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Abstract
We present a new version of the FILDSIM code (Galdon-Quíroga et al 2018 Plasma Phys.
Control. Fusion 60 105005), which significantly refines the modelling of the fast-ion loss
detector (FILD) signal. We demonstrate that the FILD weight functions computed using this
new version of FILDSIM are more accurate relative to synthetic benchmarks than those
computed using the previous version. Thus, the new version enables higher-quality
velocity-space sensitivity modelling and reconstructions. We validate the improvements on
experimental data from discharge #75620 at TCV. Additionally, we present a novel approach for
characterizing FILDs through a gross FILD measurement and a gross weight function based on
the calculations from the new version of FILDSIM. We use them to characterize the TCV FILD.

Keywords: fast ion, fast-ion loss detector, FILDSIM, inverse problem, velocity space,
reconstruction

1. Introduction

Fast ions generated through high-energy neutral beam injec-
tion (NBI), electromagnetic wave heating in the ion cyclotron
range of frequencies (ICRF), and fusion reactions with ener-
gies ranging from tens of keV to several MeV play a crucial
role in the heating and stability of fusion plasmas. In particu-
lar, fusion-generated alpha particles are responsible for keep-
ing the energy of the thermal plasma of future fusion reactions
sufficiently high by transferring their energy to the thermal
plasma via collisions.
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the title of the work, journal citation and DOI.

Thus, fast-ion transport and confinement are of particular
concern. In magnetically-confined nuclear fusion experi-
ments, fast ions can escape confinement and strike the plasma-
facing components of the device, leading to material degrada-
tion and a decline in reactor efficiency [1, 2]. This undesirable
transport can be attributed to different mechanisms, includ-
ing interactions with magnetohydrodynamic (MHD) activity
[3, 4] such as toroidicity-induced Alfvén eigenmodes (TAEs)
[5–7] or edge-localized modes (ELMs) [8, 9]. Given these
challenges, a precise understanding of the fast-ion velocity-
space distribution function is crucial. This understanding
assists in identifying loss mechanisms, optimizing control
algorithms, and customizing auxiliary heatingmethods to pop-
ulate velocity-space regions where fast ions are less prone to
loss. Such estimates also enable the validation of predictive
models that can be applied to future devices and help guide
material engineering solutions designed to withstand fast-ion-
induced wear and tear.

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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Fast-ion loss detectors (FILDs) provide valuable
information on the velocity space of lost fast ions through
measurements close to the plasma edge (∼3 cm) [10, 11]. The
velocity space can be expressed in terms of the energy, E, and
pitch, p, given by

E=
1
2
mv2; p= sgn(IpBt)

v∥
v
. (1)

Here, v= (v2∥ + v2⊥)
1/2, v∥ is the ion velocity parallel to the

magnetic field, and v⊥ is the ion velocity perpendicular to
the magnetic field. Since the Larmor radius ρ= mv⊥/qB is
inversely proportional to the local magnetic field strength,
FILDs act as magnetic spectrometers by measuring the energy
and pitch of the lost fast ions; the ions follow magnetic field
lines and strike a scintillator plate in a manner governed by
the local magnetic field. Since FILDs provide essential data
on lost fast-ion velocity distributions, they have been installed
in numerous magnetically-confined fusion devices globally,
including ASDEX Upgrade [11–13], DIII-D [14], EAST [15],
JET [16], KSTAR [17], LHD [18], MAST-U [19, 20], NSTX
[21], and TCV [22]. The FILD designs for ITER [23] and JT-
60SA [24] underscore the importance of the diagnostic.

The paper is structured as follows: section 2 introduces the
mechanics and design principles of FILDs and introduces the
simulation code ‘FILDSIM’. Section 3 describes our improve-
ments to the current FILDSIM model. Section 4 evaluates the
new FILDSIMmodel against its predecessor and identifies key
physical factors leading to the discrepancies between the two
models. Section 5 presents two novel ways of characterizing
FILDs using the new FILDSIM model. Section 6 conducts an
evaluation of reconstructions of lost fast-ion velocity distribu-
tions, specifically for discharge #75 620 at TCV, to compare
the performance of the new FILDSIM model against its pre-
decessor. Section 7 concludes the paper.

2. FILD mechanics and FILDSIM modelling

In a scintillator-based FILD, ions pass through a pinhole con-
nected to a 3D collimator in the FILD probe head. The probe
head is placed close to the plasma, in the far scrape-off layer.
After passing through the pinhole, the collimated ions strike
a scintillator plate, triggering the emission of photons from
the scintillating material. A specialized camera setup captures
these photons. See figure 1(a) for an illustration of the working
principles of a FILD, and figure 1(b) for the placement of the
FILD at TCV.

Computational modelling is invaluable for a more in-depth
understanding of FILD measurements. The FILDSIM code
[25] simulates trajectories of fast ions originating from the
pinhole of the FILD and detects their collisions with either
the scintillator plate or other components of the FILD probe
head. A population of N ions with fixed energy and pitch is
initialized at random locations within the spatial limits of the
FILD pinhole and with random gyrophases within a predeter-
mined gyrophase acceptance cone. The locations where the
ions strike the scintillator plate are collectively used to define
a strike-point distribution, reflecting where ions with specific

energy and pitch may strike the scintillator plate. The value
of N is chosen to balance computational feasibility with the
accuracy of the resulting strike-point distributions. A typical
simulation usesN= 3 · 104 markers resulting in a computation
time of approximately 10 min.

Thus, ions with identical energy and pitch can strike the
scintillator plate at different locations. This variability is due to
two factors: the finite dimensions of the pinhole and the initial
gyrophases of the ions. Consequently, a given set of ions with
specific energy and pitch creates a distribution of strike points,
effectively blurring the fast-ion velocity distribution.

Let P(y,z|E ′,p ′) denote the strike-point distribution on the
scintillator plate, conditioned on the ion energyE′ and pitch p′.
We establish a mapping ψ : S→ V, where S⊂ R2 represents
the scintillator plate and V⊂ R2 velocity space parametrized
by (E ′,p ′), defined as

ψ : EP(y,z|E ′,p ′) (y,z) 7→ (E ′,p ′) . (2)

In this mapping, the centroid of the strike-point distribu-
tion P(y,z|E ′,p ′) is mapped to the point (E ′,p ′) ∈ V through
ψ. This one-to-one mapping, traditionally used to analyze
FILD measurements, is constructed by simulating the strike-
point distributions for various (E ′,p ′) pairs, associating each
centroid with its corresponding point in velocity space, thus
forming a bijection termed a ‘strike map’.

The raw camera measurement Mraw = Mraw(y,z) is
mapped to the fast-ion velocity distribution using the strike
map. However, this mapped version termed the ‘mapped FILD
measurement’ and denoted Mf, is not a one-to-one mapping
onto the actual fast-ion velocity distribution f. The discrep-
ancy arises from the spatial distribution of strike points on the
scintillator for specific values of energy and pitch of the lost
fast ions. The relation between the mapped FILD measure-
ment and the fast-ion velocity distribution can be modelled as
a Fredholm integral equation of the first kind

Mf (E,p) =
ˆ 1

−1
dp ′
ˆ ∞

0
dE ′W(E ′,p ′|E,p) f (E ′,p ′) , (3)

where the kernelW is a weight function that weighs the contri-
butions from all points in velocity space to a single point in the
mapped FILD measurement [25, 26]. Unprimed coordinates
refer to the mapped FILD measurement, and primed coordin-
ates to the lost fast-ion velocity space.

The continuous integral equation (3) is recast into the
matrix-vector equation

b= Ax (4)

using numerical quadrature. Specifically, we partition velocity
space using a uniformly-distributed grid, approximating the
value of each grid cell by its midpoint value and the integ-
ral by the midpoint sum [27]. The ‘system matrix’ A ∈ Rm×n

contains rows of discretized weight functions. Here, m repres-
ents the number of grid points in the discretized mapped FILD
measurement b, and n is the number of grid points in x. This
framework is consistent with similar models for confined fast-
ion diagnostics [26, 28–39].

2
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Figure 1. (a) FILD probe head schematic: Blue trajectories illustrate collimated lost fast ions passing through the FILD pinhole and striking
a plate coated with a scintillating material (green). Photons (yellow) are emitted at the impact locations. The red trajectory illustrates a lost
fast ion which, upon colliding with the collimator, is blocked from passing through the pinhole. (b) Trapped orbit of a lost fast ion measured
by the TCV FILD (black box) located in the midplane of the vessel.

3. Improved FILDSIM modelling

A fundamental challenge in interpreting FILD measurements
exists due to the variability in strike points for ions with the
same energy and pitch. Knowledge of the discharge conditions
can partially assist in mitigating this issue; for example, during
an NBI discharge with an injection energy of 30 keV, measure-
ments from prompt losses at 30 keV and 15 keV are expected
from the beam’s full- and half-energy components. While con-
textual knowledge aids in a nuanced interpretation of the FILD
data, the most reliable inference is obtained from solving the
inverse problem in (4).

Prior FILDSIM simulations have used Gaussian distribu-
tions to model the strike-point distributions, fp and fE, in both
pitch and energy. For the pitch,

fp (p;p0,σp) =
1√
2πσp

exp

[
− (p− p0)

2

2σ2
p

]
, (5)

where p0 is the actual pitch of the ion and σp the stand-
ard deviation of the pitch strike-point distribution. We denote
such Gaussian distributions by N

(
p;p0,σp

)
. The energy was

described by a skew-Gaussian distribution, given by

fE (E;β,E0,σE) =N (E;E0,σE)Φ (E;β,E0,σE) , (6)

where Φ(x;β,E0,σE) is the skewness parameter function
defined as

Φ(x;β,E0,σE) = 1+ erf

(
β
E−E0√

2σE

)
. (7)

Here, β is the parameter governing the degree of skewness, E0

is the energy of the ion, and σE is the standard deviation of the
energy strike-point distribution. The skewness of the strike-
point distributions is linked to how fast ions traverse the col-
limator. This results in ions of identical energies striking the

scintillator at varying locations due to limitations in collima-
tion. Notably, the skewness increases with an increase in ion
energy. This skewness is observed for all types of fast ions,
irrespective of their generation method, whether it be NBI,
ICRF, or fusion reactions.

The collimator factor fcol
(
E ′,p ′)=∆θN

(
E ′,p ′)/2πN ′,

accounting for the fraction of the number of ions striking the
scintillator relative to the number of ions initialized in the
pinhole within the gyrophase acceptance cone ∆θ/2π of the
collimator, is also included in the FILDSIM model, and a
yield function ϵ(E) describing the number of photons emit-
ted by the scintillator plate as a function of the energy of
the ion. In constructing the unified model, the equation for
the strike-point distribution f pE directly multiplies the indi-
vidual distributions, assuming statistical independence of the
components:

fpE (E,p;β,E0,p0,σE,σp)

= ϵ(E) fcol (E
′,p ′) fE (E;β,E0,σE) fp (p;p0,σp)

=
∆θϵ(E)N(E ′,p ′)

4π2N ′σpσE
exp

[
− (p− p0)

2

2σ2
p

− (E−E0)
2

2σ2
E

]

×
[
1+ erf

(
β
E−E0√

2σE

)]
.

(8)

For the computation of the kernels, the three parametersσE,σp,
and β are determined by minimizing the residual sum of
squares between the model and the strike-point distributions
obtained from FILDSIM. The fit is achieved through an iter-
ative process over predefined parameter ranges. The computa-
tions are performed using N= 3 · 104 markers, a number that
ensures sufficient statistical robustness for optimal parameter
fitting.

3
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3.1. Skewness and kurtosis

The Gaussian and skew-Gaussian models exhibit several
inaccuracies that warrant revisiting. Let XE and Xp be random
variables representing the ion energy and pitch. The skew-
Gaussian model psG for XE diverges significantly from the
empirical probability density function (pdf) p̂E(x), particularly
in the tails corresponding to higher energies. Similarly, the
Gaussian model for Xp is too narrow, significantly underes-
timating the ion counts at pitches close to the ion’s true pitch
value, and the tails are too broad. These shortcomings not
only compromise the accuracy of the model but also intro-
duce errors in the reconstructions. To address these issues, we
investigate alternative distributions that more accurately rep-
resent the simulated strike-point distributions.

In classical data analysis, statistical distributions are gen-
erally characterized by their first and second moments–
the mean µ and variance σ2. However, in systems exhibit-
ing non-Gaussian behaviour, this characterization is insuffi-
cient. Consequently, there is a need to consider higher-order
moments–specifically the third and fourth moments, termed
‘skewness’ and ‘kurtosis.’

Let X be a random variable whose moment-generating
functionMX(t) = E

[
etX

]
exists for some interval around t= 0.

The nth moment about the origin is then

E [Xn] =
dnMX

dtn

∣∣∣∣
t=0

, (9)

where E is the expectation value. From this, we calculate the
skewness and kurtosis about the mean µ as

s=
E
[
(X−µ)

3
]

σ3
; k=

E
[
(X−µ)

4
]

σ4
. (10)

Skewness quantifies the degree of asymmetry about the mean,
while kurtosis quantifies the concentration of extreme values
in the tails of the distribution. Importantly, skewness and kur-
tosis offer a more nuanced approach to characterizing non-
Gaussian aspects, enabling us to rectify the shortcomings in
the Gaussianmodels by capturing the inherently non-Gaussian
aspects.

For pitch strike-point distributions, an ideal model would
have zero skewness and a kurtosis significantly less–
potentially half–than that of the previous FILDSIM model. A
suitable pdf is Wigner’s semicircle, described by the equation

W(p;p0,pR) =
2
πp2R

√
p2R− (p− p0)

2
. (11)

Here, p0 is the true pitch of the ion, and pR is the radius of
the semicircle, determined through an optimization process
similar to that used for other model parameters. The distri-
bution is supported on p ∈

[
p0 − pR,p0 + pR

]
. This function

offers desirable attributes for modelling the pitch distributions.
Specifically, it has short tails, which help to avoid the overes-
timation problems inherent in the Gaussianmodel, and a larger
width near the peak, providing a more accurate representation

of the high-density regions around p0 typical in the pitch dis-
tributions. From the analytical expressions for the pdfs of the
Gaussian and Wigner’s semicircle distributions, we can cal-
culate their skewness and kurtosis for a quantitative compar-
ison. Their respective moment-generating functions MX,G(t)
and MX,W(t) are [40]

MX,G (t) = exp

(
µt+

1
2
σ2t2

)
;

MX,W (t) =
2I1 (Rt)
Rt

,

(12)

where I1 is the modified Bessel function of the first kind.
Straightforward computations give

sG = 0; kG = 3, (13a)

sW = 0; kW = 2. (13b)

The kurtosis values for the Gaussian and Wigner’s semi-
circle distributions are based on their well-established theor-
etical properties. These values are intrinsic to the distributions
and do not depend on specific model parameters. The lower
kurtosis of Wigner’s semicircle is advantageous as it mitigates
the extended tails inherent in the Gaussian model, yielding a
more localized representation around the peak pitch value p0.

For energy strike-point distributions, the goal is to main-
tain a skewness of the candidate distributions close to that of
the previous model while reducing the kurtosis by approxim-
ately 1–5%. This adjustment aims to provide a more accurate
representation of the distribution’s behaviour at higher ener-
gies. With this goal in mind, we propose three candidate pdfs
to model the energy distributions: the raised cosine distribu-
tion f, the Cauchy distribution g, and the logistic distribution h.
These distributions were initially selected based on their stat-
istical moments being similar but not identical to those of a
Gaussian distribution. Their mathematical representations are

f(x;µ,σ) =
1
2σ

[
1+ cos

(
x−µ

σ
π

)]
, (14a)

g(x;µ,γ) =
1
πγ

1

1+
(
x−µ
γ

)2 , (14b)

h(x;µ,s) =
exp

(
− x−µ

s

)
s
(
1+ exp

(
− x−µ

s

))2 . (14c)

Here, f(x;µ,σ) is supported on [µ−σ,µ+σ], 2γ is the full
width at half-maximum (FWHM) of the Cauchy distribution,
and s is a scale parameter. These distributions are illustrated
and compared with a Gaussian distribution in figure 2.

The third and fourth moments of the three candidate dis-
tributions multiplied by the skewness parameter function do
not have analytical expressions. However, analytic expres-
sions can be determined for the expressions in (14), revealing
their differences relative to a Gaussian distribution. By sym-
metry, the raised cosine distribution and the logistic distribu-
tion have a skewness of zero, whereas the Cauchy distribution

4
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Figure 2. The Gaussian distributionN (x;0,1) plotted with the candidate distributions: (a) the raised cosine distribution f(x;0,2.5), (b) the
Cauchy distribution g(x;0,1), and (c) the logistic distribution h(x;0,1). The parameter values can be determined by comparing the
expressions given here with those in (14). The difference between the Gaussian and candidate distributions is also plotted and indicated by
the green curves. Note that the raised cosine distribution is the only distribution with shorter tails than the Gaussian distribution.

does not have a well-defined third moment since the integ-
rals
´∞
−∞ xkg(x;µ,γ)dx diverge for k⩾ 1. With the moment-

generating functions

MX,rc (t) =
π2 sinhσt

σt(π2 +σ2t2)
eµt, (15a)

MX,log (t) = exp(µt)B(1− st,1+ st) (15b)

for the raised cosine distribution [41] and the logistic
distribution [42], where

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

(16)

is the beta function expressed in terms of the standard Gamma
function, their kurtoses can be shown to be:

kf = c1σ
−4, kg =∞, kh = c2s

−4 (17)

for some scalars c1 and c2. It follows that distributions with
a kurtosis different from kG = 3 can be more accurately
described in terms of the raised cosine and logistic distribu-
tions by optimally fitting σ and s.

To introduce controlled skewness, we multiply each distri-
bution by the skewness parameter function Φ. Note that mul-
tiplying a distribution p(x) by Φ changes its moments, since
the nth moment Mn is given by

Mn =

ˆ ∞

−∞
dxxnp(x) , (18)

whereas

M ′
n =

ˆ ∞

−∞
dxxnp(x)Φ(x;µ,σ)

=Mn+

ˆ ∞

−∞
dxxnp(x)erf

(
β
x−µ√
2σ

)
.

(19)

Still, the initial guesses of candidate distributions based on
their similarity to the Gaussian distribution are also a good
guess for their skewed variants.

The candidate distributions are illustrated in figure 3 for
intervals relevant to FILD measurements at TCV. The illustra-
tions concentrate solely on the candidate distributions, exclud-
ing the FILDSIM simulation histograms, to present a clear

comparison of their skewness and tails relative to the skew-
Gaussian distribution. The skewness and kurtosis of these
distributions, calculated to assess their alignment with tar-
geted Gaussian and skew-Gaussian properties, are tabulated in
table 1. For energy strike-point distributions, the raised cosine
distribution has the best fit, with its skewness identical to the
skew-Gaussian’s at 1.8 and a kurtosis of 4.7, slightly lower
than the skew-Gaussian’s 4.8. For pitch strike-point distri-
butions, the Gaussian and Wigner’s semicircle distributions
meet the targeted skewness of 0. However, Wigner’s semi-
circle markedly surpasses the Gaussian in kurtosis, having a
value of 2.6 compared to the Gaussian’s 4.1. The elevated
kurtosis of the Gaussian distribution, as seen in figure 3(d),
is characterized by its more pronounced tails compared to
those of the Wigner’s semicircle. This distinction underscores
our selection of the Wigner’s semicircle for its relatively
shorter tails.

The discrepancy between the theoretical kurtosis values
in (13a) and (13b) and the emipirical values in table 1 can
be attributed to several factors. Despite the large sample size,
the kurtosis calculated by MATLAB is a sample-based estim-
ate, which uses a specific estimator designed to correct for
finite sample sizes. This estimator deviates from the theoretical
population kurtosis and is subject to sample-to-sample vari-
ability. Moreover, MATLAB’s pseudo-random number gen-
eration algorithms, which underlie the simulation, may intro-
duce additional approximation errors. Therefore, the values
in table 1 should be considered approximate, albeit closely
aligned, representations of their theoretical counterparts, as
they are influenced by the method of kurtosis calculation, ran-
dom variability, and computational approximations.

By incorporating the raised cosine andWigner’s semicircle
distributions, we have refined the FILDSIM model for fitting
the strike-map distributions in energy and pitch. The mathem-
atical representation of this new model is:

f (E,p;β,E0,p0,σE,pR) =
∆θϵ(E)N(E ′,p ′)

2π2N ′σEp2R

√
p2R− (p− p0)

2

×
[
1+ cos

(
E−E0

σE
π

)]
×
[
1+ erf

(
β
E−E0√

2σE

)]
. (20)

5
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Table 1. Skewness and kurtosis for the candidate distributions in figure 3.

Energy Pitch

Skew-Gaussian Raised cosine Cauchy Logistic Gaussian Wigner’s semicircle

s 1.8 1.8 2.3 2.0 0 0
k 4.8 4.7 7.1 5.7 4.1 2.6

Figure 3. (a) Raised cosine with σ= 9.1, (b) Cauchy with γ= 0.62, and (c) logistic distributions with s= 4.6 plotted with a skew-Gaussian
distribution with σE = 9.1 and β= 2.9 to model the strike-point distribution for E= 25 keV and p= 0.57; see also figure 4. (d) Wigner’s
semicircle with pR = 0.012 and a Gaussian distribution with σp = 0.007 for E= 25 keV and p= 0.57.

This formulation meets our statistical criteria: it allows for
manipulating skewness in energy through β and has a kurtosis
less than the Gaussian model for both energy and pitch, in line
with our initial objectives.

4. Evaluation of FILDSIM models at TCV

We have implemented the proposed model for the TCV FILD.
The energy and pitch strike-point distributions along with the
skew-Gaussian/Gaussian and the skew-raised cosine/Wigner’s
semicircle model fits are illustrated in figure 4, simulated with
N= 3 · 104 markers, a value at which the residual errors and
the χ2-values have saturated (see below). We will refer to
these models as the ‘standard Gaussian model’ (SGM) and
the ‘raised cosine model’ (RCM). Compared to the SGM, the
RCM provides a more accurate fit for both energy and pitch
strike-point distributions, specifically eliminating the gap in
the upper tails of the energy distributions and removing the
tails in the pitch distributions entirely.

Recall the χ2 statistic defined by

χ2 =
k∑

i=1

(Oi − ξi )
2

ξi
, (21)

whereOi and ξi denote the observed and expected frequencies
for measurement i, and k is the total number of measurements.

For the purpose of comparing the SGM and RCM in fitting
the energy strike-point distributions, both models yield com-
parable χ2-test statistics. Specifically, the average χ2 values
for 19 different energy levels ranging from 7 to 47 keV at a
constant pitch p= 0.57, the average χ2 values are

〈
χ2

〉
SGM

= 22.6;
〈
χ2

〉
RCM

= 22.9. (22)

In all cases, the χ2 values fall below the critical value χcrit =
27.6 for a significance level of α= 0.05, calculated for the
degrees of freedom df= k− 1− p, where p is the number of
estimated parameters. The tests indicate that neither model is
statistically preferable based on χ2 alone. Hence, more soph-
isticated statistical tests are required to differentiate between
the SGM and RCM energy strike-point distributions.

The statistical characteristics are different for the pitch
strike-point distributions. The χ2-test statistics averaged over
15 different pitch values in the range from 0.4 to 0.8, holding
the energy constant at E= 25 keV, are

〈
χ2

〉
SGM

= 53.9;
〈
χ2

〉
RCM

= 23.4, (23)

and χcrit = 27.6. The χ2 values for the SGM are not significant
for any of the 15 pitch strike-point distributions, whereas the
χ2 values for the RCM are significant in all 15 cases.
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Figure 4. (a) SGM and (c) RCM fits to synthetic strike-point distributions in energy at TCV for p= 0.57. With E0 indicated as a subscript,
the parameter values for the fits in (a) are: (σE,β)7 = (1.1,2.4),(σE,β)13 = (3.4,2.4),(σE,β)19 = (5.9,2.7),(σE,β)25 = (9.1,2.9). The
parameter values for the fits in (c) are: (σE,β)7 = (1.0,10),(σE,β)13 = (3.8,8.5),(σE,β)19 = (6.5,5.3),(σE,β)25 = (9.7,3.6). (b) SGM
and (d) RCM fits to synthetic strike-point distributions in pitch at TCV for E= 25 keV. The parameter values for (b) and (d) are indicated on
the subfigures.

To further quantify the improvement of the RCM over the
SGM, we define the directional residual difference (DRD) as

(DRDi)k1k2 = |Rik1 | − |Rik2 |, (24)

where Rik is the ith residual of model kj for j = 1,2. It fol-
lows that (DRDi)k1k2 < 0 when the ith residual of k1 is closest
to 0, and (DRDi)k1k2 > 0 when the ith residual of k2 is closest
to 0. The DRD for k1 = RCM and k2 = SGM are illustrated
in figure 5. Since the improvements in the RCM compared to
the SGM for the strike-point distributions in energy occur at
the upper tails, only the DRDs for the upper 90th percentile are
illustrated. For both energy and pitch strike-point distributions,
almost all residuals of the RCM are closer to zero than those
of the SGM, so DRDi < 0, indicating an improved model. The
SGM’s overestimation of the tails is clearly evident, manifest-
ing as more negative DRD values in these regions.

4.1. SGM and RCM weight functions

In this section, we contrast the SGM and RCM weight func-
tions. Consider an ion initialized at (E ′,p ′). The velocity-
space distribution of this ion is a delta function f = δ

(
E ′,p ′).

All possible strike points from ions initialized at this point
in velocity space form a strike-point distribution. Reshaping

each strike-point distribution into a column vector and hori-
zontally concatenating them results in a 2D array in which
each column is a strike-point distribution corresponding to one
point in velocity space, and the rows are weight functions.
They indicate which points in velocity space can strike a spe-
cific point on the scintillator.

In the following, we focus on the weight function corres-
ponding to E= 25 keV and p= 0.57. This point was chosen
as it is central to a measurement to be analyzed in section 6.
The weight functions at other points in velocity space dis-
play the same characteristics. The numerically calculated
weight function is used as a benchmark for comparison; see
figure 6(a). The SGM and RCM weight functions are illus-
trated in figures 6(b) and (c). TheRCMweight function closely
aligns with the numerically calculated weight function in both
pitch and energy. Specifically, the sharp cut-off in pitch and the
behaviour of the upper tails are well-represented. On the other
hand, the SGMweight function exhibits noticeably longer tails
in both energy and pitch, and its high-intensity regions do not
qualitatively mirror those of the numerically calculated weight
function.

To evaluate the accuracy of the SGM and RCMmodels, we
introduce difference weight functions ∆Wℓ defined as

∆Wℓ =Wℓ −Wnum, (25)
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Figure 5. (a) DRD for energy and (b) DRD for pitch: Directional residual differences between SGM and RCM residuals for the strike-point
distributions in figure 4. Most points fall below 0 for all energies and pitches, indicating that the RCM residuals are generally closer to zero,
thus providing a better fit than the SGM.

Figure 6. (a) Numerically calculated weight function using FILDSIM for E ′ = 25 keV and p ′ = 0.57. (b)–(c) Weight functions according
to the SGM and RCM, respectively, under the same conditions as (a). The weight functions are zero in the white regions.

where Wℓ is the SGM or RCM weight function, and Wnum

is the numerically calculated weight function considered to
be the benchmark. The difference weight functions ∆WSGM

and ∆WRCM are illustrated in figure 7. Visual inspection of
∆WSGM indicates a noticeably larger width in pitch and elong-
ated tails compared to Wnum, as well as quantitatively larger
deviations compared to ∆WRCM.

Building on this definition, we introduce the absolute error
EA,ℓ of model ℓ to quantify the total deviation across all ele-
ments of the difference weight function:

EA,ℓ =
m∑
i=1

n∑
j=1

∣∣∆Wℓ,ij

∣∣, (26)

where m and n are the number of rows and columns in ∆Wℓ.
The absolute error for the difference weight functions under
consideration according to the SGM and the RCM is

EA,SGM = 186; EA,RCM = 95. (27)

Thus, the RCM is a 49% improvement in the absolute error
over the SGM. Importantly, this improvement is not a localized
phenomenon restricted to the specific weight function under

consideration; rather, similar improvements are observed in all
weight functions.

5. Characterization of FILDs

This section introduces two novel ways of characterizing
FILDs: the gross FILD measurement Mgross and the gross
weight function Wgross. To determine the regions in the FILD
camera where the most counts would be generated given
a uniform distribution of ions in velocity space, we integ-
rate the strike-point distributions for all initial energies and
pitches. The resulting integrated measurement, denoted as
Mgross, is calculated by setting f = 1 in (3) and evaluating the
integrals:

Mgross (E,p) =
ˆ 1

−1
dp ′
ˆ ∞

0
dE ′W(E ′,p ′|E,p) . (28)

The gross FILD measurement is the mapped FILD measure-
ment for uniformly distributed ions in velocity space. Since
the individual strike-point distributions can overlap, the mag-
nitude of the gross FILD measurement at a given point should
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Figure 7. (a)–(b) Difference weight functions ∆WSGM and ∆WRCM, representing the discrepancy between the weight functions fitted using
the SGM and RCM and the numerically calculated weight function using FILDSIM. Observe the SGM’s significant overestimation in the
length of the upper tail in energy and the width in pitch.

not be interpreted as the absolute number of counts attribut-
able to a single ion from a particular location in velocity space.
Instead, it serves as a relative density measurement indicating
the likelihood of photon emission at different locations on the
scintillator.

We define the ‘gross weight function’ Wgross
(
E ′,p ′) as the

sum of all individual weight functions W
(
E ′,p ′|E,p

)
[43]:

Wgross (E
′,p ′) =

m1∑
i=1

m2∑
j=1

W(E ′,p ′|Ei,pj) , (29)

where m1m2 = m is the number of grid points of the mapped
FILD measurement. The magnitude of the gross weight func-
tion indicates the counts per ion at each point of velocity space,
irrespective of where the ion ends up striking the scintillator.

The constructs Mgross and Wgross offer distinct yet com-
plementary insights into the generation and interpretation of
the FILD measurement. Specifically, the gross FILD meas-
urement reveals the regions in the FILD camera where the
most counts will be measured, assuming a uniform distribu-
tion of initial energies and pitches. On the other hand, the
gross weight function quantifies the relative contributions of
ions from different points in velocity space to the FILD meas-
urement. In summary, the gross FILD measurement offers a
‘forward model’ of photon emission, whereas the gross sys-
tem matrix provides an ‘inverse perspective,’ making them
mutually informative for a comprehensive understanding of
the FILD measurement.

Figure 8 provides a visual comparison of the gross FILD
measurement and the gross weight function for the TCVFILD,
with the first row displaying the gross FILD measurement and
the second row the gross weight function, computed using the
SGM and the RCM in the first and second column, respect-
ively. According to the SGM-generated gross FILD meas-
urement, the most impacts on the scintillator occur at ener-
gies around 45 keV and pitches around 0.45. Conversely, in
the RCM-generated gross FILD measurement, most impacts
occur at energies around 38 keV and pitches around 0.73.
The peak in the RCM occurs at energies lower relative to
the peak in the SGM since the overestimation of the upper
tails of the energy distributions in the SGM is corrected in
the RCM. Furthermore, the SGM overestimates the tails of the

pitch distributions more severely for lower pitch values com-
pared to larger ones. This leads to a wider high-intensity region
at these lower pitches. In contrast, the RCM provides a more
accurate estimation of the width in pitch across its entire range.
This accuracy reduces the number of counts at lower pitch val-
ues. As a result, the peak shifts to a higher pitch value.

In the SGM-generated gross weight function, ions with an
energy of 35 keV and a pitch of 0.45 contribute the most to
the FILD measurement. On the other hand, the RCM indic-
ates the contribution to the FILDmeasurements is largely inde-
pendent of pitch across energies of approximately 30–40 keV.
However, there is a subtle increase in the number of counts
as the pitch increases. Notably, the RCM shows a significant
reduction in the contribution from ions with energies exceed-
ing 35 keV compared to the SGM. This suggests that the
RCM provides a different understanding of the ion dynamics
across different energy and pitch values. This new understand-
ing extends beyond the specificities of any individual fusion
device. The relevance to TCV in this context is through its
applied magnetic field and the specific geometry of its FILD
detector.

6. Reconstructions of discharge #75620

With a mapped FILD measurement and the system matrix
from FILDSIM simulations, it is possible to estimate the velo-
city distribution of the lost fast ions by solving the inverse
problem in (4), as explored in multiple studies on velocity-
space tomography in fusion plasmas [25, 28, 32, 44–56].
The inverse problem is ill-posed, so regularization techniques
are essential to obtain stable solutions. Among regularization
methods, Tikhonov regularization is typically used to compute
reconstructions of fast-ion velocity distributions [46–48, 50,
51, 54, 55]. For Tikhonov regularization, the optimal regular-
ized solution x∗ minimizes the objective function

J(x) = ‖Ax− b‖22 +λ2‖Lx‖22, (30)

where L is the regularization matrix penalizing deviation from
certain desired characteristics of the solution. Minimizing (30)
can be viewed as a numerical optimization
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Figure 8. (a), (b) The gross FILD measurement computed using the SGM and the RCM, respectively, for a magnetic field at the FILD
probe head given by (BR,Bϕ,Bz) = (0.00,−1.14,0.14) T. (c), (d) The gross system matrix computed using the SGM and the RCM,
respectively, for the same magnetic field.

Figure 9. (a) NBI-injected energy throughout the discharge, with a vertical dashed line indicating t= 1005 ms. (b) The raw FILD
measurement with the strike map superimposed in white. (c) Mapped FILD measurement in counts at the same time point, obtained using
the strike map.

x∗ = argmin
x

J(x) , (31)

where the parameters x ∈ Rn are the values of the approxim-
ating lost fast-ion velocity distribution at each grid point in
velocity space. The regularization parameter λ balances the
trade-off between data fidelity (Ax− b) and solution regular-
ity (Lx). Its value is typically chosen based on techniques like
the L-curve [50, 57] or a priori knowledge. This knowledge
stems from our understanding of expected features in fast-ion
velocity distributions, such as the locations of full, one-half,
and one-third NBI injection energy peaks. By incorporating
these expectations into our analysis, we can choose a value

of λ that ensures the reconstructed distributions not only align
with the measured data but also reflect the anticipated physical
characteristics.

We compute reconstructions of experimental FILD meas-
urements acquired with the TCV FILD. Specifically, our ana-
lysis focuses on the FILD measurement at t= 1005 ms dur-
ing discharge #75 620 measured at a radial distance of r=
−17 mm from the plasma, approximately co-planar with the
magnetic axis, where zFILD = 0.050 m and zmag = 0.052 m.
This time point corresponds to an L-mode confinement regime
five milliseconds after the start of the last ‘on’ phase of the
NBI-1 injector, as indicated in figure 9(a). The relevant exper-
imental parameters at this time point were: injection power,
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Figure 10. TCV discharge #75 620: (a) Spectrogram from a Mirnov coil showing low-frequency mode activity beginning at t= 1012 ms.
(b) Spectrogram from the fast FILD camera. No resolved frequency is identified. The vertical dashed lines in both panels mark t= 1005 ms.

1.1 MW; primary injection energy, 27 keV; toroidal magnetic
field, Bt =−1.45 T; plasma current, Ip =−170 kA. The mean
triangularity at the edge remained constant at approximately
+0.26 throughout the discharge. The NBI-1 was utilized as
the sole external heating system. The first MHD activity was
observed at t= 1012 ms, as identified in the Mirnov coil and
FILD spectrograms illustrated in figure 10, ensuring that the
FILD measurement at t= 1005 ms was unaffected by any
MHD activity. Consequently, the sole fast-ion loss and redis-
tribution mechanisms affecting this measurement were first-
orbit losses and Coulomb scattering. The experimental object-
ive for this particular discharge was to commission new FILD
hardware.

The raw FILDmeasurement is illustrated in figure 9(b) with
the strikemap superimposed in white, the mapped FILDmeas-
urement in figure 9(c), and the reconstructions computed using
the SGM and RCM in figure 11. The bright spots observed
in figure 9(c) around E= 10 keV and p= 0.45− 0.57 stem
from reflections due to a damaged area on the scintillator plate.
These are recognized artefacts and were removed during data
preparation, which explains their absence in the reconstruc-

tions shown in figure 11. We set the regularization matrix L
equal to the identity matrix I, intentionally avoiding additional
constraints on the solution. Figure 11 displays three differ-
ent reconstructions: one thought to be under-regularized, an
‘optimal’ one, and one over-regularized, shown in the first,
second, and third rows, respectively. The first column presents
reconstructions computed using the SGM, and the second
column reconstructions computed using the RCM.

Firstly, the reconstructions display a high-intensity region
at approximately 25 keV and a pitch of 0.57. These paramet-
ers are consistent with the injection peak from the full energy
component of the NBI, verifying the accuracy of the recon-
structed velocity distributions. Secondly, at energies around
20 keV and a pitch of 0.55, certain qualitative differences are
observable between the SGM and RCM reconstructions. Thus,
the choice of FILDSIM model shapes the characteristics of
the reconstructions, though not always in a directly correlated
manner with the model features. Consequently, while we anti-
cipate that the RCMmay offer improved representations of the
true velocity distribution of lost fast ions, this is subject to the
inherent complexities of the reconstruction process.
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Figure 11. Reconstructions of the FILD signal at t= 1.005 s during discharge #75 620 using two FILDSIM models: SGM (left column) and
RCM (right column). Each row corresponds to a different regularization level, specified by the regularization parameter λ. The top row
(λ= 5× 10−7) shows under-regularized reconstructions featuring isolated, high-intensity spots. The middle row (λ= 5× 10−6) shows
what are considered ‘optimal’ reconstructions, balancing data fidelity and regularization. The bottom row (λ= 5× 10−5) shows
over-regularized reconstructions, where excessive smoothness may obscure specific aspects of the velocity distribution. The vertical dashed
lines indicate E= 25 keV.

7. Conclusion

This paper presents a new FILDSIM model of simulated
strike-point distributions. We implement a skew-raised cosine
distribution in energy and Wigner’s semicircle distribution in
pitch. These new distributions refine the model fits, particu-
larly improving the model’s ability to accurately capture the
shape of the tails at high energies and the correct width in
pitch. Importantly, while our work primarily focuses on NBI-
generated ions, the versatility of the FILDSIM model extends
its applicability to other fast-ion species. Since FILDSIM
models the trajectory of any fast ion, regardless of its origin—
be it NBI, ICRF, or fusion reactions—the enhanced model is
equally pertinent to fusion products and RF-heated ions.

As a direct result of these improvements, the synthetic
data generated by the new FILDSIM model shows strong

qualitative agreement with experimental FILD measurements.
Moreover, these methodological improvements enable more
accurate reconstructions, thereby contributing to a better
understanding of lost fast-ion velocity distributions.

Additionally, we introduce new analytical tools–the gross
FILD measurement and gross weight function–to character-
ize the TCV FILD. These tools provide a structured frame-
work to assess the instrument’s measurement capabilities and
may guide future experimental designs and data interpretation
strategies.
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