
Hypergraph logic program representation
versus stratified programs⋆

David Lobo1[0000−0002−7678−2331], Jesús Medina1[0000−0002−3931−5873],
José R. Portillo23[0000−0002−0940−068X], and

José A. Torné-Zambrano1[0000−0002−9897−916X]

1 Department of Mathematics. University of Cádiz, Spain
{david.lobo,jesus.medina,joseantonio.torne}@uca.es

https://www.uca.es/mcis
2 Department of Applied Mathematics 1, University of Sevilla, Spain

https://ma1.us.es
3 University Institute for Research in Mathematics (IMUS), Seville, Spain.

https://imus.us.es
josera@us.es

Abstract. Multi-adjoint normal logic programming is a general non-
monotonic logic programming framework, which makes it ideal for mod-
eling complex scenarios. Hypergraph representation has been proved to
be an appropriate tool in the study of different properties of a logic pro-
gram, whereas the use of a stratification has provided interesting results
related to the existence and unicity of stable models. In this paper, we
will see the relation between the p-condensation graph of a program and
its “optimal” stratification.

Keywords: Logic Programming · Hypergraphs · Negation operator.

1 Introduction

Logic programming arises as a mathematical tool for expressing and solving
problems through declarative specifications, becoming particularly powerful when
dealing with knowledge-based systems and automated reasoning [14, 18]. Among
all the generalizations of logic programming, it stands out the multi-adjoint nor-
mal one (MANLP) [4, 5], allowing to use different adjoint pair in the construction
of the rules of the programs [6], together with less restrictive properties in the
considered connectives and the use of negation operators, providing a more flex-
ible framework.

Taking into account that one of the main demanding tasks in MANLP is the
study of conditions to ensure the existence and the unicity of stable models [11,

⋆ Partially supported by the 2014–2020 ERDF Operational Programme in collabora-
tion with the State Research Agency (AEI) in projects PID2019-108991GB-I00 and
PID2022-137620NB-I00, and the Ecological and Digital Transition Projects 2021 of
the Ministry of Science and Innovation in project TED2021-129748B-I00.

2 D. Lobo, J. Medina, J.R. Portillo, J.A. Torné-Zambrano

15], we can understand the importance of stratifications in logic programming.
Indeed, the determination of stratified logic programs is a relevant sufficient
condition in order to determine whether a logic program has a (unique) stable
model [1, 17].

Furthermore, multi-adjoint logic programs have been represented by hyper-
graphs obtaining interesting results. For example, this relationship was used
in [8, 9] to the termination property of the immediate consequences operator.
This representation was extended in [10].

In this paper, we will provide a hypergraph representation of a MANLP
completely characterizing the considered program, complementing the one given
in [9, 10]. Moreover, we will show that from the p-condensation graph of the
program P, we can define an “optimal” stratification of the given program. As a
consequence, it also makes possible to compute the least model of the subprogram
associated with each stratum in parallel.

2 Multi-adjoint normal logic programming

The algebraic structure considered in this framework is a local multi-adjoint
normal Σ-algebra, which considers a bounded lattice endowed with a negation
operator and adjoint pairs, which generalize left-continuous t-norms and their
residuated implications. For more details, the reader can see [4, 16].

In this paper, we will consider a Σ-algebra L based on a multi-adjoint lat-
tice [7] (L,⪯,←1,&1, . . . ,←n,&n), a negation operator ¬, and other operators,
such as conjunctors ∧1, . . . ,∧k, disjunctors ∨1, . . . ,∨l and general aggregators
@1, . . . ,@h. Considering the multi-adjoint Σ-algebra L, a countable set of propo-
sitional symbols Π and the algebra of well-formed formulas F, we introduce the
definition of multi-adjoint normal logic program [4, 16].

Definition 1. A multi-adjoint normal logic program, MANLP in short, is a set
of rules of the form ⟨A←i B, ϑ⟩ such that:

1. The rule A←i B is a formula of F.
2. The confidence factor ϑ is an element (a truth-value) of L.
3. The head of the rule A is a propositional symbol of Π.
4. The body formula B is a formula of F of the form @[B1, . . . , Bs,¬Bs+1, . . . ,
¬Br] built from propositional symbols B1, . . . , Br (r ≥ 0, Bi ̸= Bj, for i ̸= j)
by the use of conjunctors &1, . . . ,&n and ∧1, . . . ,∧k, disjunctors ∨1, . . . ,∨l,
aggregators @1, . . . ,@m and elements of L (which composition is represented
by @).

5. Facts are rules with the body ⊤.

Example 1. In this example in the unit interval L = [0, 1], the adjoint pairs cor-
responding to the product, Gödel and Lukasiewicz t-norms, (&P,←P), (&G,←G
), (&Ł,←Ł) are considered, together with the weighted sums @(2,1) and @(1,3) de-

fined as @(2,1)(x, y) =
2x+ y

3
and @(1,3)(x, y) =

x+ 3y

4
, for every (x, y) ∈ [0, 1]2.

Moreover, the negation ¬, defined as ¬(x) = 1 − x for x ∈ [0, 1], will also be

Hypergraphs logic program representation vs stratified programs 3

taken into account in the program. Specifically, the following normal program P
will be analyzed in the rest of the paper:

⟨c←P n &P ¬u, 0.8⟩
⟨n←P c, 0.8⟩
⟨n←P @(2,1)(¬f,¬h), 0.6⟩
⟨h←P f, 0.7⟩
⟨u←G h&Ł f, 0.7⟩

⟨p←P n, 0.9⟩
⟨m←P n &G a, 0.8⟩
⟨f←P u, 0.9⟩
⟨a←P @(1,3)(¬f,¬u), 1.0⟩

⟨f←P 1.0, 0.1⟩
⟨n←P 1.0, 0.5⟩
⟨u←P 1.0, 0.2⟩
⟨u←P 1.0, 0.2⟩

Note that, in non-commutative aggregators such as @(1,3) or @(2,1), the order
of variables in the input follows the enumeration defined by the set Π. In our
example, we must write @(1,3)(¬f,¬u) instead of @(3,1)(¬u,¬f).

The semantics is given by the notion of model:

Definition 2. Given a mapping (called interpretation) I : Π → L, a weighted
rule ⟨A←i B, ϑ⟩ is satisfied by I, if ϑ ⪯ Î(A ←i B), where Î is the unique
homomorphic extension of I on F. An interpretation I : Π → L is a model of a
multi-adjoint normal logic program P if all weighted rules in P are satisfied by I.

Now, we recall the notion of stratified logic program, according to the semi-
nal version of the notion, simultaneously introduced in [1, 17]. Given the set of
propositional symbols appearing in the program P, which will be denoted as ΠP,
a stratification of P is a mapping || · || : ΠP → Z+ such that, for each rule of
P of the form ⟨p←i @ [p1, . . . , pm,¬pm+1, . . . ,¬pn] ;ϑ⟩, the following statements
hold:

• ||pi|| ≤ ||p|| for each i ∈ {1, . . . ,m}.
• ||pi|| < ||p|| for each i ∈ {m+ 1, . . . , n}.

Given a propositional symbol p ∈ ΠP, the stratum of p is the integer ||p||.
The existence of stratifications characterizes the so-called stratified multi-adjoint
normal logic programs. A multi-adjoint normal logic program P is stratified if
there exists a stratification of P. Indeed, if || · || is a stratification of P, then
the unique stable model of P can be computed in terms of a certain sequence of
interpretations {M ||·||

1 ,M
||·||
2 , . . . } related to the strata of P with respect to || · ||.

3 Normal logic programs through hypergraphs

Basic notions of (hyper)graph theory can be found in [2]. A directed hypergraph
is a pair (V,E), where elements of E are directed hyperedges or hyperarcs, repre-
sented as ordered pairs e = (T (e), H(e)), with disjoint subsets of vertices T (e)
(the tail) and H(e) (the head) [12]. Hereafter, directed hypergraphs are simply
referred to as hypergraphs. An edge labeling is a function from E to labels, and
a hypergraph with an edge labeling is an edge-labeled hypergraph. A B-graph
is a hypergraph where all hyperarcs have only one element in their heads [12].
This paper focuses on labeled B-graphs, a natural representation of rules in a

4 D. Lobo, J. Medina, J.R. Portillo, J.A. Torné-Zambrano

p

m

a

u

f

h

n

c

(P,@(1,3), {f, u}, 1)

(P,@(2,1), {f, h}, 0.6)

(P,&P ,{u},0.8)

(P
,∅
,∅
, 0
.9
)

(P
,∅
,∅
, 0
.7
)

(P
,∅

,∅
,0
.9
)(P

,∅
,∅

,0
.8
)

(G
,&

L ,∅
, 0.7)

(P,&G,∅, 0.8)

Fig. 1. Edge-labeled B-graph associated with the program given in Example 1. The
facts of the program (rules 8, 9 and 10 of Example 1) are not shown by simplicity.

multi-adjoint normal logic program. This section will illustrate how a flexible
MANLP can be represented by a specific edge-labeled directed B-graph.

Given a multi-adjoint normal logic program P, we compute an associated
B-graph HP. Vertices correspond to propositional symbols in ΠP, and hyperarcs
are assigned for each rule. Labels include a 4-vector (i,@, {Bs+1, . . . , Br}, ϑ),
with special cases for single symbols in the body. Figure 1 shows the B-graph
associated with Example 1. The resulting hypergraph is an edge-labeled directed
B-graph, and the original program can be reconstructed from it [9, 10]. This
characterization allows leveraging existing results and algorithms for directed
hypergraphs in the analysis of fuzzy logic normal programs.

Given a directed hypergraph H = (V,E), two vertices u, v ∈ V , and a natural
number q, a path in H from u to v of length q is a sequence of nodes and
hyperarcs: Puv = ⟨v1, E1, v2, E2, . . . , vq, Eq, vq+1⟩ where: v1 = u, vq+1 = v, u ∈
T (E1), v ∈ H(Eq), and vi ∈ H(Ei−1) ∩ T (Ei), for all i ∈ {2, ..., q}. The trivial
sequence Pvv = ⟨v⟩, with v ∈ V , will be a path of length 0. Given a hypergraph
H, vertices u and v are strongly path-connected if there is a path from u to
v and vice versa. A strongly path-connected component (spc-component) is an
equivalence class under this relation.

As a consequence, vertices in each cycle in a hypergraph belong to the same
spc-component. Example 1 has three spc-components: {f,h,u}, {c,n}, and {a}.

spc-components provide an interesting partition of the hyperarcs into two
subsets. A d-hyperarc has vertices in different spc-components in its tail and
head; an s-hyperarc has at least one vertex in the same spc-component. Fig-
ure 2 depicts the labeled B-graph associated with Example 1, highlighting spc-

Hypergraphs logic program representation vs stratified programs 5

components and d-/s-hyperarcs. Labels are also included. Notice that, the nega-
tion operators only appear in the d-hyperarcs.

p

m

a

u

f

h

n

c

(P,@(1,3), {f, u}, 1)

(P,@(2,1), {f, h}, 0.6)

(P,&P ,{u},0.8)

(P
,∅
,∅
, 0
.9
)

(P
,∅
,∅
, 0
.7
)

(P
,∅

,∅
,0
.9
)(P

,∅
,∅

,0
.8
)

(G
,&

L ,∅
, 0.7)

(P,&G,∅, 0.8)

Fig. 2. spc-components of the edge-labeled B-graph associated with the program given
in Example 1. The d-hyperarcs are shown with dashed lines.

The path-condensation (p-condensation, for short) of a hypergraph H, de-
noted as C (H), is a digraph whose vertices are spc-components, with arcs con-
necting components based on hyperarc relationships [13]. Figure 3 shows the
p-condensation of the hypergraph in Figure 1.

f,h,u

c,n

a

p

m

Fig. 3. p-condensation digraph of the hypergraph in Figure 1. Vertices are labelled
with the vertices of the corresponding spc of the hypergraph.

6 D. Lobo, J. Medina, J.R. Portillo, J.A. Torné-Zambrano

4 Application of the hypergraph representation

This section shows that the hypergraph representation provides a mechanism
for detecting whether a program P is stratified and, in this case, providing an
“optimal” stratification.

As aforementioned, stratifications characterize the unique stable model of a
stratified MANLP P. However, since many stratifications can be defined from
a program, even if we limit to non-isomorphic stratifications, then there might
be multiple forms for computing the (unique) stable model of P. For example,
a stratification || · || with many strata requires many elements of the sequence
{M ||·||

i }, i.e. many steps, to obtain the unique stable model, thus slowing down
its computation.

Furthermore, and more important, the constructive method of the stable
model implies the computation of a succession of interpretations in a sequential
way, avoiding parallel computations. The hypergraph representation of MANLP
given in the previous section provides an interesting tool to deal with the two
previous issues, and to optimize the computation of the unique stable model of
stratified MANLP. Specifically, we obtain the following result.

Theorem 1. Given a MANLP P. If the labels of s-hyperarcs of HP do not con-
tain negative variables in the same spc-component of the s-hyperarc head, then
the p-condensation graph C(HP) provides a stratification with the least possible
number of non-empty strata, satisfying that ∥vi∥ < ∥vj∥ for every couple of
vertices vi, vj of C(HP) with a directed path from vi to vj.

For example, in the previous particular program, we can see in Fig. 3 that the
p-condensation graph offers an stratification ∥ · ∥ with three strata: ∥f∥ = ∥h∥ =
∥u∥ = 0, ∥c∥ = ∥n∥ = ∥a∥ = 1, and ∥p∥ = ∥m∥ = 2. Clearly, other stratifications
can be defined on P satisfying that ∥vi∥ < ∥vj∥ for every vi, vj of C(HP) with a
directed path from vi to vj , but all of them have three or more strata.

Therefore, the stratification provided by the hypergraph representation of
a MANLP P optimizes the number of strata. Furthermore, it also allows the
computation of the least model of the subprogram associated with every stratum
in parallel, with respect to each independent spc-component of the stratum.

5 Conclusions and future work

We have complemented previous advances in order to completely characterize a
MANLP through a hypergraph. We have also shown that, if a given MANLP
is stratified, then the p-condensation graph of the hypergraph associated with
the program provides a stratification with the least number of non-empty strata,
satisfying that if two vertices of the graph are connected they must be in different
strata, also optimizing parallel computations.

In the future, more properties and advantages will be obtained from the re-
lationship between hypergraph theory and logic programming. For example, we
will study the theoretical complexity of the computation of the stratification

Hypergraphs logic program representation vs stratified programs 7

given by Theorem 1 and it will be compared with other traditional methods to
compute stable models. Furthermore, we will apply the hypergraph representa-
tion to obtain new results in the computation of the semantics of modular logic
programs [3].

References

1. K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming, pages 89–148.
Morgan Kaufmann, 1988.

2. C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd, 1985.
3. P. Cabalar, J. Fandinno, and Y. Lierler. Modular answer set programming as a for-

mal specification language. Theory and Practice of Logic Programming, 20(5):767–
782, 2020.

4. M. E. Cornejo, D. Lobo, and J. Medina. Syntax and semantics of multi-adjoint
normal logic programming. Fuzzy Sets and Systems, 345:41 – 62, 2018.

5. M. E. Cornejo, D. Lobo, and J. Medina. Extended multi-adjoint logic program-
ming. Fuzzy Sets and Systems, 388:124–145, 2020. Logic.

6. M. E. Cornejo and J. Medina. Impact Zadeh’s theory to algebraic structures.
multi-adjoint algebras. Journal of Pure and Applied Mathematics, 12:126–141,
2021.

7. M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. Multi-adjoint algebras ver-
sus non-commutative residuated structures. International Journal of Approximate
Reasoning, 66:119–138, 2015.

8. J. C. Díaz-Moreno, J. Medina, and J. R. Portillo. Towards the use of hypergraphs in
multi-adjoint logic programming. Studies in Comp. Intelligence, 796:53–59, 2019.

9. J. C. Díaz-Moreno, J. Medina, and J. R. Portillo. Fuzzy logic programs as hyper-
graphs. termination results. Fuzzy Sets and Systems, 445:22–42, 2022.

10. J. C. Díaz-Moreno, J. Medina, and J. R. Portillo. Hypergraphs in logic program-
ming. In Z. Bouraoui and S. Vesic, editors, Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, pages 442–452, Cham, 2024. Springer.

11. M. Fitting. The family of stable models. The Journal of Logic Programming, pages
17(2–4):197–225, 1993.

12. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and
applications. Discrete Appl. Math., 42(2-3):177–201, apr 1993.

13. F. Harary, R. Z. Norman, and D. Cartwright. Structural Models: An Introduction
to the Theory of Directed Graphs. John Wiley & Sons, New York, 4 edition, 1965.

14. J. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
15. N. Madrid and M. Ojeda-Aciego. On the existence and unicity of stable models in

normal residuated logic programs. International Journal of Computer Mathemat-
ics, 89(3):310–324, 2012.

16. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming with
continuous semantics. Lecture Notes in Artificial Intelligence, 2173:351–364, 2001.

17. A. Van Gelder. Negation as failure using tight derivations for general logic pro-
grams. The Journal of Logic Programming, 6(1-2):109–133, 1989.

18. C. Zhang, L. Chen, Y.-P. Zhao, Y. Wang, and C. L. P. Chen. Graph enhanced
fuzzy clustering for categorical data using a bayesian dissimilarity measure. IEEE
Transactions on Fuzzy Systems, 31(3):810–824, 2023.

