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Abstract 

In this work, we study the mathematical practice of defining by mathematics researchers. 

Since research is an important part of many professional mathematicians, understanding 

how they do research is a necessary step before thinking about future researchers’ 

undergraduate and postgraduate education. We focus on the defining process associated 

with the generalization of existing definitions as a way of constructing new ones.  Data of 

this qualitative study come from a case study whose subject is a mathematics researcher 

in the area of differential geometry. We have interviewed this researcher and collected 

her research documents. From our analysis of the data, we have identified four phases in 

the defining process (Finding an opportunity to generalize an existing concept, Proposing 

a new definition, Justifying that the new definition is valid and Continuing the chain of 

definitions), which we will describe in detail in the Results section.  
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Introduction 

In recent years, research in mathematics education at university level has gained more 

and more relevance. For example, some authors have studied the ‘advanced 

mathematical thinking’, like Tall, who characterized it ‘by two important components: 
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precise mathematical definitions […] and logical deductions of theorems based upon 

them’ [1,p.495]. 

Other authors prefer the term ‘advancing mathematical activity’, like 

Rasmussen, Zandieh, King & Teppo [2]. The word ‘advancing’ is chosen in order to 

‘emphasize the progression and evolution of students’ reasoning in relation to their 

previous activity’ [2,p. 51] and the word ‘activity’ reflects their ‘characterization of 

progression in mathematical thinking as acts of participation in a variety of different 

socially or culturally situated mathematical practices’ [2,p. 52]. Among the advancing 

mathematical activities, the authors include mathematical practices like defining, 

symbolizing, algorithmatizing, etc. Several authors have analyzed how mathematicians 

construct proofs, how they review them and how they present them to students in 

advanced courses, see [3-4]. Furthermore, Alcock [5] has inquired about the 

mathematicians’ perspectives on how students of an introductory course are being 

taught and how they learn about proofs. 

There has also been interest in how mathematicians do research at university. 

For example, Burton highlighted the importance of ‘research practices of 

mathematicians’ [6,p.1] and she proposed ‘a model for how mathematicians come to 

know’ [6,p.11]. She also noted that this type of study has relevance for teaching and 

learning mathematics at all levels. Other authors, like Mejia-Ramos and Weber [7] and 

Weber and Mejia-Ramos [8] focused on mathematicians’ practices, like how and why 

mathematicians read proofs during their research in mathematics. All of these authors 

have considered mathematicians as subjects of study.  

Since we are interested in future mathematicians’ education and research being 

an important part of the professional life of many of them, understanding how 

mathematicians do research becomes our focus of interest. According to Weber, Inglis 



and Mejia-Ramos ‘if the goal of instruction is to have students engage in experts’ 

practices, then it is necessary to have an accurate understanding of what those practices 

are’ [9,p.38].  

The study of mathematical processes of construction of knowledge is important 

in itself because mathematics has a dynamical nature and there exists a duality of 

process/product in the processes of construction of mathematical content: 

defining/definition, proving/proof, etc. (see Lakatos [10]). Therefore, the focal point is 

not only the set of assertions that can be done (axioms, propositions, theorems, etc.) but 

rather the ways in which these assertions have been produced by mathematics as a 

cultural product (the ‘practices of mathematicians’). 

Those ‘practices of mathematicians’ have been considered by Mason as enquiry 

activities that ‘explore ideas, develop notations, define terms, and prove theorems’ 

[11,p.190].  

Among the practices of mathematicians, the importance of the defining process 

has been highlighted by several authors. For Freudenthal, ‘establishing a definition can 

be an essential feat, more essential than finding a proposition or a proof’ [12,p.134]. De 

Villiers states that ‘the construction of definitions (defining) is a mathematical activity 

of no less importance than other processes such as solving problems, making 

conjectures, generalizing, specializing, proving, etc., and it is therefore strange that it 

has been neglected in most mathematics teaching’ [13,p.249]. Zandieh and Rasmussen 

[14] also studied the notion of defining as a mathematical activity. Indeed, they 

constructed a framework in order to explain students’ progress when they move from 

informal to more formal ways of reasoning. 

More recently, Ouvrier-Buffet talks about the need to study the defining process 

used by mathematicians. She presented a model of the mathematical defining processes, 



for which she used both classroom activities and interviews with professional 

mathematicians (see [15-17]). While she focused on the definitions that appear during 

processes of proof or when solving a problem, we will study the defining process 

associated with generalization of existing definitions. In our study, we use the term 

‘generalization’ in the sense of Harel and Tall, to ‘mean the process of applying a given 

argument in a broader context’ [18,p. 38]. 

In the present paper, we wish to contribute to a better understanding of the 

process of defining of professional mathematicians when they do research. We consider 

that investigating in depth how to characterize this process will help our understanding 

of how future mathematicians’ undergraduate and postgraduate education should be. In 

order to research this process of defining, we will consider mathematicians as subjects 

of study and strive to identify the characteristics of their process of construction of 

definitions when they generalize existing ones. 

Conceptual Framework 

Our conceptual framework combines the concept of ‘constructive definition’ of 

Freudenthal [12] and the tools ‘operators’ and ‘control structures’ proposed by Ouvrier-

Buffet [15].  

For Freudenthal [12], there are two types of activities of defining in 

mathematics: descriptive and constructive. The activity of defining that lead us to a 

descriptive definition ‘outlines a known object by singling out a few characteristic 

properties’, while the one that leads us to a constructive definition ‘models new objects 

out of familiar ones’ [12,p.457]. This last type of defining activity is usually linked to 

the practice of generalizing. 

Furthermore, Ouvrier-Buffet proposed to ‘characterize mathematically (through 

an epistemological study of the concept) the nature of the definition construction’ 



[15,p.263]. In order to do this, she used the tools operators and control structures. In 

her own words, ‘an operator is a tool for action that may allow the transformation of the 

problem’ [15,p.263]. For example, ‘the most important Lakatosian operator to be found 

during a research process is certainly the use and the generation of examples and 

counter-examples’ [15,p.266]. 

On the other hand, a control structure  

allows the observer to describe how the subject judges the adequacy and validity of 

an action…The control structure is constituted by all the means needed in order to 

make choices, to make decisions, as well as to express judgment,… the control 

structure ensures the non-contradictory nature of the conception (in Balacheff’s 

sense): among the control instruments we must find decision tools legitimizing the 

use of an operator or the state of the ongoing problem (the problem should be 

declared solved or not) [15, p.263].  

According to Ouvrier-Buffet [15,p.264-265], the main operator for Popper ‘is the 

generation of refutations through counter-examples’ and the main control structure is 

‘resistance to refutations’. 

In this paper, our aim is to characterize the defining process of professional 

mathematician researchers when they generalize existing definitions and thus obtain 

constructive definitions. In order to do this, we will not use the whole model presented 

by Ouvrier-Buffet [15-17] but rather her tools operators and control structures. The 

reason for this choice is that her model describes very well the defining process that 

appears in situations of proof (or when solving a problem) but we found that it did not 

fit completely the defining processes associated with generalization of existing 

definitions. We will give more details about our decision in the section ‘Discussion and 

Conclusions’.  



Methodology 

We have conducted a qualitative study. We will describe as follows the participants, 

context, instrument and analysis. 

Participants and context 

In our study, the participants are researchers in mathematics who have at least one paper 

published in a journal included in the Journal Citation Reports (JCR) list of the Web of 

Knowledge. We use this definition because, in Spain, the success of a mathematician’s 

research career is generally measured by the number of papers that he/she has published 

in journals that are in the JCR list. 

Firstly, we contacted several professional mathematicians and asked them, in 

informal interviews, about the role of defining in their research. This way, we identified 

more than one mathematician whose research focus was proposing new definitions by 

generalizing previous definitions. Since their research is very technical and specialized, 

we have decided that it would aid readers’ comprehension if we conducted a case study 

with only one of these mathematicians, who we will call Alice. Another reason for 

using this methodology is that we are not interested in making assertions about how all 

mathematicians work (which would be both very bold and probably wrong) but rather 

what an actual one does.  

The reason why we have chosen Alice as the subject of our case study is that she 

is very articulate and she was interested in mathematics education and in participating in 

a study of the type explained here. Alice is a young researcher who has a Ph.D. degree 

in mathematics and has been part of the faculty of more than one big public university 

in Spain for several years. Similar to all the mathematicians who were interviewed, she 



has published several papers on differential geometry in journals included in the JCR 

list of the Web of Knowledge. 

 Instrument 

The data of this case study come from different sources:  

 A preliminary interview with Alice in which the authors of this paper told her 

about the goals of this study and asked her about the general aspects of her 

research and about the importance of defining in it. This interview lasted 

approximately 60 minutes. 

 Written research documents (Ph.D. thesis, peer-reviewed published papers, etc.).  

 Three more in-depth interviews that served to delve into Alice’s research work 

and to clarify some aspects that were relevant to it. Each of these interviews 

lasted around 40 minutes. Since she preferred not to be recorded, the authors of 

this paper took numerous and detailed notes that were later used in their 

analysis. Additionally, Alice drew several diagrams to summarize how authors 

in her field of research usually introduce new definitions. She then did similar 

diagrams to summarize her own research. We show one of these diagrams (in 

her own handwriting) in Figure 1. In order to aid readers’ comprehension, we 

made computer versions of her other diagrams (Figures 2, 3, 4 and 5). 

 Analysis 

We used the strategy of moving from the particular to the general [3].  

Focusing on constructive definitions in Freudenthal’s sense, we analysed Alice’s 

process of defining when she generalizes previously known definitions in order to 



obtain new ones in the field of differential geometry. We followed three steps in our 

analysis, which we will explain now more in depth. 

First step  

We asked Alice to describe how she constructs definitions as part of her research. She 

was able to explain how she had defined several new spaces and gave us detailed 

explanations about their construction. We wrote down her description of the process of 

defining in several cases and realized that four different objectives appeared in all of 

them. Therefore, we decided to divide her process in four sequential parts, each of them 

linked to one of these objectives. We called each of these parts of the process ‘phases’ 

and found a name that captured their objective: Finding an opportunity to generalize an 

existing concept, Proposing a new definition, Justifying that the new definition is valid 

and Continuing the chain of definitions. In the following, we will give an overview of 

these phases (which will be completed in the Results section) and present our names for 

them. 

In the first phase, Alice studies what other authors have already done to find 

well-known definitions and how they appeared. She discovered that a popular activity in 

her field is to propose a new definition by generalizing an existing object, which later 

inspired her to construct her own definitions. She exemplified this activity of 

generalizing by drawing diagrams similar to the one in Figure 1 to support her 

explanations. We made computer versions of these diagrams and have included them as 

Figures 2, 3 and 4. Since this part of Alice’s process consists of a review of the 

literature and an identification of the way in which the defining process works, we call 

it ‘Finding an opportunity to generalize an existing concept’. 



 

Figure 1. Alice's diagram (in her own handwriting) of the introduction of generalized 

Sasakian space forms by Alegre, Blair and Carriazo [20] 

 

In the second phase, Alice introduces her own definitions by generalizing 

previously known objects, which she exemplified for us by using diagrams similar to 

Figure 1 and by her own publications (both her papers and her Ph.D. thesis). In each of 

these publications, Alice pointed out the new definitions she had introduced and which 

existing concepts each of them generalized. We decided to call this phase ‘Proposing a 

new definition’.  

In the third phase, Alice told us that it is not enough to propose a new definition 

but that one has to justify its validity. This is usually done by checking that there exist 

new examples that satisfy the new definition but that did not satisfy the previously 

known one. Indeed, the generalization of an object must not be a mere change of name 

or description. We have called this phase ‘Justifying that the new definition is valid’. 



In the fourth (and last) phase, Alice studies her new definition to see if it can 

lead to the construction of new definitions, that is, if another ‘first phase’ of a defining 

process can appear or if the definition that has been constructed constitutes a dead-end. 

Our name for this phase is ‘Continuing the chain of definitions’.  

Second step  

In the second step of our case study, we identified which operators and control 

structures appeared in the multiple examples of construction of definitions that Alice 

presented to us. We refer to the Results section for a detailed explanation of which 

operators and control structures appear in each phase. 

Third step 

Finally, we compared the operators and control structures that appeared in the four 

phases of construction of all of Alice’s examples of definitions.  We found that the same 

operators and control structures appeared in the first phase of all of them, and that the 

same was true for the second, third and fourth phases. This led us to characterize each 

phase by the identification and use of operators and control structures in it. 

Results 

In this section, we present the results of our research on Alice’s process of construction 

of definition, adopting the way of a case study. We describe the four phases that we 

identified in the first step of our analysis. In each of the phases, we present both Alice’s 

descriptions and our analysis of them, obtaining a characterization of each phase by 

means of operators and control structures.  



Phase ‘Finding an opportunity to generalize an existing concept’ 

During her interview, Alice told us that the first thing that she always does when trying 

to find new opportunities for research is to do a review of the existing literature in a 

particular field in order to identify research techniques that other mathematicians have 

used before. She told us that she had realized that a popular activity in the field of 

differential geometry consists of defining new spaces by taking a well-known definition 

and generalizing it. This can be done by weakening or removing some of the conditions 

of the existing definition, which gives a new class of objects that includes the previous 

one. Then it is crucial to find examples of the newly defined objects that were not 

previously known, that is, to check that this new class of objects is not the merely a 

relabeling the original one. This way, she managed to identify chains of logical steps 

that take from definition to definition and chains of inclusive classes (since the new 

class of objects that is defined always includes the previous ones).  

When we analysed Alice’s descriptions of this phase, we realized that, from our 

point of view, what she actually does is to identify operators and control structures 

(although she does not call them by those names). We will show these descriptions and 

analysis by means of two examples. 

Example 1. Tricerri and Vanhecke [19] defined the generalized complex space 

forms from the complex space forms. It was previously known that the ‘complex space 

forms’, that is, the Kähler manifolds with constant holomorphic curvature c, always 

have a curvature tensor of the form R=(c/4)(R1+R2), where R1 and R2 are tensors that do 

not depend on the example. Then Tricerri and Vanhecke [19] decided to define the 

‘generalized complex space forms’ as almost Hermitian manifolds with curvature tensor 

R=f1R1+f2R2, where f1 and f2 are functions (almost Hermitian manifolds include the 

Kähler ones, it is a weaker condition to ask). Then these and other authors looked for 



and found examples of ‘generalized complex space forms’ that were not ‘complex space 

forms’.  

Alice summarized this process by pointing out that these authors introduced new 

spaces by ‘weakening the ambient space’ and ‘generalizing the curvature tensor’. Then 

they proved that the new class of examples included the previous one but was not the 

same. Alice illustrated this process with a diagram, which we have adapted into Figure 

2.  

 

Figure 2. Introduction of generalized complex space forms by Tricerri and Vanhecke 

[19] 

 

Example 2. Alice told us that Alegre, Blair and Carriazo [20] followed a similar 

process when they introduced the ‘generalized Sasakian space forms’ by generalizing 

the ‘Sasakian space forms’. The Sasakian space forms, that is, the odd-dimensional 

Sasakian spaces with constant -sectional curvature c, always have a curvature tensor of 

the form R=((c+3)/4)R1+((c-1)/4)(R2+R3), where R1, R2 and R3 are tensors that do not 

depend on the example. This led Alegre, Blair and Carriazo [20] to define the 

‘generalized Sasakian space forms’ as almost contact manifolds with curvature tensor 



R=f1R1+f2R2+f3R3 where f1, f2 and f3 are functions (almost contact manifolds include 

the Sasakian ones, it is a weaker condition to impose). Then they also found examples 

of ‘generalized Sasakian space forms’ that were not ‘Sasakian space forms’. 

Alice pointed out that the ‘generalized Sasakian space forms’ are a 

generalization of ‘Sasakian space forms’ and that this generalization is done again by 

‘weakening the ambient space’ and ‘generalizing the curvature tensor’. Finally, the new 

class of objects must be shown to be bigger than the previous one by showing new 

examples. Alice also drew a picture to describe this process, which we included in the 

Methodology section as Figure 1 and we later transformed into Figure 3. 

 

Figure 3. Introduction of ‘generalized Sasakian space forms’ by Alegre, Blair and 

Carriazo [20] 

 

Using Figures 2 and 3, Alice noticed the great similarities between the 

introduction of ‘generalized complex space forms’ and ‘generalized Sasakian space 

forms’. She described how similarly the new definitions appeared, how they were 

checked to be valid and how new examples of the newly defined manifolds were found.  



Using our conceptual framework, the second step of our analysis led us to notice 

that she was describing the following ‘operators’ and ‘control structures’: 

Operator 1: generalizing the ambient space. In the first example, this was done 

by replacing ‘Kähler manifold’ by ‘almost Hermitian manifold’. In the second one, by 

replacing ‘Sasakian manifold’ by ‘almost contact metric manifold’. 

Operator 2: generalizing the curvature tensor. In the first example, this was 

done by replacing the constant by functions, that is, they changed R=(c/4)(R1+R2) to 

R=f1R1+f2R2 . In the second example, by replacing R=((c+3)/4)R1+((c-1)/4)(R2+R3) by 

R=f1R1+f2R2+f3R3. 

Operator 3: transforming the spaces in a particular class in order to discover 

new examples in that class. It is very common to obtain new examples by deforming or 

changing other ones. This often gives infinitely many examples from a single one. 

Control structure 1: checking that the original class of examples is included 

strictly in the new class defined by Operators 1 and 2. This is done by finding an 

example in the new class that is not in the original class. 

Control structure 2: checking that the transformed examples obtained by using 

Operator 3 are indeed examples of the same type. For instance, Alegre, Blair and 

Carriazo [20] got ‘generalized Sasakian space forms’ through conformal changes of 

metrics, D-homothetic deformations and warped products of other ‘generalized 

Sasakian space forms’. It is important to notice that these transformations do not always 

provide examples of the same type but that this kind of result is also interesting for 

mathematics researchers. 

Phase ‘Proposing a new definition’ 

Alice showed us how she and her co-authors had proposed their own definitions by 

generalizing existing objects. We will present here two of these definitions. It is 



important to note that Example 4 is a generalization of Example 3.  

Example 3. Alice and her colleagues first focused on the ()-spaces, which are 

a generalization of the Sasakian manifolds. They noticed that the ‘()-spaces forms’, 

which are ()-spaces with constant -sectional curvature, always have curvature 

tensor of the form  

R = ((c+3)/4)R1 + ((c-1)/4)R2 + ((c-3)/4-) R3 + R4 + (1/2) R5 + (1-)R6, 

where R1,…R6 are tensors that do not depend on the example. Then they decided 

to define ‘generalized ()-space forms’ as almost contact metric manifolds with 

curvature tensor R=f1R1+f2R2+f3R3+f4R4+f5R5+f6R6, where f1, …, f6 are functions.  

In this way, they created new objects out of previously known ones, they 

proposed a ‘constructive definition’ (Freudenthal [12]). Alice also illustrated this 

process by drawing a picture that we later adapted into Figure 4 to help readability.  

 

Figure 4. Introduction of ‘generalized ()-space forms’ by Alice and her 

colleagues 

 



Therefore, from our point of view as researchers in mathematics education, she 

used Operators 1 and 2. The first operator appeared when she decided to change the 

ambient space from ‘()-spaces’ to ‘almost contact metric manifolds’. The second 

operator when she replaced the constants by functions in the writing of the curvature 

tensor. 

Example 4. After introducing and studying the ‘generalized ()-spaces’, Alice 

and her coauthors studied the ()-spaces, which include the ()-spaces, and in turn 

include the Sasakian manifolds. Alice summarized these inclusions in a diagram in her 

own handwriting, which we later converted into Figure 5 to help readability.  

 

Figure 5. The relation between the different spaces studied  

 

The ‘()-space forms’, which are ()-spaces with constant -sectional 

curvature, always have a curvature tensor that is a linear combination of constants and 

tensors R1,…, R8. This led Alice and some of her colleagues to define ‘generalized 



()-space forms’ as almost contact metric manifolds with curvature tensor 

R=f1R1+f2R2+f3R3+f4R4+f5R5+f6R6+f7R7+f8R8, where f1,…, f8 are functions.  

Therefore, in our analysis, we realized that Alice and her colleagues had used 

again Operators 1 and 2. The first operator appeared when they decided to change the 

ambient space from ()-spaces to almost contact metric manifolds. The second 

operator when they changed the constants for functions in the writing of the curvature 

tensor. 

Phase ‘Justifying that the new definition is valid’ 

Alice said that this step is crucial and that a definition constructed in the previous phase 

is meaningless without it. She told us that, after proposing a new definition, it is always 

necessary to prove that the new class of objects contains new examples that were not 

included in the previously known definition. That is, it must be shown that a new type 

of spaces has been introduced instead of a mere relabelling of old. In Example 3, this 

was satisfied by finding ‘generalized ()-space forms’ that were not ‘()-space 

forms’. In Example 4, by finding ‘generalized ()-space forms’ that were not 

‘()-space forms’.  

From our point of view, Alice used Control structure 1 each time that she and 

her coauthors checked that a new definition is valid by finding these new examples. 

This way, they proved that their definitions are indeed constructive rather than 

descriptive, since they introduced new objects instead of new labels for previously 

known ones.  

Phase ‘Continuing the chain of definitions’ 

In this final phase, the newly-defined objects were studied. Alice and her colleagues 



analysed what properties (if any) they inherited from the objects that were generalized, 

what other properties were different and why.  

For instance, Alice commented that they applied D-homothetic deformations to 

‘generalized ()-space forms’ (the spaces introduced in Example 3) in order to look 

for new examples. In this case, they discovered that these deformed spaces were not, in 

general, ‘generalized ()-space forms’. This result does not invalidate the constructed 

definition but rather shows an essential characteristic that distinguishes it from the 

spaces that were generalized and hence makes the new definition more interesting. We 

identified this part of the defining process as Alice using Operator 3 and Control 

structure 2. 

This phase sometimes leads to the creation of a new definition when a result 

inspires the author to wonder if removing or changing a particular condition of the 

examples will introduce another class of objects that includes the previous one, or if that 

condition is unnecessary. However, before introducing a new definition, it is always 

necessary to do a new review of the literature to find out if the spaces are already 

known. This phase, therefore, can mean the beginning of a new cycle of phases for the 

author.  

To conclude this section, we show in Figure 6 a general vision of the four phases 

that we have identified and described, as well as the operators and control structures that 

appear in each of them. 



 

Figure 6. The four phases that we have identified in Alice's research process and the 

operators and control structures that appear in each of them 

Discussion and conclusions 

Weber [21] points out the necessity of understanding how mathematicians think and 

behave. He and his colleagues focused on the mathematical practice of proof and 

proving. Furthermore, Rasmussen et al. [2] state that the explicit introduction of 

advanced mathematical activities as pedagogical content in all levels means that a better 

understanding of how these activities are carried out by mathematicians is necessary.  

In this paper, we have dealt with definition and defining, which according to 

Freudenthal ‘can be an essential feat, more essential than finding a proposition or a 

proof’ [12,p.134]. In particular, we have studied the defining process of a professional 

mathematician researcher through a case study. We have focused on the introduction of 

‘constructive definitions’ rather than ‘descriptive definitions’ [12]. Moreover, we wish 

to complement the work that Ouvrier-Buffet did about definitions that appear in the 

‘interplay between definitions and proofs’ [17,p.2216] by focusing our paper on 



definitions that appear during a process of generalizing. This last type of definitions is 

important because, although at the elementary level most definitions are descriptive, 

constructive definitions often appear at the undergraduate and postgraduate levels.  

Furthermore, most teachers of mathematics subjects at university level in Spain 

are mathematicians who have a Ph.D. in mathematics, so the undergraduate and 

postgraduate education of these mathematicians also affects the future education of 

many other students of multiple disciplines. Therefore, our work can have implications 

for university education, an emergent field of study for mathematics educators.   

In particular, in this paper we study the process of constructing of definitions 

that appear when generalizing other known ones. We do this by identifying sequential 

phases that appear during the defining process, and characterizing each of these phases 

by the use of operators and control structures.  

In our work, we have managed to identify four distinctive phases in the process 

of defining, called: Finding an opportunity to generalize an existing concept, Proposing 

a new definition, Justifying that the new definition is valid and Continuing the chain of 

definitions.  

We have identified three different operators and two control structures that are 

linked to these phases. Two of the operators generalize either the space or the curvature 

tensor and the other one transforms the space. The control structures make sure that the 

new definitions are valid by finding examples that were not previously known, and by 

checking if transforming the new objects gives examples of the same type. 

Our work is related to that of other researchers like Ouvrier-Buffet [17] and 

Rasmussen et al. [2]. Indeed, Ouvrier-Buffet also studied the defining process and 

identified four ‘moments of work’, which ‘do not describe a linear activity, but they are 

connected: they give a dynamic overall view of the defining activity in the mathematical 



research’ [17,p.2217]. In our paper, we did not use these moments of work for two 

reasons. The first one is that Ouvrier-Buffet studies defining activities that ‘are usually 

evoked during the study of proofs and of problem solving processes’ [17,p.2215], that 

is, definitions that are usually ‘descriptive’ in the sense of Freudenthal [12], while we 

will focus on characterizing the different stages of construction of definitions that 

appear when mathematician researchers generalize other known definitions. The second 

reason for which we did not use Ouvrier-Buffet’s ‘moments of work’ is that we wished 

to emphasize the fact that we are not interested in a particular moment but in the whole 

stage, until the beginning of the following one. This is the reason we decided to 

differentiate these stages by calling them ‘phases’.  

Moreover, Rasmussen et al. [2] consider two dimensions of the defining process: 

horizontal and vertical mathematizing. They link the first one to the descriptive 

definitions and the second to the constructive definitions. For them, ‘constructive 

defining creates new objects by building on and extending these known objects’ 

[2,p.67]. Our description of the characteristics of the phases we have identified explains 

how this ‘building on and extending’ works. Moreover, Rasmussen et al. point out that 

‘in constructive defining the majority of the elaboration of a concept lies beyond the 

initiation of the defining activity, beyond the writing or stating of the definition for the 

first time’ [2,p.68]. This statement is corroborated and detailed in the phases we have 

identified, which explain how the definition is proposed and what happens before and 

afterwards. In the description of the phases that we presented before, it can be seen that 

proposing a new definition is only one phase in the whole defining process. 

Finally, we would like to acknowledge some limitations of our work. The first 

one comes from our methodology (the use of a case study). While focusing on only one 

mathematics researcher allowed us to better understand how she constructs (and 



validates) a mathematical definition and also permitted us to present our findings more 

clearly, this case study provided us with results that cannot be directly extrapolated to 

all mathematicians. A second limitation of our work is that it is possible that other 

mathematicians have other criteria for deciding on the adequacy of a new definition. In 

future works, we are interested in studying these mathematicians’ criteria, both in the 

field of differential geometry and in others. Indeed, since the phases that we have 

identified (and the operators that appear in each of them) may have been too influenced 

by the field of research (differential geometry), more research in other fields is needed. 

Preliminary studies in the field of non-associative algebras hint that our control 

structures can be extrapolated. 
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