
182

Chapter 8

ABSTRACT

The application of state-of-the-art technologies in functional fields is complex and
offers a significant challenge to user and expert teams as well as to technical teams.
This chapter presents a mechanism that has been used in a project in the context of
digital publications. Ensuring the traceability of digital publications (e-books and
e-journals) is a critical aspect of the utmost importance for authors, publishers, and
buyers. The SmartISBN project has used blockchain technology to define a protocol
for the identification, tracking, and traceability of digital publications. As this was an
innovative project that required communication between functional experts (authors,
publishers, booksellers, etc.) and technical experts, it was necessary to identify protocols
to facilitate communication. This chapter presents the protocol by which the functional
tests have been defined and how this has favoured the validation of the project.

DOI: 10.4018/979-8-3693-0405-1.ch008

Mechanism for the Systematic
Generation of Functional
Tests of Smart Contracts

in Digital Publication
Management Systems

Nicolas Sanchez-Gomez
 https://orcid.org/0000-0001-9102-6836

University of Seville, Spain

Javier Jesús Gutierrez
University of Seville, Spain

Enrique Parrilla
Lantia Publishing S.L., Spain

Julian Alberto García García
University of Seville, Spain

Maria Dolores de-Acuña
University of Seville, Spain

Maria Jose Escalona
 https://orcid.org/0000-0002-6435-1497

University of Seville, Spain

https://orcid.org/0000-0001-9102-6836
https://orcid.org/0000-0002-6435-1497

Copyright © 2024, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 183

Mechanism for the Systematic Generation of Functional Tests

1. INTRODUCTION

Blockchain is a disruptive software technology that is advancing rapidly (Olea,
2019), being one of the fundamental technologies driving Digital Transformation
today and, given its transversal nature applicable to a wide range of industrial and
economic sectors, it is enabling disruption in the economy and in business beyond
cryptocurrencies. This potential is largely based on its ability to offer individuals
or organizations a communication channel that allows the transfer of rights, values,
or real assets (tokenization), through the Internet, in a secure and reliable manner.

The publishing industry is one of the economic sectors in which blockchain
technology has great applications because the publishing industry is a data and
metadata intensive sector. This means that the quality of operations and their
automation are linked to the quantity and quality of this data. From a global
perspective, the distribution process and supply chain of digital publications (e-books
and e-journals, among other formats) in Spain is a complex process (Martínez Alés,
2001). A wide variety of actors are engaged in this process, each with diverse needs
and actions. The following is a summary of these actors to help understand the
magnitude of the process.

A digital publication, once written, must enter a digital copy distribution
process. This process can take several months or even years and requires a
significant financial investment. While on demand publishing mechanisms exist
with delivery times of days, they do not offer assimilable quality and are pushed
to specific niches. Then, distributors take the publications from the publishers to
the points of sale. These outlets may be physical bookshops, online platforms, or
both (Magadán-Díaz et al., 2020).

The emergence of innovative technologies for data and metadata storage and
management, such as the possibility of massively and automatically extracting
information from web pages, as well as the development of new technologies,
such as blockchain technology for information recording (Gramoli, 2022)
(Alharby et al., 2018), open up the possibility of offering novel alternatives
within the publishing industry.

Blockchain technology and, above all, smart contracts can make valuable
contributions as discussed throughout this article. In short, this recent technology
offers more transparency, security, and efficiency in the tracking of publications
(books, journals, etc.) at each stage of the process. For example, in this project, it
has been possible to track and trace digital publications from their production to
their final sale, which has made it possible to know the status of the publication
at all times.

However, before deploying a smart contract in a business environment, it is
necessary that any smart contract is verified using rigorous mechanisms that allow

184

Mechanism for the Systematic Generation of Functional Tests

validating its correct operation, since an error or defect in the code that forms it
could cause an unrepairable effect (Legerén-Molina, 2018). From an engineering
perspective, the serious and competitive progress in the implementation of recent
technologies such as blockchain and smart contracts requires new processes, methods,
tools, and techniques to manage quality in software development and, above all, to
ensure the quality of the final product.

Currently, there are several blockchain platforms that support the implementation,
deployment, and execution of smart contracts without many restrictions. For example,
Ethereum, Hyperledger or EOS platforms, among others (Zheng Z., 2020), allow
deploying smart contracts without going through any verification and validation
process. In this sense, verification of smart contracts remains an unexplored line
of research to date. Any blockchain network may be running smart contracts with
unexpected behavior, with serious deficiencies, errors and even security vulnerabilities
(Luu, 2016). Unlike classical applications, which can be patched when errors are
detected, smart contracts are irreversible and immutable, given the characteristics
of the underlying technology.

In this context, the objective of this article is to present a proposal to generate
functional test plans based on smart contract specifications. For this purpose, the
proposal will be based on early testing principles, which will allow validating the
functional quality of smart contracts independently of the blockchain technology
used and from the requirements specification stage. In addition, this article describes
the validation of our proposal in the SmartISBN project, which was carried out
between 2019 and 2022.

The SmartISBN project aimed to develop mechanisms to semi-automatically
extract a set of data and metadata to facilitate the management of publications,
together with the development of a practical case of application of blockchain
technology for the registration of transactions throughout the life cycle of a digital
publication until it reaches its final purchaser.

This article aims to present the results achieved with this project, focusing the
main part of the article on the practical case developed with blockchain, since it
is not only a novel technology but there are few references to practical cases of
application outside its original scope.

This technology also imposes new challenges. In particular, the main challenge in
this project was the testing of blockchain technology and the use of smart contracts.
As the distribution and supply chain is a complex process, it was necessary to cover
many tests. As part of the SmartISBN project, the generation of a complete set of
tests was systematized to verify that the system worked properly in all steps of the
process and satisfied all its participants.

The organization of this work is described below. Section 2 presents the objectives
of the SmartISBN project and the fundamentals of blockchain technology. Then,

185

Mechanism for the Systematic Generation of Functional Tests

Section 3 presents a comprehensive literature review to identify gaps in the existing
models. Next, Section 4 presents the proposed solution for systematic functional
test generation in blockchain environments and how it has been validated in the
SmartISBN project. Finally, Section 5 presents conclusions and future work.

2. BACKGROUND

This section describes the background to the proposal presented in this article. To
do so, on the one hand, it describes the context of the SmartISBN project, delving
into its objectives, the problems it aims to solve and the technical and business
challenges it faces. On the other hand, the fundamentals of blockchain technology
are presented in general terms.

2.1. SmartISBN Project: Context and Approach

When the SmartISBN project started, there was no uniformity in the metadata (data
describing other data, e.g., data describing the information to be managed for each
specific digital publication) managed in the publishing sector. This is because of
the different approaches and because different systems offer different data sets. This
results in publishing management systems having to work with the minimum set of
common data, which decreases the power of the management that can be applied.

The mission of the SmartISBN project was to address the problem indicated by
researching and developing a metadata model applicable to the publishing sector
that would enable the processing of data associated with a digital publication in a
unified manner. The project also included the development of tools that allow the
appropriate management of the information in the publications and the operations
that could be carried out with them. To fulfil this mission, the SmartISBN project
had to meet the three objectives briefly described below.

The first objective was to store a publisher’s complete catalogue information
in an automated way. This automation consisted of incorporating the data using
tools that detect this data on web pages and then storing it in a system based on the
ONIX Standard (Needleman, 2001). ONIX is an open, international standard for the
encoding and electronic exchange of bibliographic and commercial information in
the publishing industry, with the participation of representatives of the commercial
publishing chain from more than twenty countries (including Spain).

The second objective was the processing of the publications data considering
the needs of different actors in the sector such as publishers, distributors, etc. In
addition, this catalog will be self-verified in the sense that it will report incidences
in the information stored in the catalog itself.

186

Mechanism for the Systematic Generation of Functional Tests

The third and final objective was to provide a record of the different operations
carried out with the publications in a blockchain registry. This objective allows all
transactions to be recorded without the possibility of changes or modifications,
which ensures the veracity of the information and makes it possible, for example,
to detect fraud or illicit transactions more easily. This third objective is the one most
closely related to blockchain technology, whose fundamentals and application to
this project are explored in more detail in the following section.

2.2. Blockchain Fundamentals

The origin of digital assets in 2008 with the appearance of Bitcoin also implied the
appearance of recent technologies necessary to support these digital currencies and
the operations that can be carried out with them. One of these technologies is well
known by its English name: blockchain (Gramoli, 2022).

In a simplified way, blockchain technology consists of information that is completed
with metainformation designed to guarantee the integrity of the information, so
that it cannot be modified, and designed to maintain the time reference so that the
temporal order of information generation can be precisely known. Figure 1 shows

Figure 1. How the blockchain works

187

Mechanism for the Systematic Generation of Functional Tests

an example of how blockchain technology works. The A blocks are containers
of information (e.g., transactions made with publications), and the B blocks link
the information so that it is all located and ordered temporally. The C blocks are
calculated from the A and B blocks, so a change in the information (an A block),
or in the sequence (a B block), would make the C block incorrect and the change
would be immediately discovered.

In its first implementation, blockchain technology was used to store all Bitcoin
transactions, i.e., who owns which coins. However, this technology quickly became
independent of digital currencies and was applied to any area where it is necessary to
store an immutable record of transactions, for example, biological samples, domain
name registrations, public tenders, etc. Another key aspect of blockchain is server
management. The blockchain chain, as seen in the example in Figure 1, must be
stored on a computer with external communication.

On the other hand, blockchain technology works through smart contracts. This is a
piece of software whose mission is to fulfill and enforce agreements usually registered
between two or more parties, for example, to validate the change of ownership of a
digital asset. Typically, smart contracts (Figure 2) are used to automate a blockchain
system, i.e., the storage of information in a blockchain system is controlled by
compliance with the rules and decisions indicated in a smart contract. In the same
way, a blockchain system serves as a record of all deployed smart contracts.

Although the blockchain itself guarantees that the information is reliable (as we
have seen), if the server is not well managed, or suffers physical problems, it can
compromise the stored information. To avoid this problem, the non-profit association
Alastria exists in Spain to set up blockchain servers.

Figure 2. Smart contract in blockchain

188

Mechanism for the Systematic Generation of Functional Tests

3. LITERATURE REVIEW

This section presents the state-of-the-art survey of research papers in the context of
the development lifecycle of smart contracts in the blockchain. This review focused
on the analysis of primary studies addressing some of the phases of the development
lifecycle and/or model-driven engineering or other best practices for designing,
developing, and testing smart contracts. For this purpose, the SLR (Systematic
Literature Review) method proposed by Kitchenham (Kitchenham, 2013), which
is one of the most widely applied methods in the field of software engineering,
was used. This method proposes three main phases to execute a systematic review:
planning the systematic review (planning), which defines aspects such as the need
for the research, review protocol and research questions; execution of the review
protocol (conducting), where the established protocol is carried out; and presentation
of the results obtained (reporting), which presents the final analysis to answer each
research question. These phases are described in detail below.

3.1. Planning Review

During this stage of the process, the need to conduct this literature review, the
identification of research questions and the definition of the review protocol are
established. On the one hand, regarding the need to conduct the review, in recent
years, many studies have been published to evaluate and identify current challenges
in the application of blockchain technology and smart contracts. Some of these
research activities aimed to evaluate the use of blockchain in multiple sectors such as,
supply chain (Pranto, 2019), (Hidayanto et al, 2019), education sector (Steiu, 2020),
agriculture sector (Yadav, 2019) or healthcare sector (Yaqoob, 2021). Other authors
have even published studies partially related to our SLR proposal. For example,
Alharby et al. (Alharby, 2018) presented a systematic mapping of smart contract
technology, selecting and classifying 188 relevant articles. In this classification,
the lack of validation mechanisms for smart contracts is evident. Macrinici et
al. (Macrinici, 2018) also conducted a systematic mapping, but, in this case, to
identify the application of smart contracts and offer a perspective on current issues.
Specifically, the authors presented research trends within this context and gathered
sixty-four articles. The work of these authors concluded by indicating that, since
2016, there has been an increasing trend towards the publication of articles related to
smart contracts and that the most discussed problems and solutions in the literature
were related to security, privacy, and scalability of the blockchain and quality of
smart contracts. Dhaiouir et al. (Dhaiouir, 2020) also presented a systematic review
of smart contracts, focusing on platforms, languages or applications and selection
criteria. Specifically, this study indicates that smart contracts are being adopted

189

Mechanism for the Systematic Generation of Functional Tests

in several types of projects, but that they still face many challenges and technical
problems, but these authors do not study validation and verification aspects.

In this context, the need to study current methods and techniques that allow quality
assurance in the development of smart contracts is identified. Specifically, to analyze
techniques for formal modeling of smart contracts, automatic generation of functional
tests and/or code from such modeling, in order to characterize and present the state
of the art in this field and to identify possible gaps and opportunities for further
research. For this purpose, the following research questions (RQ) were proposed:

RQ1: Are there approaches in the literature that promote the application of a
Software Development Life Cycle (SDLC)? What phases of the life cycle do the
different studies promote? The motivation of this RQ is to find proposals that
have been published and to identify their general contexts and the objectives
they achieved using SDLC, all in the context of blockchain smart contracts.

RQ2: Do they promote model-based software engineering, early starting of the
testing phase or automatic source code generation? The purpose of this RQ
is to identify the techniques and guidelines applied in the different proposals,
all in the context of blockchain smart contract.

On the other hand, once our research questions were established, inclusion/
exclusion criteria were established to filter the primary studies found in some of
the main digital libraries, as recommended by authors such as Ngai (Ngai, 2011).
In this sense, the libraries selected were ACM Digital Library, IEEE Xplore Digital
Library, ScienceDirect, Elsevier’s Scopus and Springer Link. In our case, this
strategy focused on locating articles published in peer-reviewed journals, presented
at relevant conferences, and was done in two steps: (1) the keywords to be used in
the search protocol were defined; and (2) preliminary searches were performed to
refine the set of keywords and select the most appropriate ones in order to improve
the quality of the results. Finally, the keywords systematically applied in each digital
library were the following: (Engineering OR Semantic OR Model-based) AND
(Requirement OR Analysis OR Validation OR Verification OR Check OR Testing)
AND (Blockchain OR Smart Contract).

Regarding the exclusion/inclusion criteria, these were rigorously applied
considering five phases as shown in Table 1. Moreover, only articles written in
English and published in journals indexed in Journal Citation Reports (JCR) or
prestigious conferences (i.e., conference level A*, A, B and C categorized in CORE
Conference Rank) were considered. In addition, it was decided to exclude surveys,
discussions, reviews, or opinion studies related to the subject matter sought. Finally,
following the recommendations given in Kitchenham’s method, the SLR protocol
was reviewed by an external researcher to obtain a comprehensive review process.

190

Mechanism for the Systematic Generation of Functional Tests

In this sense, a Professor of Software Engineering from the University of Seville
(Spain) participated as an external expert to validate our review protocol.

3.2. Conducting and Report Review

The aim of this phase is to present the primary papers obtained after applying
the search described in the previous section. Table 2 shows the primary
papers obtained after applying the inclusion/exclusion criteria set out in the
previous section.

Table 1. Exclusion/inclusion criteria by phase

Phase Relevance analysis phase description

Ph1 Automatic search was conducted in each scientific database.

Ph2

English only; year of publication greater than or equal to 2016, because after analyzing numerous
papers from other years, only from 2016 onwards did we start to identify articles that enhanced
the predefined search criteria; full text obtained. Papers not related to the subject were excluded.
This exclusion phase included the elimination of duplicate papers and the reading of the title
and abstract of the work. In case of any doubt about any document, that document would be
preliminarily included. The final decision would be considered and evaluated in the next phase.

Ph3
No new exclusion / inclusion criteria were applied (first meeting), but relevant papers were
included. In this phase the researchers also analyzed all “doubtful” papers in detail, considering all
their content.

Ph4 In this phase the «snowball» technique was applied, and it was therefore necessary to re-apply the
P2 criteria.

Ph5 In this phase (second meeting) no new exclusion / inclusion criteria were applied, but the
researchers analyzed all the “doubtful” papers in detail, considering all their content.

Table 2. Primary studies

Data base Ph1 Ph2 Ph3 Ph4 Ph5

ACM Digital Library 27 6 2 - -

IEEE Xplore 39 7 3 - -

ScienceDirect 372 31 7 - -

Elsevier’s Scopus 352 42 6 - -

SpringerLink 243 24 4 - -

Snowball technique - - - 10 3

Subtotals 1.033 110 22 10 3

Total 25

191

Mechanism for the Systematic Generation of Functional Tests

After applying the search protocol and review phases (Table 1), twenty-
five primary studies have been identified as the sum of the results of the third
and fifth phase of the review protocol. Finally, Table 3 summarizes all the
primary papers identified and analyzed, following all the criteria set out in
the previous two sections.

Table 3. Summary of studies that have been analyzed

PS Authors Title Year

PS01 Marchesi et al. An Agile Software Engineering Method to Design Blockchain Applications (Marchesi
et al., 2018) 2018

PS02 Liu, et al. Applying Design Patterns in Smart Contracts (Liu et al., 2018) 2018

PS03 Choudhuret al. Auto-Generation of Smart Contracts from Domain-Specific Ontologies and Semantic
Rules (Choudhuret al., 2018) 2018

PS04 Tateishi, et al. Automatic smart contract generation using controlled natural language and template
(Tateishi et al., 2019) 2019

PS05 Tsai et al. Beagle: A New Framework for Smart Contracts Taking Account of Law (Tsai et al. 2019) 2019

PS06 Koul, R. Blockchain Oriented Software Testing - Challenges and Approaches (Koul, R., 2018 2018

PS07 Dolgui et al. Blockchain-oriented dynamic modelling of smart contract design and execution in the
supply chain (Dolgui et al., 2019) 2019

PS08 Porru et al. Blockchain-Oriented Software Engineering: Challenges and New Directions (Porru et al., 2017) 2017

PS09 Shishkin, E. Debugging Smart Contract’s Business Logic Using Symbolic Model-Checking
(Shishkin, 2018) 2018

PS10 Mavridou, A. et al. Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach
(Mavridou et al. 2018) 2018

PS11 Parizi, et al. Empirical vulnerability analysis of automated smart contracts security testing on
blockchains (Parizi et al., 2018) 2018

PS12 Lee et al. Formal Specification Technique in Smart Contract Verification (Lee et al., 2019) 2019

PS13 Mavridou, et al. FSolidM for Designing Secure Ethereum Smart Contracts: Tool Demonstration
(Mavridou, et al., 2018) 2018

PS14 Sillaber et al. Life Cycle of Smart Contracts in Blockchain Ecosystems (Sillaber et al., 2017) 2017

PS15 Grigg, I. On the intersection of Ricardian and Smart Contracts (Grigg 2015) 2015

PS16 Kruijff et al. Ontologies for Commitment-Based Smart Contracts (Kruijff et al., 2017) 2017

PS17 Clack Smart Contract Templates: Legal semantics and code validation (Clack, 2018) 2018

PS18 Clack et al. Smart Contract Templates: Foundations, design landscape and research directions
(Clack et al., 2016) 2016

PS19 Syahputra et al. The Development of Smart Contracts for Heterogeneous Blockchains (Syahputra et al., 2019) 2019

PS20 Liao et al. Toward A Service Platform for Developing Smart Contracts on Blockchain in BDD and
TDD Styles (Liao et al., 2017) 2017

PS21 Al Khalil, et al. Trust in Smart Contracts is a Process, As Well (Al Khalil, et al., 2017) 2017

PS22 Mavridou et al VeriSolid: Correct-by-Design Smart Contracts for Ethereum (Mavridou et al, 2019) 2019

PS23 Permenev et al. VerX: Safety Verification of Smart Contracts (Permenev et al., 2019) 2019

PS24 Mao et al. Visual and User-Defined Smart Contract Designing System Based on Automatic
Coding (Mao et al., 2019) 2019

PS25 Clack et al Smart Contract Templates: essential requirements and design options (Clack et al, 2016) 2016

192

Mechanism for the Systematic Generation of Functional Tests

RQ1: Are there approaches in the literature that promote the application of a
Software Development Life Cycle (SDLC)? What phases of the life cycle do
the different studies promote?

After analyzing the primary studies, the phases of the software development
life cycle that have been most addressed by the authors were: (A1) Requirements,
analysis, or design phase (68%), (A2) Coding phase (40%), (A3) Testing phase
(28%) and (A4) Other phases (12%).

The work of Marchesi et at (PS01) and Tsai et at (PS05) stands out. Study PS01
proposes a software development process to elicit requirements, analyze, design,
develop, test and implement blockchain applications and study PS05 proposes a
framework with five stages: development of smart contract templates, from domain
analysis, formal model of smart contracts, code development from templates,
verification and validation.

It seems, therefore, that some efforts of the scientific community are currently
directed towards implementing some kind of development lifecycle. However, in the
context of the blockchain, the analyzed processes consist only of a certain number
of unlinked phases, as they are not arranged in a clear order of precedence and the
inputs/outputs of each stage are also not clearly defined.

It is important to highlight, due to the relevance it has in the blockchain
methodology, the fact that the phase with the least impact in the identified literature
is the software testing phase. From our point of view, blockchain applications
differ quite a bit from other traditional applications, since once a smart contract is
implemented, its execution cannot be reversed. Therefore, robust testing is essential,
with an emphasis on requirements elicitation, verification and validation, and code
debugging. Moreover, testing should involve the simulation of all possible expected
and unexpected variables for each smart contract and for the triggers that execute
the transactions.

RQ2: Do they promote model-based software engineering, early starting of the
testing phase or automatic source code generation?

In recent years, the use of modeling tools or CASE tools, as well as the use of the
UML standard have helped to document the functionality of business processes and
to use transformations between models. This has made it possible to automate code
generation in many cases. For example, among the selected studies, Marchesi et at.
(PS01) and Syahputra et at. (PS19) propose the use of UML diagrams to describe
application requirements, which makes it possible to start testing at an early stage of
system development (early testing). In this sense, performing model-based software
engineering is important, as it provides the following advantages (Pohl, 2012): it is

193

Mechanism for the Systematic Generation of Functional Tests

possible to implement best practices and generate well-tested code, which reduces
the occurrence of vulnerable code; software code is more difficult to understand than
models, which makes it easier to test the correctness of a model; and it is possible
to apply model-based engineering on multiple platforms.

In this context, the proposals addressed in the primary studies are made by applying
different approaches: (B1) Application of model-based software engineering; (B2)
Promotion of early testing; and (B3) Proposal of automatic code generation. However,
it is possible to observe that although early testing helps to reduce the number of
defects, it seems that the efforts of the scientific community are not directed towards
this approach. Nevertheless, some authors such as Koul et al. (PS06) highlight the
need to ensure software quality from early stages, indicating the challenges currently
faced by the testing of this type of applications. These authors also recognize the
need to design specific tools and techniques for testing this type of software, in order
to ensure high quality standards in the development of smart contracts, achieving
greater reliability and lower development costs.

Regarding the automatic generation of smart contracts, an important aspect to
consider is the technique that the primary studies have used. The automatic generation
of the smart contract code using a model-based software engineering process would
eliminate the manual effort required in coding from design and, therefore, speed
up the process, while decreasing the possibility of errors compared to the manual
coding of the requirements or models. In this sense, the techniques most commonly
used or proposed by the authors are: (C1) Generation using ontologies and/or
domain-specific semantic rules; (C2) Generation using model-based engineering;
and (C3) Generation through templates or other utilities. Interestingly, the study by
Syahputra et at. (PS19) proposes the use of a smart contract platform to generate
smart contracts for heterogeneous blockchain technologies using UML and OCL
(Object Constraint Language).

In summary, after analyzing the primary studies found, it is possible to observe
that the phases of requirements specification and software testing are among
the aspects least addressed by the research community. However, Marchesi et
al. (PS01) proposes a software development process considering the typical
phases of the software development life cycle, but they focus on the application
of Agile methodologies. In their study they propose the use of UML diagrams
to describe the design of the applications and even provide a modeling of the
interactions between the traditional software and the blockchain environment.
Other authors such as Syahputra et al. (PS05) discuss the development process
from a smart contract platform. This platform aims to create a smart contract
for heterogeneous blockchain technologies, and they propose the use of UML,
in addition to OCL, for the design.

194

Mechanism for the Systematic Generation of Functional Tests

All primary studies, in one way or another, indicate the need to obtain
well-functioning software. However, more emphasis needs to be placed on
functional, security and performance testing in the case of smart contracts due
to its critical factor in ensuring the reliability of blockchain networks. In this
sense, some authors such as Koul et al. (PS06) highlight the need to ensure
software quality from early stages. Therefore, this study partially coincides
with our approach of obtaining test cases in early stages of the smart contract
development lifecycle. Furthermore, these authors recognize the need to design
specific tools and techniques for testing this type of software, to ensure high
quality standards.

Finally, several papers stand out especially due to their proposed verification
and testing of smart contracts and blockchain applications:

• Marchesi et at. (PS01) proposes a software development process that
allows gathering requirements, analyzing, designing, developing, testing,
and implementing blockchain applications. The process is based on Agile
practices, using user stories and iterative and incremental development based
on them.

• Choudhury et at. (PS03) provides a framework for the automatic generation
of smart contracts. This framework uses ontologies and semantic rules to
encode domain-specific knowledge and then leverages the structure of
abstract syntax trees to incorporate the required constraints.

• Tateishi et at. (PS04) proposes a technique to automatically generate a smart
contract from a human-understandable contract document. Specifically, this
is created using a template and a controlled natural language. The automation
is based on a mapping of the template and that natural language to a formal
model that can define the terms and conditions of a contract, including
temporal constraints and procedures.

• Mavridou et at. (PS13) argue that, in practice, smart contracts are plagued
with vulnerabilities. To facilitate the development of secure smart contracts,
these researchers have created a framework that allows contracts to be defined
as Finite State Machines (FSM) with rigorous and clear semantics.

• Syahputra et at. (PS19) address a discussion on how the development
process of a smart contract platform that aims to generate smart contracts for
heterogeneous blockchain technologies should look like.

• Mavrodou et at. (PS22) present a framework for the formal verification of
smart contracts using a model based on a transition system with operational
semantics and allows the generation of Solidity code from the verified models,
which would enable the development from the design of smart contracts.

195

Mechanism for the Systematic Generation of Functional Tests

4. PROPOSED SOLUTION

The objective of this section is to present a model-driven approach to generate
functional test plans from smart contract specifications (Section 4.1). After describing
our proposal, Section 4.2 describes a validation case on a real business project, the
SmartISBN project to solve the challenges described in Section 2.1. To this end,
Section 4.2.1 describes the proposed life cycle for managing the production and
distribution chain process of a publication. Once this life cycle has been defined,
Section 4.2.2 describes, in general terms, the architecture of the SmartISBN
platform that supports the proposed life cycle. Finally, Section 4.2.3 explains how
the functional tests necessary to validate the smart contracts associated with the
proposed publication distribution process were systematically generated.

4.1. Proposal For Systematic Functional Test
Generation in Blockchain Environments

The proposal presented in this article for the systematic generation of functional tests
of smart contracts in blockchain is based on the principles of early testing, in such
a way that it is possible to generate functional test plans based on the specifications
of the smart contracts, independently of the blockchain platform used.

To achieve this purpose, our proposal is based on the model-driven engineering
paradigm (Bézivin, 2004). Specifically, it is based on: (1) the design of a metamodel
containing the definition of all the concepts needed to model smart contracts from
functional specifications; and (2) the design of systematic mechanisms to generate
functional test plans from the smart contract models designed according to the
aforementioned metamodel. Both aspects of the proposal are described below.

On the one hand, Figure 3 shows our proposed smart contract metamodel. This
metamodel is based on the following pillars (see Figure 4): (a) a set of legal relations
(Legal relation) between stakeholders; (b) Stakeholders (interested parties) that could
be considered as a person, an organization or any other entity capable of entering
into a legal agreement; (c) a set of internal and external data sources, from which the
smart contract is nourished; (d) a set of actions (or behaviors), which are composed
of activities and operations on the input data and which are applied on the different
business rules of the smart contract; and (e) a set of constraints, which allow controlling
the consistency of the smart contract automatically and autonomously during its
execution. It is also important to mention that the constraints model the terms and
conditions of the smart contract, imposing restrictions as to when an action can be
performed, whether the circumstances allow the action to be performed, and so on.
Thus, in a smart contract model, a constraint links the execution of an action to the

196

Mechanism for the Systematic Generation of Functional Tests

fulfillment of additional conditions and rules. A constraint can affect one or more
actions and, in addition, they can read from possible data sources.

On the other hand, once the smart contract metamodel and all its entities have
been instantiated, systematic mechanisms are proposed to generate scenarios and
functional test cases.

In this sense, the systematic generation of functional tests is done in two stages.
First, the skeleton of all test scenarios is generated from each Smart Contract in the
model and, then the test case casuistry is generated by combining the test scenario
data. Specifically: (1) for each Function of a smart contract, in conjunction with
the input data, a test case is created; (2) for each Function Step of a smart contract,

Figure 3. Smart contract metamodel proposal

Figure 4. Pillars of the smart contract metamodel

197

Mechanism for the Systematic Generation of Functional Tests

a test case step is created; and (3) for each Function Step Restriction of a smart
contract, test restrictions are created.

4.2. Validation Case: SmartISBN Project

This section describes the validation context provided by the SmartISBN project. To
do so, it first introduces the life cycle associated with the process of the production
and distribution chain of a digital publication proposed in the framework of the
project. Next, the technological and functional architecture of the SmartISBN
platform, which supports the proposed distribution process, is described. Finally,
the section presents how the theoretical proposal described in Section 4.1 has been
applied to systematically generate the functional tests from the specification of the
smart contract that governs SmartISBN.

4.2.1. Proposed Life Cycle of the Production and
Distribution Chain of a Digital Publication

As a preliminary step to the design of the SmartISBN technological solution, within
the framework of the project, the general process of the life cycle of a publication
from the point of view of the production and distribution chain was conceptually
proposed. In this sense, Figure 5 represents the distinct stages of this life cycle,
as well as the different actors involved in each stage. For this purpose, the UML
(Unified Modelling Language) sequence diagram notation (Fontela, 2012) is used
to represent the communication flow between the stages described above.

Initially, the distribution process could be considered to begin with the first stage
of “E1. Conception and drafting of the publication”, in which the Author gives
shape, consistency, and meaning to its content until the final manuscript is obtained.
Then, the Author would initiate the second stage of the life cycle: “E2. Editorial
processing of the publication”. In this stage, the Editor receives the manuscript and
carries out its review process, cataloging the publication within its editorial line and
identifying metadata. Once this processing is completed, the Publisher would initiate
the stage “E3. Printing and distribution”, establishing different contracts or orders
with the Distribution company so that the latter can begin the physical printing and/
or digital dissemination of the different editions of the publication. Finally, the life
cycle would end with the “E4. Acquisition of copies of the publication” stage, in
which Bookshops (or other points of sale) would establish contracts and orders for
the publications under distribution.

Considering the above process, it is worth noting that during the transitions between
the distinct stages, payments, purchase orders, sales orders, etc., take place between

198

Mechanism for the Systematic Generation of Functional Tests

the different actors involved in the process. In this sense, it is crucial to maintain
the traceability of all these transactions throughout the entire supply chain process.

4.2.2. SmartISBN Platform Architecture

To meet the objectives of the SmartISBN project and to support the life cycle of the
publication’s distribution process, a technological architecture is proposed with the
subsystems shown in Figure 6.

On one hand, the platform incorporates an administration subsystem so that users
with this role can manage users, roles, and access permissions to the platform, as
well as control the status of the platform through dashboard utilities.

One of the main objectives of the SmartISBN project was to allow publishers to
catalog works correctly within the platform so that users could carry out advanced
searches and even receive recommendations based on their previous purchases.
The cataloging subsystem is responsible for automating this cataloging process by
analyzing the metadata of the digital application, based on the international standard
ONIX (XML). However, as a prior step to this automatic cataloging process, the
user with the role of Editor must incorporate in the platform, at least, the ISBN

Figure 5. Life cycle of a publication’s overall production and distribution process

199

Mechanism for the Systematic Generation of Functional Tests

(International Standard Book Number) metadata. Based on this information, the
SmartISBN platform includes automatic functionalities to consult the rest of the
metadata of the digital publication by consulting public bibliographic sources.
SmartISBN is currently integrated with Amazon, Google Book, La Casa del Libro,
Todos tus libros and Editorial Lantia, among others.

On the other hand, the SmartISBN platform includes a frontend subsystem and
a point-of-sale terminal subsystem, which manages, respectively, the repository of
digital publications and their inventory and stock, together with payments and the
different order and sales orders. These subsystems will be directly accessible by
users with the role of Distributor and Bookshop.

To control the traceability of all order, sales, and distribution orders, the
SmartISBN platform includes integration with the Ethereum platform and the use
of the Solidity programming language (for the implementation of smart contracts).
As part of the SmartISBN project, an Ethereum virtual machine was deployed, and
its platform was used to manage the traceability of order and sales transactions in
the distribution process of a publication.

Finally, the SmartISBN platform includes an integration subsystem that
provides the different communication APIs (Application Programming Interface)
to allow the flow of information and data between the different subsystems
described above.

Figure 6. SmartISBN platform architecture

200

Mechanism for the Systematic Generation of Functional Tests

4.2.3. Applying the Functional Test Generation
Approach in SmartISBN

To control the consistency and integrity of transactions in the process of managing the
production and distribution chain of a digital publication, it was necessary to implement
smart contracts with various functions (see Figure 7), business rules and restrictions.

Due to space limitations, it is not possible to describe the complete functional test
generation casuistry of this functionality but, as an example of application, we will
focus on the following activity diagram. The diagram in Figure 8 shows the expected
behavior of the smart contract and specifically the “Create Work” functionality, as
well as the rules and constraints to be considered at each step.

Figure 7. Smart Contract Functions

Figure 8. Functionality of Smart Contract

201

Mechanism for the Systematic Generation of Functional Tests

As can be seen, for the rules and constraints it is proposed to use the DMN
(Decision Model Note) standard (Janssens et al., 2016). These rules and constraints
are supported by a decision table, as shown in Figure 9.

Therefore, to systematically generate the test cases of the “Create Work” scenario,
it would be necessary to go through all the possible paths and, for each of these paths,
the steps are located and added to the test case in the same order. Then as many test
cases are obtained as paths have been identified in the functional requirement and
each test case will have a different behavior, which will coincide with the path taken.

5. CONCLUSION AND FUTURE WORK

The recent technologies that are emerging offer a major challenge in all functional
environments and the world of digital publishing is no exception. Blockchain
technology offers a powerful tool for the univocal identification of each digital asset
and offers the solution for traceability and tracking of each asset in a secure and
appropriate way and at an affordable cost for authors, publishers, and stakeholders.
However, the development of solutions in blockchain environments requires fluid
communication between users and functional experts throughout the entire lifecycle.

This paper presents the SmartISBN project, an R&D&I project carried out by
the company Lantia Publishing and the University of Seville for the application of
blockchain in the identification, tracking and traceability management of digital

Figure 9. Decision table

202

Mechanism for the Systematic Generation of Functional Tests

assets. The paper presents how blockchain technology is suitable for this purpose and
analyzes the challenges it poses. Specifically, it presents the mechanisms that have
been used to generate the functional tests that have facilitated the communication
between the experts and the technical team to validate the results of the project. Other
mechanisms have been developed in SmartISBN to facilitate this communication in
other phases, such as in the requirements identification phase. The results in Section
3 indicate that we have not found any proposal that contemplates formal modelling
of contracts and automated generation of artefacts from these models. Marchesi et
at. presents a complete process but does not include support for generating artefacts
automatically. Choudhury et at., Tateishi et at., Mavridou et at. and Mavrodou et at.
describe automations for generating or verifying smart contracts, but none of them
include requirements artefact management or test artefact generation.

In future work, we plan to improve our communication protocols to generalize them,
as well as to enable mechanisms that allow us to automatically generate smart contract
code. In fact, we are currently working on another international project that will allow
us to make progress on this. In the context of sotware testing, our idea is to improve
test prioritisation mechanisms, not just generation. The idea would be that the technical
team could not only generate the functional tests from the requirements, guaranteeing
their correspondence with them, but also prioritize them so that, in the event of a lack
of resources, the tests could be generated according to the established prioritization.

ACKNOWLEDGMENT

This research article has been elaborated within the following projects: EQUAVEL
Project (PID2022-137646OB-C31), which was funded by the Ministry of Economy
and Competitiveness of the Government of Spain; and SmartISBN, a technology
transfer project, which was funded by the company Lantia Publishing S.L.

REFERENCES

Al Khalil, F., Butler, T., O’Brien, L., & Ceci, M. (2017). Trust in smart contracts is a
process, as well. In Financial Cryptography and Data Security: FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, (pp. 510-519). Springer
International Publishing. doi:10.1007/978-3-319-70278-0_32

Alharby, M., Aldweesh, A., & van Moorsel, A. (2018). blockchain-based smart
contracts: A systematic mapping study of academic research (2018). In 2018
International Conference on Cloud Computing, Big Data and blockchain (ICCBB)
(pp. 16). IEEE. 10.1109/ICCBB.2018.8756390

203

Mechanism for the Systematic Generation of Functional Tests

Bézivin, J. (2004). In search of a basic principle for model driven engineering.
Novatica Journal, Special Issue, 5(2), 2124.

Choudhury, O., Rudolph, N., Sylla, I., Fairoza, N., & Das, A. (2018). Auto-Generation
of Smart Contracts from Domain-Specific Ontologies and Semantic Rules. Conference:
IEEE Conferences on Internet of Things, Green Computing and Communications,
Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and
Information Technology. IEEE. 10.1109/Cybermatics_2018.2018.00183

Clack, C.D. (2018). Smart Contract Templates: Legal semantics and code validation.
Journal of Digital Banking, 2(4), 338-352.

Clack, C. D., Bakshi, V. A., & Braine, L. (2016). Smart Contract Templates:
foundations, design landscape and research directions. arXiv. https://arxiv.org/
pdf/1608.00771.pdf

Clack, C. D., Bakshi, V. A., & Braine, L. (2016). “Smart Contract Templates:
essential requirements and design options”. https://arxiv.org/pdf/1612.04496.pdf

Dhaiouir, S., & Assar, S. (2020). A systematic literature review of blockchain-enabled
smart contracts: platforms, languages, consensus, applications and choice criteria.
In International Conference on Research Challenges in Information Science (pp.
249-266). Springer, Cham. 10.1007/978-3-030-50316-1_15

Dolgui, A., Ivanov, D., Potryasaev, S., Sokolov, B., Ivanova, M., & Werner, F. (2020).
Blockchain-oriented dynamic modelling of smart contract design and execution in
the supply chain. International Journal of Production Research, 58(7), 2184–2199.
doi:10.1080/00207543.2019.1627439

Fontela, C. (2012). UML: modelado de software para profesionales. Alpha Editorial.

Gramoli, V. (2022). Blockchain Fundamentals. In Blockchain Scalability and its
Foundations in Distributed Systems (p. 1739). Springer International Publishing.
doi:10.1007/978-3-031-12578-2_3

Grigg, I. (2015). On the intersection of Ricardian and Smart Contracts. IANG.
https://iang. org/papers/intersection_ricardian_smart. html.

Hidayanto, A. N., & Prabowo, H. (2019). The latest adoption blockchain technology
in supply chain management: A systematic literature review. ICIC Express Letters,
13(10), 913–920.

Janssens, L., Bazhenova, E., De Smedt, J., Vanthienen, J., & Denecker, M. (2016,
June). Consistent Integration of Decision (DMN) and Process (BPMN) Models. In
CAiSE forum (Vol. 1612, pp. 121128).

https://arxiv.org/pdf/1612.04496.pdf
https://iang.org/papers/intersection_ricardian_smart.html

204

Mechanism for the Systematic Generation of Functional Tests

Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review
process research in software engineering. Information and Software Technology,
55(12), 2049–2075. doi:10.1016/j.infsof.2013.07.010

Koul, R. (2018). Blockchain Oriented Software Testing - Challenges and Approaches.
3rd International Conference for Convergence in Technology (I2CT), Pune, India.
10.1109/I2CT.2018.8529728

Kruijff, J., & Weigand, H. (2017). Ontologies for Commitment-Based Smart Contracts.
OTM 2017 Conferences: Confederated International Conferences: CoopIS, C&TC,
and ODBASE 2017, Rhodes, Greece.

Lee, S., Park, S., & Park, Y. B. (2019). Formal Specification Technique in Smart
Contract Verification. 6th International Conference on Platform Technology and
Service (PlatCon). IEEE. 10.1109/PlatCon.2019.8669419

Legerén-Molina, A. (2018). Los contratos inteligentes en España (La disciplina de
los smart contracts) / Smart contracts in Spain; the regulation of smart contracts.
Revista de Derecho civil, 5(2), 193-241.

Liao, C., Cheng, C., Chen, K., Lai, C., Chiu, T., & Wu-Lee, C. (2017). Toward A
Service Platform for Developing Smart Contracts on Blockchain in BDD and TDD
Styles. 2017 IEEE 10th International Conference on Service-Oriented Computing
and Applications. IEEE. 10.1109/SOCA.2017.26

Liu, Y., Lu, Q., Xu, X., Zhu, L., & Yao, H. (2018). Applying Design Patterns in
Smart Contracts. Springer International.

Luu, L., Chu, D. H., Olickel, H., Saxena, P., & Hobor, A. (2016). Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security (pp. 254-269). ACM. 10.1145/2976749.2978309

Macrinici, D., Cartofeanu, C., & Gao, S. (2018). Smart contract applications within
blockchain technology: A systematic mapping study. Telematics and Informatics,
35(8), 2337–2354. doi:10.1016/j.tele.2018.10.004

Magadán-Díaz, M. y Rivas-García, J.I. (2020). La industria editorial española: dos
décadas clave de transformación y cambio (19962016). Investigaciones de Historia
Económica Economic History Research doi:10.33231/j.ihe.2020.04.003

Mao, D., Wang, F., Wang, Y., & Hao, Z. (2019). Visual and User-Defined Smart
Contract Designing System Based on Automatic Coding. IEEE Access. Digital
Object Identifier., doi:10.1109/ACCESS.2019.2920776

205

Mechanism for the Systematic Generation of Functional Tests

Marchesi, M., Marchesi, L., & Tonelli, R. (2018). An Agile Software Engineering
Method to Design Blockchain Applications. Software Engineering Conference
Russia (SECR 2018), Moscow, Russia. 10.1145/3290621.3290627

Martínez Alés, R. (2001). Información Comercial Española, ICE: Revista de
Economía. Dialnet.

Mavridou, A., & Laszka, A. (2018). Designing Secure Ethereum Smart Contracts:
A Finite State Machine Based Approach. International Conference on Financial
Cryptography and Data Security. FC 2018: Financial Cryptography and Data
Security. Springer. 10.1007/978-3-662-58387-6_28

Mavridou, A., & Laszka, A. (2018). FSolidM for Designing Secure Ethereum Smart
Contracts: Tool Demonstration. 7th International Conference on Principles of
Security and Trust (POST) Held as Part of the 21st European Joint Conferences on
Theory and Practice of Software (ETAPS). Springer. 10.1007/978-3-319-89722-6_11

Mavridou, A., Laszka, A., Stachtiari, E., & Dubey, A. (2019). VeriSolid: Correct-
by-Design Smart Contracts for Ethereum. Cryptography and Security; Software
Engineering. arXiv.org. arXiv:1901.01292

Needleman, M. H. (2001). ONIX (online information exchange). Serials Review,
27(34), 102104.

Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of
data mining techniques in financial fraud detection: A classification framework
and an academic review of literature. Decision Support Systems, 50(3), 559–569.
doi:10.1016/j.dss.2010.08.006

Parizi, R. M., Dehghantanha, A., Choo, K. K. R., & Singh, A. (2018). Empirical
vulnerability analysis of automated smart contracts security testing on blockchains.
CASCON. Proceedings of the 28th Annual International Conference on Computer
Science and Software Engineering. Springer.

Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., & Vechev, M.
(2019). “VerX: Safety Verification of Smart Contracts”. Safety verification of Smart
Contracts. Security and Privacy, 2020.

Pohl, K., Hönninger, H., Achatz, R., & Broy, M. (Eds.). (2012). Model-based engineering
of embedded systems: The SPES 2020 methodology. Heidelberg: Springer.

Porru, S., Pinn, A., Marchesi, M., & Tonelli, R. (2017). Blockchain-Oriented Software
Engineering: Challenges and New Directions. 2017 IEEE/ACM 39th IEEE International
Conference on Software Engineering Companion. ACM. 10.1109/ICSE-C.2017.142

206

Mechanism for the Systematic Generation of Functional Tests

Pranto, S., Jardim, L., Oliveira, T., & Ruivo, P. (2019, October). Literature review
on blockchain with focus on supply chain. In Atas da Conferencia da Associacao
Portuguesa de Sistemas de Informacao 2019. Associação Portuguesa de Sistemas
de Informação.

Shishkin, E. (2018). Debugging Smart Contract’s Business Logic Using Symbolic
Model-Checking. arXiv.org > cs > arXiv:1812.00619v1

Sillaber, C., & Waltl, B. (2017). Life Cycle of Smart Contracts in Blockchain
Ecosystems. Datenschutz und Datensicherheit – DuD, 41(8), 497–500.

Steiu, M. F. (2020). blockchain in education: Opportunities, applications, and
challenges. First Monday. doi:10.5210/fm.v25i9.10654

Syahputra, H., & Weigand, H. (2019). The Development of Smart Contracts
for Heterogeneous Blockchains. Enterprise Interoperability, VIII, 229–238.
doi:10.1007/978-3-030-13693-2_19

Tateishi, T., Yoshihama, S., Sato, N., Saito, S. (2019). Automatic smart contract
generation using controlled natural language and template. IBM Journal of Research
and Development, 63.

Tsai, W., Ge, N., Jiang, J., Feng, K., & He, J. (2019). Beagle: A New Framework
for Smart Contracts Taking Account of Law. IEEE International Conference on
Service-Oriented System Engineering (SOSE). IEEE 10.1109/SOSE.2019.00028

Yadav, V. S., & Singh, A. R. (2019). A systematic literature review of blockchain
technology in agriculture. In Proceedings of the International Conference on Industrial
Engineering and Operations Management (pp. 973-981). Springer.

Yaqoob, I., Salah, K., Jayaraman, R., & Al-Hammadi, Y. (2021). blockchain for
healthcare data management: Opportunities, challenges, and future recommendations.
Neural Computing & Applications, 1–16.

KEY TERMS AND DEFINITIONS

Blockchain: It is a shared, immutable ledger that facilitates the process of
recording transactions and tracking assets in a business network. An asset can
be tangible (a house, car, cash, land) or intangible (intellectual property, patents,
copyrights). Virtually anything of value can be tracked and traded on a blockchain
network, reducing risk and cutting costs for all involved.

207

Mechanism for the Systematic Generation of Functional Tests

Digital Publishing Systems: This concept, also called digital publishing platform,
allows creators to share, discover, and monetize digital magazines, catalogs and
other publications with a global audience.

Digital Publishing: This concept, also called electronic or online publishing, is the
distribution of a variety of online content, such as journals, magazines, newspapers,
and eBooks. Through this process, any company or publisher can digitize documents
and information that people can view online, download, sometimes manipulate, and
even print out or share otherwise, if they choose.

Functional Tests: It is a type of software testing that validates the software system
against the functional requirements/specifications. The purpose of Functional tests
is to test each function of the software application, by providing appropriate input,
verifying the output against the Functional requirements.

Smart Contracts: It is programs stored on a blockchain that run when
predetermined conditions are met. They typically are used to automate the execution
of an agreement so that all participants can be immediately certain of the outcome,
without any intermediary’s involvement or time loss.

