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1. INTRODUCTION 

Roger Penrose is considered one of the most important physics-mathe-

maticians today, and part of this recognition has to do with the interdis-

ciplinary nature of the ideas he expounds. In the field of philosophy, for 

example, his proposals have achieved great notoriety. There are many 

philosophical debates in which Penrose enters and in each of them our 

author leaves his personal stamp, which in most cases is not without 

controversy. 

In this work we will see how Penrose argues that the debate on the 

computability of human consciousness is ultimately related to the de-

bate on the foundations of mathematics. 

Section 2 is focused on the arguments that Penrose offers to defend that 

both debates are related. In this section the figure of Turing will be 

highlighted, who is, according to Penrose, in some way the precursor 

of what he himself tries to defend. Section 3 contains a main theme in 

Penrose's approaches in the debate on the possibility of computability 

of human consciousness, that is, the acceptance of Gödel's theorem as 

a firm argument against this possibility. This section is divided, in turn, 

into two subsections. A rough explanation and context of Gödel's theo-

rem will be given in 3.1. In 3.2 we will have the opportunity to see how 

Penrose adopts Gödel's theorem as an argument against the computabi-

lity of human consciousness. In section 4 we will review the main 



‒ 108 ‒ 

criticisms that Penrose's proposal has received, from the first ones he 

received to other more current ones. 

2. DISCUSSION: THE COMPUTABILITY OF 

CONSCIOUSNESS AND ITS RELATION TO THE 

FOUNDATIONS OF MATHEMATICS 

The main reason why Penrose argues that the problem of the compu-

tability of consciousness has its origin in the foundations of mathema-

tics has a historical basis. 

When formalists and intuitionists engaged in the debate about the foun-

dations of mathematics, answers arose with respect to different pro-

blems. Specifically, in 1900 David Hilbert proposed at what would be-

come the second International Congress of Mathematicians in Paris his 

series of 23 problems that, according to him, would occupy future mat-

hematical research. Of this series, the tenth problem would turn out to 

be the key to the approach to the computability of consciousness as we 

know it today. The tenth problem proposes "to find an algorithm that 

determines whether a given polynomial diophantine equation with in-

teger coefficients has an integer solution". However, this tenth problem 

would only partially lead to the discussion of the computability of cons-

ciousness. It would not be until 1928 when the posing of another pro-

blem (which followed the same idea as the tenth in Hilbert's series) pa-

ved the way for the problem of computability of consciousness to enter 

the scene. On that date, Hilbert himself together with his colleague 

Wilhelm Ackermann proposed in Bologna what is known as the 

Entscheidungsproblem. What is posed in this problem is the existence 

of a mechanical-algorithmic procedure that accounts for certain mathe-

matical problems43 related to formal systems. The solution was found 

relatively soon (specifically in 1936) by Alonzo Church and Alan 

 
43 The concrete mathematical problem is to know whether it is possible that such an algorithm 
could decide whether the rules of a formal system can be proved.  
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Turing44, being the answer to the problem negative (such an algorithm 

does not exist).  

Far from making a detailed analysis of the solutions proposed by 

Church and Turing, we will see some of the characteristics of both, al-

though with more emphasis on Turing's particular one. The reason for 

this is that Turing's contributes to the debate on the computability of 

consciousness more directly than Church's, even though both say the 

same thing. In the following, we will see why.  

Church's solution consisted in the realization of an abstract scheme that 

finally gave the negative answer to the halting problem. This scheme is 

known as the lambda calculus. This solution highlights the mathemati-

cal nature of the notion of computability. But the notion that Church 

handles, however, has little to do with computing machines, at least in 

the first instance. The lambda calculus is so abstract that its application 

to anything beyond mathematics is difficult to contemplate.  

Not so with Turing's solution. He posed the problem in terms of a hy-

pothetical machine, which would later bear his name. The Turing ma-

chine talks about in his solution to the problem is an abstract machine. 

Nevertheless, being abstract did not prevent this machine from beco-

ming the driving force behind the creation of computers as we know 

them today. The reason why Turing's machine has been so important 

for the development of today's computer machines lies precisely in the 

proposal of how this machine should work. The characteristics of its 

operation and its composition are as follows45: 

- Tape: Although modern computers use a random access device with 

finite capacity, the memory of the Turing machine is infinite.  

- Read/write head: The read/write head at any time points to a symbol 

on the tape […] The read/write head reads and writes one symbol at a 

time from the tape. After reading and writing it moves left, right or stays 

 
44 The answers of both were given independently. But it is important to recognize the possible 
influence that Church's work had on Turing's answer (to the extent, for example, that the for-
mer was the thesis director of the latter), although not in his approach, but in his line of re-
search. 

45 There are several versions of the Turing machine, but the one presented in the quote con-
tains the features common to all these versions. 
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in place. Reading, writing and moving are all performed under instruc-

tions from the controller.  

- Controller: The controller is the theoretical counterpart of the central 

processing unit (CPU) in modern computers. It is a finite-state automa-

ton, a machine that has a predetermined finite number of states and mo-

ves from one state to another based on input. At any time it can be in 

one of these states  

[...] For each read of a symbol, the controller writes a character, defines 

the next position of the read/write head and changes the state [...]. For 

each problem, we must define the corresponding table (Forouzan, 2003: 

321-322). 

Despite the simplicity of the machine, it has the capacity to perform a 

large number of procedures. However, what Turing demonstrates with 

the hypothesis of the existence of this machine is precisely that the way 

of proceeding (mechanical-algorithmic) cannot account for the halting 

problem. Even obtaining a machine with unlimited capacity in the 

handling of algorithms, it cannot solve the Entscheidungsproblem pro-

posed by Hilbert and Ackermann. Therefore, the Turing machine re-

veals the full potential of algorithms, but, at the same time, it also warns 

of their limitations. 

It is almost paradoxical that a hypothesis whose conclusion is the limi-

tation of algorithmic systems should contribute to the [philosophical] 

approach to the possibility of an artificial intelligence. But in reality the 

paradox does not occur, since Turing's research interests pointed in 

another direction.  

One of the topics that marked Turing´s path research was (as Penrose 

believes) that pertaining to the foundations of mathematics. What was 

the nexus that united two subjects, in principle, so distant? Ivor Grattan-

Guinness gives the influence of one of Turing's mentors, Max Newman, 

a fundamental weight in the role of said nexus.  

Grattan-Guinness base his argument on the fact that Newman was an 

expert in the debate on the foundations of mathematics. Not only that, 

but he also made a notable contribution to that debate. Newman focused 

his research on topology, being a pioneer in Great Britain to investigate 

in this branch of mathematics; and also in logic, having a great impor-

tance Russell's logicism (Grattan-Guinness, 2017: 441). His interest in 
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these fields was not the result of chance. Newman belonged to the doc-

trine of mathematicians who thought of the need to solve the rift bet-

ween logic and mathematics and his research would be occupied in this 

task.  

One event that was definitive in terms of Newman's influence on Tu-

ring's research approach was a course that Newman taught at Cam-

bridge in 1935. Such courses had as their main theme the foundations 

of mathematics, the perspective of the Brouwerian intuitionists being 

of special importance. Within the topic of the foundations of mathema-

tics, different problems derived from this debate were also explored, 

such as the decision problem and the contributions made by Gödel a 

few years earlier. Although Turing did not mention the importance of 

such courses, it is presumed very likely that the contact between him 

and Newman was for the development of the 1936 article about compu-

tability (Grattan-Guinness, 2017: 439).  

So far, an important part of the debate on the foundations of mathema-

tics has been relegated to the background, and this is Gödel's contribu-

tion to it. Such a contribution is the incompleteness theorem, which will 

be of great importance in Penrose's thought.  

We have then that Kurt Gödel is, together with Turing and Church, one 

of the three pillars regarding the search for the meaning and limits of 

computability (Copeland, 2017: 57). If the role of these three persona-

lities has sometimes not been given the appreciation it deserves, it is 

because their work was focused on the abstract and not the practical 

nature of the term computability. This has also taken its toll in making 

recognizable the substantial connection between computability and the 

foundations of mathematics. The differentiation of the practical and 

abstract plane of computability has been the obstacle that has prevented 

such a connection from being manifest.  

The fact is that the role of the three is undeniable. However, what they 

defended led to different paths. Church and Turing's proposal served as 

a parapet for those who defend the possibility of the computability of 

human consciousness, while Gödel's served as a parapet for the detrac-

tors of this position. As we saw above, Penrose is one of those thinkers 
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who use Gödel's ideas to debate the arguments of the defenders of the 

possibility to create an artificial intelligence. Let us see how he does it. 

3. MORE ASPECTS OF THE DISCUSSION  

3.1. A BRIEF LOOK TO GÖDEL'S THEOREM 

It is useful to know in what context Gödel´s theorem arose, to see in 

which way Penrose adopts it to his arguments against the posibility of 

the computability of the mind and human consciousness. Kurt Gödel, 

at the age of 25, presented the theorems that would bear his name in 

response to the trend in mathematics at the time: 

As is well known, the progress of mathematics toward ever greater ac-

curacy has led to the formalization of large parts of it, so that deductions 

can be carried out according to a few mechanical rules. The most ex-

tensive formal systems constructed so far are the Principia Mathema-

tica (PM) system and the axiomatic set theory of Zermelo-Fraenkel 

(further developed by J. von Neumann) (Gödel, 2006: 53). 

Mathematics developed especially by Hilbert, Russell and Whitehead 

(for Penrose46, they are formalists), were translated into formal systems 

(logical systems being of capital importance), and every mathematical 

problem could be solved by means of them. This had as a consequence 

the conception of mathematics as a mechanical knowledge (Detlefsen, 

1996: 80). This, however, did not convince the young Gödel: 

These two systems are so broad that all the methods used today in mat-

hematics can be formalized in them, that is, they can be reduced to a 

few axioms and rules of inference. It is therefore natural to conjecture 

that these axioms and rules suffice to decide all mathematical questions 

that can be formulated in these systems. In what follows it is shown that 

this is not so, but that, on the contrary, in both systems there are relati-

vely simple problems of natural number theory that cannot be decided 

with their axioms (and rules) (Gödel, 2006: 53-54). 

What was proposed with this theorem, therefore, was to throw away the 

hope of being able to explain mathematics by means of a certain number 

 
46 Although commonly those who are known as formalists are the followers of Hilbert, while 
the followers of Russell and Whitehead are called logicists. 
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of axioms and rules. That is to say, to return to the question of the foun-

dations of mathematics. Something he finally succeeded in doing.  

Although the explanation of the Gödelian theorem will be panoramic, 

it is necessary to clarify some concepts. The purpose of the theorem is 

that a proposition belonging to a concrete formal system can declare 

itself as undecidable. This would have as a consequence the proof of its 

indeducibility. And not only that, but it could also be translatable to any 

formal system.  

First of all, let's see what a proposition is. A proposition is defined as 

those statements that generally respond to a truth value. The truth value 

of a proposition is defined in a basic way, being true when the proposi-

tion is true and false when it is false (Russell, Whitehead, 1997: 7). This 

concept, therefore, is of capital importance within logic. The second 

important concept of purpose is deducibility, which is understood as the 

ability to account for logical consistency47, in syntactic terms, i.e. struc-

ture. And the third concept, which does not appear in the purpose but 

does carry weight, is that of recursion. This term corresponds to the 

capacity of a procedure to define itself. Among the recursive processes, 

those that interested Gödel for his theorem were the primitive recursive 

functions, which are those that define themselves when their main ope-

rations are composed of recursion and composition of functions. It is 

appropriate that we retain this idea of self-explanatory ability, because 

it is of fundamental importance.  

Returning again to the purpose, we have that it revolved around the idea 

that a proposition could account for its undecidability. That is, the theo-

rem aims to make manifest to what extent a formal system can account 

for itself, or rather, to what extent it cannot account for itself. In order 

to reach this result, two steps were required: i) the construction of such 

a proposition and ii) the proof of the undecidable character of the 

 
47 This is a property of a formal system, which consists, roughly speaking, in understanding as 
impossible the acceptance of a concrete system and its contradiction at the same time.  
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proposition48. The fact is that Gödel ends up successfully accomplis-

hing these two steps49 and thus achieves his purpose.  

Penrose explains through a few simple logical steps the implications of 

this theorem as follows: 

We have numbered all propositional functions which depend on a sin-

gle variable, so the one we have just written down must have been as-

signed a number. Let us write this number as k. Our propositional fun-

ction is the kth one in the list. Thus 

 ¬∃x [∏x proves Pw (w)] = Pk (k)  

We will now examine this function for the particular w value: w =k. 

We have: 

 ¬∃x [∏x proves Pk (k)] = Pk (k).  

The specific proposition Pk(k) is a perfectly well-defined (syntactically 

correct) arithmetical statement. Does it have a proof within our formal 

system? Does its negation ¬ Pk(k) have a proof? The answer to both 

these questions must be “no”. We can see this by examining the 

meaning underlying the Gödel procedure. Although Pk(k) is just an 

arithmetical proposition, we have constructed it so that it asserts what 

has been written on the left-hand side: 'there is no proof, within the 

system, of the proposition Pk(k). If we have been careful in laying down 

our axioms and rules of procedure, and assuming that we have done our 

numbering right, then there cannot be any proof of this Pk(k) within the 

system. For if there were such a proof, then the meaning of the state-

ment that Pk(k) actually asserts, namely that there is no proof, would be 

false, so Pk(k) would have to be false as an arithmetical proposition. 

Our formal system should not be, so badly constructed that it actually 

allows false propositions to be proved! Thus, it must be the case that 

there is in fact no proof of Pk(k). But this is precisely what Pk(k) is 

trying to tell us. What Pk(k) asserts must therefore be a true statement, 

so Pk(k) must be true as an arithmetical proposition. We have found a 

true proposition which has no proof within the system! (Penrose, 1991: 

146-147; italics in the original). 

The statement of the proposition Pk(k), which is within a previously 

established formal system is true. But such a truth value cannot be pro-

ved within the system, at least without falling into a contradiction. We 

 
48 This division into two concrete steps is proposed by Jean Ladrière to understand the theo-
rem in a more schematic way. For such an analysis of the Gödelian theorem see his work 
(Ladrière, 1969). 

49 For a detailed explanation of the theorem see Gödel (2006: 57-87). 
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have then that recursion is not a capability that belongs to formal sys-

tems. When formal systems try to give an explanation from themselves 

without falling into contradiction they can only manage to go round and 

round without arriving at any concrete answer. This situation is what is 

known in logic as a cycle or vicious circle, which is a point of deadlock 

from which it is impossible to get out.  

An algorithm has the same structure and functionality as a formal sys-

tem50. If formal systems are not able to account for themselves, algo-

rithms, for their part, will not be able to do so either. In fact, this is what 

happens! Human beings have the capacity to be able to account for 

themselves or, at least, the exercise of reflection does not lead them to 

a situation like the vicious circle to which formal systems are someti-

mes condemned. This is basically the way in which Penrose un-

derstands that Gödel's theorem can be decisive against the possibility 

of an artificial intelligence. But let us look at it more closely.  

3.2. HOW PENROSE ADOPTS GÖDEL'S THEOREM TO HIS IDEAS 

Penrose is not the first to highlight the potential of Gödel's theorem as a 

basis for arguing against understanding mental faculties as mere compu-

tations. The role of pioneer belongs to John Lucas, who in 1961 used 

Gödel's theorem as a support for mentalism, in its confrontation with 

physicalism. Penrose himself recognizes such influence, although he 

also claims a particular contribution, which, he considers, overcomes the 

difficulties that Lucas' argument had to go through (Penrose, 2012: 65). 

In any case, at first51, Penrose treated Gödel's theorem succinctly. It 

would be later52 when he considered that this theorem has a wider scope 

than he first supposed. Penrose will use both the implications of the 

theorem itself and what it implied in its context.  

 
50 This is not a personal consideration. It is usually accepted in this way, i.e. see Penrose 
(2012: 108). In any case, it is advisable to be careful with this kind of statements, as Juliette 
Kennedy points out in (2017: 71).  

51 In The Emperor´s new mind (henceforth ENM). 

52 In The Shadows of the mind (henceforth SOTM). 
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Gödel's theorem arose to make it clear that mathematics is beyond for-

mal systems. Penrose makes the same claim, but referring to human 

consciousness and computational processes.  

One of the bases on which Penrose sustains the adoption of Gödel's 

theorem for his arguments has to do with the limits of computational 

processes53.  

Penrose has no problem in admitting the ability of machines to solve 

problems of a complexity that may even be impossible for human 

beings. His defense is based on the fact that it is impossible for a ma-

chine to acquire a consciousness equal to that of human beings. In fact, 

he thinks (Penrose, 2012: 60) that it is in the problems that require a 

solution through common (human) sense that machines are far removed 

from human beings. 

Therefore, the "less brilliant" part of human consciousness would be 

that which would most deeply engage machines in their attempt to catch 

up with our species. Penrose is aware that his position has not infre-

quently been interpreted in the opposite way and therefore clarifies: 

[...] I am claiming that "understanding" involves the same kind of non-

computational process, whether it lies in a genuine mathematical per-

ception, say of the infinitude of natural numbers, or merely in percei-

ving that an oblong-shaped object can be used to prop open a window, 

or in understanding how an animal may be secured or released by a few 

selected motions of a bit of rope, or in comprehending the meanings of 

the words "happiness", "fighting", or "tomorrow" (Penrose, 2012: 69). 

Now, what does this have to do with Gödel's theorem? Penrose argues 

that this way of skipping computational rules is what directly relates the 

Gödelian theorem to the non-computability of human consciousness. 

Recall that this theorem tells us, precisely, that formal systems cannot 

account for themselves, since they can have additional rules that are not 

contained in them, but outside. Only from a non-computational proce-

dure could such additional rules be accounted for. We know that human 

beings have non-computational procedures, but to propose that a 

 
53 For a recent study of the reasons for Penrose's adoption of Gödel's theorem, see Heredia 
(2019: 168-177). 
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machine also possesses them is a flagrant contradiction because machi-

nes owe their behavior to computational processes!  

Despite the connection between Penrose's arguments and Gödel's theo-

rem, this does not imply that the thinking of both authors is in conso-

nance. Let us recall that Gödel did not rule out that mathematical 

thought responds to a subtle algorithm: 

[…] (Gödel) found himself seemingly driven in the mystical direction 

[…] that the mind cannot be explained at all in terms of the science of 

the physical world (Penrose, 2012: 143-144). 

Does this mean that Penrose is inappropriately forcing the implications 

of Gödel's theorem? In my opinion, I think he is not. And as a general 

rule this is not an aspect that he is usually reproached for. In the follo-

wing section we will see in what way Penrose's position is criticized 

and to what extent these criticisms have, in my opinion, weight or not. 

4. CONCLUSIONS 

That Gödel's theorem can be a useful tool to argue against those who 

defend Artificial Intelligence is something that does not seem to please 

everyone. This, however, is not the direction I take. I think that the idea 

of confronting the concept of reflection and recursion is a great success 

and, I believe, that it is a strong philosophical argument. Penrose says 

with respect to this, "Reflection principles provide the very antithesis of 

formalist reasoning. If one is careful, they enable one to leap outside the 

rigid confinements of any formal system to obtain new mathematical 

insights that did not seem to be available before" (Penrose, 1991: 151). 

Reflection is a feature that seems beyond the reach of machines. Al-

though this argument makes it possible to cover issues that may at first 

seem distant, this does not prevent it from being subject to criticism.  

Some of the criticisms we will see below are directed both to the use of 

Gödel's theorem by John Lucas and to that carried out by Penrose. On 

the other hand, indirect criticisms of both will also be included. 

The first of the criticisms is that one carried out by Russell and Norvig 

in their joint work (2004). This particular critique also takes into 
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account Penrose's perspective, although it is recognizable that the inter-

est of the critique is centered on that of Lucas54. Russell and Norvig 

argue that the adoption of Gödel's theorem is open to criticism on three 

different points.  

The first highlights how Lucas (Penrose also does so) understands 

computational processes to be those carried out by Turing machines. 

Thus, to speak of computers and Turing machines is to speak of the 

same thing. While this is easily acceptable, it is no less true that this 

should not be understood in an absolute way, since Turing machines 

are infinite, while computers are finite. This infinite character of Turing 

machines implies that they are not subject to what Gödel's theorem dic-

tates. Not only that, but this could be transferred to any computer (Rus-

sell & Norvig, 2004: 1078).  

This part of the criticism does not carry the weight it is intended to give. 

It is raised as if in employing the adoption of Gödel's theorem all the 

features of the Turing machine had not been taken into account. Penrose 

is quite clear on this point. In fact, he defends that his point of view 

conflicts with the thesis of Turing and his machine, while with Church's 

thesis (more abstract) it need not necessarily clash head-on (Penrose, 

2012: 35). Penrose places Turing's machine and Gödel's theorem in the 

same scenario, because he argues that Turing himself would have ac-

cepted it (Penrose, 2012: 35).  

The second point is that the limitations of the Gödelian theorem are 

neither so dramatic for machines nor so definitive as an argument. To 

make this idea manifest, Russell and Norvig argue that we humans 

could find ourselves in a similar predicament to that faced by formal 

(and computational) systems. They put it this way: 

[…] Consider the sentence 

J. R. Lucas cannot consistently assert that this sentence is true.  

 
54 As a comment I would like to say that I find it striking that being this work closer to Pen-
rose's (being SOTM from 1994 and the work of Russell and Norvig from 1995, with later edi-
tions in 2003 and 2009) the critics continue to focus mostly on the work of  John Lucas, which 
is 30 years older. 
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If Lucas asserted this sentence, then he would be contradicting himself, 

so therefore Lucas cannot consistently assert it, and hence it must be true. 

We have thus demonstrated that there is a sentence that Lucas cannot 

consistently assert while other people (and machines) can. But that does 

not make us think less of Lucas (Russell & Norvig, 2004: 1078-1079). 

Of course, the situation described does not change the idea with respect 

to Lucas, but it is also necessary to understand that a real situation is 

not being described. In logical terms it is true, the human being would 

suffer the same fate as a formal system or a computer, i.e., he would be 

cornered by the sentence. But the difference lies in the fact that the hu-

man being can account for such a logical labyrinth, while a formal sys-

tem or any machine (however powerful it may be), cannot. If our idea 

about Lucas does not change, it is precisely because it should not!  

Later, they argue that if the inferiority that humans have with respect to 

machines in terms of rapid calculation is not taken into account to dis-

credit human intelligence, why is the opposite the case with machines 

and their limitations (Russell & Norvig, 2004: 1079).  

This again is in a different scenario than the one in which Penrose ma-

kes his argument. We have seen that he has no problem in admitting the 

intellectual capabilities of machines. This issue is usually a common 

point among the detractors of the Penrosean perspective, and it seems 

to be a misunderstanding. What Penrose defends is that it is impossible 

for a machine to obtain a consciousness equal to that of a human being. 

That is the only capability that he denies to machines. Therefore, to 

attempt to imply that machines are denied any kind of intelligence is 

incorrect. Computers are very capable entities in numerous domains. It 

is another matter to try to equate such capabilities to that of humans. In 

some respects we humans are superior to machines and in others, the 

reverse is true. But the important thing for Penrose is not that, but to 

understand the gulf that irremediably separates us.  

And the third point of Russell and Norvig's critique is basically the 

same as the first part of the second point. The question is raised again 

as to whether the human being is immune to the implications of the 

Gödelian theorem and how this does not delegitimize either of the two 

intelligences (Russell & Norvig, 2004: 1079). We have just seen how I 
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disagree with this approach, so it would be a futile exercise to elaborate 

on my ideas in this regard.  

The strength of the argument of Gödel's theorem can be affected by 

giving it a role that does not correspond to it. And it is precisely from 

this charge that Penrose does not escape. To argue that the Gödelian 

theorem has a factual utility as an argument against the computability 

of consciousness and the human mind is to dispense a burden to the 

theorem that is not really its own. But is this really so? It is true that it 

is essential to be cautious in establishing both epistemological and on-

tological equivalences between arguments from different fields. This, 

in my opinion, is not a problem for Penrose's approach. He makes it 

clear that formal and computational systems are deeply related, there 

being no such conflict (neither ontological nor epistemological).  

Let us now turn to different critiques of Penrose's perspective in parti-

cular. We begin with those of Feferman and McDermott, which belong 

to a series of reviews by various authors, contained in the journal 

Psyche between 1995 and 1996. The reason for choosing these two cri-

ticisms in particular is because, I believe, they are the ones that contain 

a tone more antagonistic to what Penrose expressed.  

Starting with Feferman, it should be noted that this author makes it clear 

from the beginning that the problem with Penrose's approach is not its 

content, but the way in which he intends to defend it. Moreover, Fefer-

man even admits that he agrees with what Penrose defends. 

One of the points that Feferman highlights is the clarity with which 

Penrose sees the relationship between formal systems and Turing ma-

chines. Although he shares the idea that the reformulation of the incom-

pleteness theorem as an argument against understanding mathematical 

thought, on the other hand, he does not fail to question whether or not 

such an equivalence is forced. The reason for his doubt is that he thinks 

that Penrose gives formal systems a modus operandi that does not co-

rrespond to them and that clearly distances him from human beings. For 

Feferman it is not so clear that formal systems carry out mathematical 

thinking as described by Penrose. In fact, he argues that we cannot 



‒ 121 ‒ 

really guarantee knowledge of that particular thing that enables mathe-

matical thinking (Feferman, 1995: 9). 

Feferman shares with Penrose that true mathematical thinking is not 

mechanical and that "understanding" is definitive in this section, since 

it is in this notion that machines could be differentiated from human 

beings. However, the proof through Gödel's theorem does not have as 

much force as Penrose claims, but only translates a conviction that rai-

ses more questions than it answers (Feferman, 1995: 9).  

Although Feferman offers a very concrete critique of Penrose's ap-

proach, he does not offer an alternative. What Feferman appeals to is 

Penrose's ambiguity in using certain concepts from the field of logic. 

As Penrose recognizes, Feferman is right in his criticism, but the solu-

tion is to understand such concepts in their most general way so as not 

to run an excessive risk. Penrose does not intend to enter into a purely 

logical debate. Let us now turn to McDermott's criticism.  

McDermott's critique has a much less delicate tone than that professed 

by Feferman. The difference between the two attitudes probably lies in 

the fact that, unlike Feferman, McDermott does not share Penrose's 

point of view with respect to Artificial Intelligence. However, this is no 

reason for McDermott to criticize aspects closely related to those seen 

in the previous critique.  

An example of this is to question Penrose's defense of the way mathe-

maticians proceed, as far as thinking mathematics is concerned. For 

McDermott it is not so evident that there is an unbridgeable gulf bet-

ween human beings and machines. In the first place, Penrose makes an 

imprudent mistake in generalizing about how mathematicians think; 

and, secondly, he makes the mistake of extrapolating Gödel's theorem 

to such an assumption. 

The general tone of McDermott's critique is to critized Penrose for his 

lack of precision in terms that are fundamental for dealing with this type 

of debate (McDermott, 1995: 16). 

McDermott sees many errors in Penrose's argument, but, in my opinion, 

we cannot see either any alternatives. On the one hand, although 
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Penrose gives a very important role to his Gödelian argument, he does 

not leave absolutely everything to it. And on the other hand, McDer-

mott, after all, does not stop appealing to "in the future we will see what 

happens" (typical of those who defend AI), so that demanding more 

forcefulness from Penrose seems a demand, at least, out of place.  

Penrose already in ENM realizes the possible criticisms that his posi-

tion has to face. However, he considers that the arguments that may 

come his way are not strong enough, (Penrose, 1991: 517). 

The reason he is not convinced by such arguments is that they do not 

accurately describe how human beings think about mathematics. For 

human beings, mathematics is not presented in such a way that it is 

impossible to give answers, no matter how abstract the problem is.  

Despite the philosophical efforts of the authors we have seen, at present 

this type of criticism is not the main argument of those who defend 

Artificial Intelligence. Rather, they focus on expressing the enormous 

capabilities that the current machines have in order to, in this way, de-

molish the possible limitations that their detractors may want to grant 

them. A clear example of this trend can be found in Nick Bostrom 

(2014), who highlights the power of machines as follows: 

[…] If the methods that the software uses to search for a solution are 

sufficiently sophisticated, they may include provisions for managing 

the search process itself in an intelligent manner […] the software may 

start by developing a plan for how to go about its search for a solution. 

The plan may specify which areas to explore first and with what met-

hods, what data to gather, and how to make best use of available compu-

tational resources. In searching for a plan that satisfies the software’s 

internal criterion […], the software may stumble on an unorthodox idea. 

For instance, it might generate a plan that begins with the acquisition 

of additional computational resources and the elimination of potential 

interrupters (such as human beings). Such “creative” plans come into 

view when the software’s cognitive abilities reach a sufficiently high 

level. When the software puts such a plan into action, an existential 

catastrophe may ensue (Bostrom, 2014: 153). 

Software sophistication has reached such a point that machine intelli-

gence (superintelligence, as Bostrom calls it) in many ways resembles 

human intelligence (even today!). But to what extent can this way of 

thinking reflect such a degree of optimism without conflicting with 
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Penrose's perspective? Well, I think, as far as they want to. We have 

seen repeatedly that Penrose readily acknowledges the merits of tech-

nological advances. Therefore, a description such as Bostrom's does not 

argue against what Penrose advocates (i.e., that machines acquire hu-

man-like consciousness since it contains non-computational processes).  

Now, what is Penrose's reason for adopting Gödel's theorem without 

that conviction being threatened by the criticism it may receive? In 

short, to mathematics. But to be more precise, to the relation of mathe-

matics to truth. He understands that this field of knowledge allows us 

to have a direct contact with the truth. Therefore, this path must not be 

abandoned! 
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