𝑑 =
Max

(

|

|

|

𝑁1(𝑠) −𝑁 (ref)
1 (𝑠)||

|

)

|

|

|

𝑁 (ref)
1 (𝑠)||

|

(24)

The evolution of the values of this parameter is shown in Fig. 7 as a
function of the truncation order. The time of execution is also plotted
to provide all the information needed for the selection of the optimum
𝑁𝑏.

In conclusion, it can be inferred that a satisfactory level of accuracy
(𝑅𝑑 < 1%) is achieved for 𝑁𝑏 > 10. Given that the increase in execution
time is only modest, 𝑁𝑏 = 40 (𝑅𝑑 ≈ 0.1%) is chosen and will be utilized
in subsequent exercises.

Fig. 8 illustrates the comparison of section force distribution in the
plate regions obtained through the proposed approach with 𝑁 = 20
and 𝑁𝑏 = 40, and a FE model with 523626 degrees of freedom utilizing
S8R and B33 elements. Additionally, Figs. 9 and 10 present the axial
force and in-plane bending moment, respectively, along the stringer
also compared with the results from the FE model. A high degree
of agreement is observed, affirming the robustness of the proposed
procedure.

Concerning CPU time, the closed-form solution under the mentioned
conditions required 8.6 s, whereas the FEM solution took 29 s when
executed on an Intel Core i5-8250U CPU 1.60 GHz with 8 GB DDR3
RAM.

6.2. Benchmark exercise 2

The second benchmark exercise is illustrated in Fig. 11. It comprises
a stiffened plate with three regions featuring distinct composite lay-
ups, each incorporating a circular cutout, and two stringers with a
circular tubular section. The applied loads on the plate are depicted in
blue, and the support conditions are highlighted in red. Additionally,
concentrated moments at the ends of the stringers are indicated in
green. It is important to emphasize that the simple support conditions
(𝑢3 = 0) have been replaced by the condition affecting the deriva-
tive of deflection along the boundary, implying that the deflection is
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Fig. 8. Section forces for the example problem 1.

Fig. 9. Axial force along the stringer for example 1.

constant along the boundary but not necessarily zero, as explained
further by Lekhnitskii [12] and Pastorino et al. [5]. These combined
actions result in a bending state within the plate regions and induce
out-of-plane bending and torsion in the stringers.

The problem is solved using 𝑁 = 20, 𝑅𝑢 = 2 and 𝑁𝑏 = 40, while the
FE model used for comparison used a STRI3 and B33 element mesh with
304,818 degrees of freedom. Bending result distributions on the plate
regions are compared in Fig. 12, and the bending and torsion moments
in the stringers in Figs. 13 and 14.

Remarkably, an excellent agreement is achieved between the pre-
sented methodology and the finite element solution. However, a slight
discrepancy is observed in the bending and torsional moments along
7

Fig. 10. In-plane bending moment along the stringer for example 1.

Fig. 11. Geometry, loads and lay-up for exercise 2.

the stringers. In light of this difference, additional tests have been
conducted, revealing that an improvement in result accuracy is more
effectively attained by increasing the truncation order of the plate
regions (𝑁), as opposed to increasing 𝑁𝑏. The rationale behind this
observation is that the transfer of load at the joints between the plates
and the beams is influenced by both 𝑁 and 𝑁𝑏. Simply increasing one
of them does not constitute the optimal strategy for achieving more
satisfactory results. Due to space limitations, detailed results are not
presented here.

The CPU time for the closed-form solution was 7.43 s, while the
FEM solution required 27 s on an Intel Core i5-8250U CPU 1.60 GHz
with 8 GB DDR3 RAM.

6.3. Benchmark exercise 3

The geometry of the third and latest benchmark exercise presented
here is depicted in Fig. 15. It features a trapezoidal stiffened plate
comprising six plate regions with two cutouts and two stringers with an
I-section. Boundary conditions are defined in terms of loads (colored in
blue), displacements (colored in red), and two concentrated forces at
the stringers (colored in green).

As in previous examples, the problem is solved using the method-
ology presented here with 𝑁 = 20, 𝑅𝑢 = 2, and 𝑁𝑑 = 40. The obtained
solution is compared with that from a finite element model based on
S8R and B33 elements, featuring 517,666 degrees of freedom. Results
for the plate regions are shown in Fig. 16, and along the stringers in
Figs. 17 and 18.

Once again, the agreement between both solutions is excellent,
though some slight discrepancies are observed. Similar to benchmark
example 2, the solution obtained with the proposed methodology will
become closer to the finite element solution by increasing the number
of functions used for the approximation in both the plate regions (𝑁)
and the beams (𝑁𝑏).

In this exercise, the close-form solution required 14.86 s and the
FEM consumed 70 s.
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Fig. 12. Section forces for the example problem 2.
Fig. 13. Bending moment along the stringers for example 2.

7. Discussion and conclusions

The present paper introduces an innovative closed-form approach
to solve the structural problem of composite stiffened plates with
cutouts. The lay-ups in the plate regions are assumed to be symmet-
rical and the stringers embedded, thereby decoupling the stretching
and bending problems. This development broadens the application
range of closed-form methodologies based on the Lekhnitskii formalism
previously presented by the authors in [4,5].

Although the applicability of the proposed procedure may be con-
sidered limited, it is not uncommon to use designs with symmetrical
8

Fig. 14. Torsion moment along the stringers for example 2.

Fig. 15. Geometry, loads and lay-up for exercise 3.



Composite Structures 343 (2024) 118284A. Blázquez et al.
Fig. 16. Section forces for the example problem 3.
Fig. 17. Axial force along the stringers for example 3.

planar configurations featuring approximately elliptical cutouts, where
the methodology proposed here could be directly applicable. In cases
where the panel configuration is not symmetrical, and even for curved
panels, the aerospace industry often uses simplified methods in the ini-
tial design stages to help engineering decisions. This is in line with the
primary objective of the methodology here presented, enabling efficient
parametric analysis, facilitating the selection of the most promising
configurations.

The methodology has been successfully validated by comparing the
obtained solutions in plates and beams with results from FE models
9

Fig. 18. In-plane bending moment along the stringers for example 3.

using standard elements of Abaqus, which adhere to the Kirchhoff–
Love hypothesis for plate bending and the Euler–Bernoulli hypothesis
for beams, respectively.

The computational time is quite competitive and the accuracy is
outstanding even for low approximation orders.

The most innovative findings of the methodology are:

• Frame. The methodology is developed to analyze the structural
behavior of stiffened plates with non-uniform lay-ups, including
elliptical cutouts and embedded stringers.

• Accuracy. The tool has been demonstrated to be able to be used
with an outstanding level of accuracy for the exercises presented.
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• Efficiency. The saving in computational time required to perform
analyses or parametric studies with the tool is remarkable. In fact,
for a similar level of accuracy, it remains below the analysis time
of FEM. Moreover, since MATLAB is an interpreted language, the
time savings would be even more significant if the program were
implemented in a compiled language such as C or FORTRAN.

• Versatility. The approach has been coded in MATLAB. However,
it is possible to design a completely custom and user-oriented
tool based on the methodology developed in any math-oriented
programming language.

• Adaptability. Any modification on the geometry, loads, or prop-
erties can be introduced easily into the input parameters, re-
meshing is not necessary (as it is in FEM).

Finally, the consideration of the stretching–bending coupling (as a
onsequence of using non-symmetric laminates and/or non-embedded
tringers) should be the next step to increase the frame of applicability
f the methodology. This topic has been already investigated in the
h.D. dissertation by Pastorino [14].
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