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ABSTRACT. Let X be a Banach space whose characteristic of noncompact convexity
is less than 1 and satisfies the non-strict Opial condition. Let C' be a bounded closed
convex subset of X, KC(C) the family of all compact convex subsets of C' and T a
nonexpansive mapping from C' into KC(C'). We prove that T has a fixed point. The
non-strict Opial condition can be removed if, in addition, T' is an 1-y-contractive
mapping.

1. Introduction

Some classical fixed point theorems for singlevalued nonexpansive mappings have
been extended to multivalued mappings. The first results in this direction were
established by J. Markin [12] in a Hilbert space setting and by F. Browder [3] for
spaces having a weakly continuous duality mapping. E. Lami Dozo [9] generalized
these results to a Banach space satisfying Opial’s condition.

By using Edelstein’s method of asymptotic centers, T.C. Lim [10] obtained a
fixed point theorem for a multivalued nonexpansive self-mapping in a uniformly
convex Banach space. W. A. Kirk and S. Massa [7] gave an extension of Lim’s
theorem proving the existence of a fixed point in a Banach space for which the
asymptotic center of a bounded sequence in a closed bounded convex subset is
nonempty and compact.

Many questions remain open (see [15] and [16]) about the existence of fixed points
for multivalued nonexpansive mappings when the Banach space satisfies geometric
properties which assure the existence of a fixed point in the singlevalued case, for
instance, if X is a nearly uniformly convex space. In this paper we state some fixed
point theorems for multivalued nonexpansive self-mappings, which are more general
than the previous results. First, we give a fixed point theorem for a multivalued
nonexpansive and 1-y-contractive mapping in the framework of a Banach space

1991 Mathematics Subject Classification. 47TH04, 47TH09, 47H10.

Key words and phrases. Fixed point, multivalued nonexpansive mapping, characteristic of
noncompact convexity of a Banach space, nearly uniformly convex Banach space, Opial condition.

This research is partially supported by D.G.E.S. BFM-2000 0344-C02-C01

Typeset by ApS-TEX



2 DOMINGUEZ BENAVIDES, LORENZO RAMIREZ

whose characteristic of noncompact convexity associated to the separation measure
of noncompactness is less than 1. If, in addition, the space satisfies the non-strict
Opial condition, we prove, using some properties of x-minimal sets (see [2, Chapter
ITI] for definitions), that the y-contractiveness assumption can be removed. In
particular, this result gives a partial answer to the above open question.

2.PRELIMINARIES AND NOTATIONS

Let X be a Banach space. We denote by C'B(X) the family of all nonempty closed
bounded subsets of X and by K(X) (resp. KC(X)) the family of all nonempty
compact (resp. compact convex) subsets of X. On CB(X) we have the Hausdorff
metric H given by

H(A,B):= max{sup d(a, B),sup d(b, A)}, A,B e CB(X)
a€A beB
where for x € X and E C X d(z, E) := inf{d(x,y) : y € E} is the distance from
the point x to the subset E.
If C' is a closed convex subset of X, then a multivalued mapping T': C' — CB(X)
is said to be a contraction if there exists a constant k € [0, 1) such that

H(Tvay) < ka - y||7 T,y € C7

and T is said to be nonexpansive if
H(T'TaTy) < ||J)—y||, x7y60~

Recall that the Kuratowski and Hausdorff measures of noncompactness of a
nonempty bounded subset B of X are respectively defined as the numbers:

a(B) =inf{d > 0 : B can be covered by finitely many sets of diameter < d},

x(B) = inf{d > 0 : B can be covered by finitely many balls of radius < d}.

Then a multivalued mapping T : C — 2% is called vy-condensing (resp. 1-
~-contractive) where v = «(-) or x(-) if, for each bounded subset B of C' with
~(B) > 0, there holds the inequality

VT(B)) <~(B) (resp. (T (B)) <~(B)).

Here T(B) = UyepTz. Note that a multivalued mapping 7' : C' — 2% is said to
be upper semicontinuous on C if {x € C' : Tx C V} is open in C whenever V C X
is open; T is said to be lower semicontinuous if T-3(V) :={z € C: Ta NV # 0}
is open in C' whenever V' C X is open; and T is said to be continuous if it is both
upper and lower semicontinuous. There is another different kind of continuity for
set-valued operators: T : X — C'B(X) is said to be continuous on X (with respect
to the Hausdorff metric H) if H(Tx,,Tz) — 0 whenever z,, — z. It is not hard
to see (see [1] and [5]) that both definitions of continuity are equivalent if Tz is
compact for every x € X. We say that x € C' is a fixed point of T if and only if =
is contained in Tx.

In the next section we shall use the following result for multivalued mappings
(see also [14]).
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Theorem 2.1 ([4]). Let X be a Banach space and ) # D C X be closed bounded
convex. Let F : D — 2% be upper semicontinuous v-condensing with closed convex
values, where y(-) = a(-) or x(+). If FxNIp(x) #0 on D then Fiz(F) #0. (Here
Ip(x) is called the inward set at x defined by Ip(x) := {x+A(y—z) : A > 0,y € D}).

Let us recall some definitions of properties satisfied by a Banach space X:

Definition 2.1. (a) X is said to be nearly uniformly convex (NUC) if it is reflexive
and its norm is uniformly Kadec-Klee, that is, for any positive number € there exists
a corresponding number § = §(e) > 0 such that for any sequence {z,}

lzn]| <1 n=1,2,..
w—li7rlnxn::r = ||z|| <1-4.
sep({n}) = if{[[2n — ol s £ m} > €

(b) X is said to satisfy the Opial condition if, whenever a sequence {x,} in X
converges weakly to x, then for y # x

limsup ||z, — x| < limsup ||z, — y]|-
n n
If the inequality is non strict we say that X satisfies the non-strict Opial condition.

3. ASYMPTOTIC CENTERS AND MODULI OF NONCOMPACT CONVEXITY

In this section we shall consider, apart from « and x, another measure of non-
compactness. The separation measure of noncompactness of a nonempty bounded
subset B of X is defined by

B(B) = sup{e : there exists a sequence {z,} in B such that sep({z,}) > €}.

Definition 3.1. Let X be a Banach space and ¢ = «, 3 or x. The modulus of
noncompact convezity associated to ¢ is defined in the following way

Ax 4(€) =1inf{l —d(0, A) : A C Bx is convez, ¢(A) > €}.

(Bx is the unit ball of X ).
The characteristic of noncompact convexity of X associated with the measure of
noncompactness ¢ is defined by

€p(X) =sup{e > 0: Ax 4(€) =0}.

The following relationships among the different moduli are easy to obtain

Axa(e) < Axple) < Ax (),

and consequently
€a(X) = eg(X) = e (X).
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When X is a reflexive Banach space we have some alternative expressions for
the moduli of noncompact convexity associated with 3 and ¥,

Ax gle) =1inf{l — ||z| : {zn} C Bx, ¢ = w —limz,, sep({z,}) > €},

Ax () =inf{l —||z| : {z} C Bx, 2 =w —limz,, x({z,}) > €}.

It is known that X is NUC if and only if €4(X) = 0, where ¢ is , § or x. The
above-mentioned definitions and properties can be found in [2].

Let C be a nonempty bounded closed subset of X and {z,} a bounded sequence
in X, we use r(C,{z,}) and A(C,{x,}) to denote the asymptotic radius and the
asymptotic center of {x,} in C, respectively, i.e.

r(C,{z,}) = inf{limsup ||z, — 2| : x € C},

A(C {za}) = {z € O+ limsup |z, — zf| = r(C, {za})}.

It is known that A(C,{z,}) is a nonempty weakly compact convex set as C' is.

Next, we present a theorem which gives a connection between the asymptotic
center of a sequence and the modulus of noncompact convexity and it will play a
crucial role in our results. Previously, recall the following notation of regularity
and the lemma below.

Definition 3.2. Let {x,} and C be as above. Then {x,} is called regular with
respect to (w.r.t.) C if r(C,{xn}) = r(C,{xn,}) for all subsequences {x,,} of

Lemma 3.1 (Goebel[6], Lim[11]). Let {z,} and C be as above. Then, there
always exists a subsequence of {x,} which is regular w.r.t. C.

If D is a bounded subset of X, the Chebyshev radius of D relative to C is defined
by
ro(D) :=inf{sup{||z — y|| : y € D} : x € C}.

Theorem 3.1. Let C be a closed convex subset of a reflexive Banach space X and
let {xn} be a bounded sequence in C which is reqular w.r.t. C. Then

ra(A(C{zn})) < (1= Ax g(17))r(C {zn}).
Moreover, if X satisfies the non-strict Opial condition then

ro(A(C{zn})) < (1= Axx (17))r(C, {zn}).

Proof. Denote r = r(C,{z,}) and A = A(C,{z,}). Since co({z,}) C C is a
weakly compact set, we can find a subsequence {y,} of {z,} weakly convergent to
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a point z € C. Without loss of generality we assume that the limit li;n lyn — ymll
nFzm

exists (see [2,Theorem III.1.5]). Since {x,} is regular w.r.t. C', r = r(C,{y,}) and
then, the weakly lower semicontinuity of the norm implies

r <limsup ||y, — z|| < liminflimsup ||y, — ym| = Um ||yn — Ym]|-
n m n n#Em

Hence S({yn}) > r.
On the other hand, if X satisfies the non-strict Opial condition, it is easy to
deduce that x({y, : n € N}) = limsup ||y, — z||. Indeed, for every € > 0 there

n
exists ng € N such that ||y, — y|| < limsup ||y, — y|| + € for all n > ng, and hence
n

X{yn :n € N}) <limsup ||y, — v/
n

Conversely let us suppose that {y, : n € N} can be covered by finitely many
balls with radius r < limsup ||y, — y||. Consider a subsequence {z,} of {y,} such

n
that lim ||z, — z|| = limsup ||y, — z||. Then there exists a subsequence {z,, } of {z,}
n n

contained in a ball B(z,r) for some = € X. Therefore we obtain

tim sup |z, — 2] < r < limsup |y, — 2] = lim |}z, — 2],
k n

contradicting the fact that X satisfies the non-strict Opial condition, because z,, —
z.
Thus, in this case we have x({y, : n € N}) > r.

Assume z lies in A. Since r = limsup ||y, — ||, for every € > 0 there exists

n
ng € N such that |y, — x| < r + € for all positive integer n greater than or equal
to ng. Hence, the sequence
o)
r+e n>no

is contained in the unit ball of X, converges weakly to z 196 and ﬂ({ Yn— }) >
r+e

r+€
T
r+e’
If X satisfies the non-strict Opial condition X we also have that y ({ y;j;f }) >

r
r4e”

Therefore we deduce

,
_ Ll <(1=
B N e )

and in the second assumption

o - 2 s(l - AX,X,T(W’;G))(H@.

Since the last inequality is true for every € > 0 and for every = € A, we obtain the
inequalities in the statement.




6 DOMINGUEZ BENAVIDES, LORENZO RAMIREZ

Remark 3.1.-It must be noted that the regularity assumption is necessary in
the above theorem. Indeed, consider the product space X = (2 ® fy, where (2 :=
(R% || - ||oo), With the norm

2

(@, )l =<||33|§<> + ||y||§) , T €L,y € Lo,
First, we are going to prove that

€
AX,O((G):l_ 1_2.

Since X contains isometrically £, it is easy to deduce that

Axo(e) <Apale) =1—14/1— T

(see [2, Chapter IJ).

Let us now study the reverse inequality. Taking in mind that a(A4) < 2x(A) ([2])
for each bounded subset of X, it is clear that

AX,oz(e) Z AX,X (;) )

for all € > 0. Let us estimate the value of Ax (§). Since X is reflexive, we have
(see [2, Chapter V)

€ . . €
Dot (§)= (1~ ol 0t = 2zl 1, x({o)) 2 5

Let {(2n,yn)} be a sequence in the unit ball of X weakly convergent to a vector

(70,40) € X such that x({(zn,yn)}) > 5.
It follows that limx, = z, and {y,} is weakly convergent to y, in ¢5. Taking

a subsequence if necessary, we can assume that lim ||y, — yo||2 and lim ||y, ||z exist,
n n

and the supports of ¥, — y, and y, are nearly disjoint, that is
h}ln Hyn”% = ”yoH% + hTILl'l ||yn - yngv

On the other hand, it is not difficult to see that X satisfies the Opial condition.
In fact, it satisfies the uniform Opial condition with the same modulus of Opial
associated with ¢5. Then

. . €
X({(2n, yn)}) = Hmsup [[(@n, yn) = (2o, o)l = lim lyn = yollz = 5.

Hence

1> 1i71;n ||(a:n,yn)||2 = 1i71;n ||.Z‘n||§o + ”yan

= [lollZ, + lyoll3 +lim ||y — woll3

= [I(o: yo) I + lim [y — woI3
62

> (0, w0 I + 5
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Thus
2
€ €
AX,X(?)Zlf 1717
following the required inequality.

Moreover, since X is reflexive and satisfies the uniform Opial condition then

Ax,(17) =1 (see Chapter V in [2] for details).

If x, € R? is the sequence defined by 2,1 = (—=1,0) y x2, = (1,0) for each
n € N, we consider the sequence z, = (z,,0) € X.

Denote B the unit ball of /2, and let C' = B x {0}. Clearly C is a weakly compact
convex subset of X which contains {z,}. It is not difficult to see that r(C, {z,}) =1
and A(C,{z.}) = {((0,¥),0) : y € [-1,1]}. Then rc(A(C,{z,})) = 1, while
1-Axo(17)= @ and 1 — Ax ,(17) = 0 are less than one.

4. Fixed point theorems

In order to prove our first result, we need the following proposition which is
proved along the proof of the Kirk-Massa theorem as it appears in [16].

Proposition 4.1. Let C be a nonempty weakly compact and separable subset of

a Banach space X, T : C — K(C) a nonexpansive mapping and {x,} a sequence

in C' such that limd(x,, Tx,) = 0. Then, there exists a subsequence {z,} of {x,}
n

such that
TeNA#(, VeeA:=AC {z.}).

Assume that C is a nonempty weakly compact convex subset of a Banach space X
and T': C — KC(C) is a nonexpansive and 1-x-contractive self-mapping. Consider
a bounded sequence {z,} in C such that T satisfies the condition

TerNA#0, VeeA:=AC {z.}).

For a fixed element x( € A and an arbitrary p € (0, 1], the contraction T}, : A —
KC(C) defined by

Twe=pro+(1—p)Tz, zcA

verifies the hypotheses of Theorem 2.1. Indeed, let B be a bounded and nonpre-
compact subset of C. Since T' is 1-x-contractive and T),(B) = pxo + (1 — p)T(B)
we have

X(Tu(B)) = x(pzo + (1 — w)T(B)) = x((1 — )T (B)) =
(1= wx(T(B)) < (1 —p)x(B) < x(B).

Thus T}, is x-condensing. Moreover, since A is convex, T}, satisfies the same bound-
ary condition as T does, i.e. we have

T,aNA#D, Ve A
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Hence by Theorem 2.1 T}, has a fixed point z,, € A and we can find a sequence {z, }
in A satisfying lim d(z,,Tz,) = 0. Notice that this conclusion is true for every A
n

closed bounded convex subset of C satisfying Txr N A # (), Vz € A.

With this observation we are able to prove our main result.

Theorem 4.1. Let C be a nonempty closed bounded convexr subset of a Banach
space X such that eg(X) < 1, and T : C — KC(C) be a nonexpansive and 1-x-
contractive nonexpansive mapping. Then T has a fized point.

Proof. Let zo € C be fixed and, for each n > 1, define

1 1
Tox:=—x9+ (1 — )Tz, x€C.
n n

Then T, is a multivalued contraction and hence has a fixed point z, by Nadler’s
theorem ([13]). It is easily seen that limd(x,,Tz,) = 0. By Lemma 3.1 we may

assume that {z,} is regular w.r.t. C and using Proposition 4.1 we can also assume
that
TezNA#0, VeeA:=AC, {z,}).

Since condition eg(X) < 1 implies reflexivity [2], we apply Theorem 3.1 to obtain
ro(A) < Ar(C{zn}),

where A :=1—-Ax 5(17) < 1.
According to the previous observation, we can take a sequence {xl} in A satis-
fying lim d(z}, Tzl) = 0 and again reasoning as above we can assume that {z.} is
n

regular w.r.t. C' and
TrNA' #0, Voe Al := AC,{z}}).
Again applying Theorem 3.1 we obtain
ro(AY) < Ar(C, {zl}).
On the other hand, since {z}} C A
r(Co{zn}) < re(4)

and then
rc(Al) < Arc(A).

By induction, for each m > 1 we construct A™ and {z!},, where A™ =
A(C, {z}), {zm}, € A™~ ! such that limd(z]", Tz") = 0 and

ro(A™) < XMro(A).

Choose z,, € A™. We shall prove that {z,,},, is a Cauchy sequence. For each
m > 1 we have for any positive integer n

[2m-1 = Zm || < Tme1 — 2| + 2] = || < diamA™ ™+ |27 — @5n]].
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Taking upper limit as n — oo
|Zm—1 — Zm| < diamA™ ' + limsup ||z — z,, || = diamA™ ! + r(C, {z'})
n

< diamA™ ! 4 ro(A™Y)
< 2ro(A™ ) 4+ re(A™Y) = 3ra (A™TY) < 3N Lo (A).

Since A < 1, we conclude that there exists x € C such that z,, converges to x.
Let us see that z is a fixed point of T'. For each m > 1,

A(wm, Twm) < |lwm — ||+ d@y, Tag') + H(Twp!, Tey) < 2lem — ot ||+ d(zy!, Tey?)

Taking upper limit as n — oo

A(@m, Txy,) < 2limsup ||x, — 5] < 2)\"“11"0(/1).

Finally, taking limit in m in both sides we obtain lim,, d(z,, Tx,,) = 0 and the
continuity of T implies that d(z,Tz) =0 i.e. x € Tx.

Remark 4.1.-The inductive construction of the sequence {A™},, in Theorem
4.1, also appears in [17, Theorem 3.2], though only two steps are done.

Remark 4.2.- Note that Theorem 4.1 does not hold if nonexpansiveness as-
sumption is removed. Indeed, if By is the closed unit ball of I and T : By — Bs is
defined by

T(x) =T(x1,x9,...) = (V1 —||z]|?, 21, 22, ...),

then T is an 1-x-contraction without a fixed point.

We do not know if y-contractiveness condition can be dropped in the above
theorem. In fact, it is an open problem if every nonexpansive mapping T : C —
KC(C) is 1-x-contractive even for single-valued mappings. However, if X is either
a separable or a reflexive Banach space and satisfies the non-strict Opial condition
this assertion is true, as we prove in the next theorem.

Theorem 4.2. If X is either a separable or reflexive Banach space satisfying the
non-strict Opial condition, C is a nonempty weakly compact subset of X and T :
C — K(C) is a nonexpansive mapping, then T is 1-x-contractive.

Proof. Let B be an infinite subset of C. Since T'(B) is an infinite and bounded
set there exists a sequence {y,} C T(B) which is x-minimal ( see [2, Chapter
IIT] for definitions and properties concerning x-minimality). Since y is strictly
minimalizable we can assume that

X({yn : n € N}) = x(T'(B)).

Since C' is weakly compact, there is a subsequence of {y,} which is weakly con-
vergent to some y € C. Taking a subsequence, if necessary, we can suppose
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that y, — y and lim ||y, — y|| exists. As in the proof of Theroem 3.1 we have
n

X({yn i n € N}) = lim [y, — yl|.
Choose z,, € B such that y, € Tx,. Taking a subsequence, if necessary, and
following the above argument we assume that z,, = u € C, lim ||z, — ul| exists and
n

x({zn :n eN}) = lign |Tn — ull.
On the other hand, because T is compact valued, we can take u,, € Tu verifying

190 = tnll = d(ya, Tu) < H(T2, Tu) < [l —ul, n> 1.

By the compactness of T, we may assume that {u,} converges (strongly) to a
point v € Tu. It follows that

X(T(B)) = lim [y, — y|| < limsup ||y, — ol = limsup ||y, — ||
n n

< lim 2, —u] = x({za}) < X(B).
and T is 1-y-contractive.

In view of this result, we deduce from Theorem 4.1 the following;:

Corollary 4.1. Let X be a Banach space with eg(X) < 1 which satisfies the non-
strict Opial condition. Suppose C' is a nonempty weakly compact convexr subset of
X and T : C — KC(C) is a nonexpansive mapping. Then T has a fized point.

Furthermore, from Theorem 3.1 the method used in the proof of the Theorem
4.1 may be followed to obtain

Theorem 4.3. Let X be a Banach space with €,(X) < 1 which satisfies the non-
strict Opial condition. Suppose C' is a nonempty weakly compact convex subset of
X and T : C — KC(C) is a nonexpansive mapping. Then T has a fixed point.

This theorem extends the Kirk-Massa theorem, in the sense that we do not need
the compactness of asymptotic center of a bounded sequence with respect to a
bounded closed convex subset of X. Next example, due to Kuczumov and Prus,
illustrates this fact.

Example.-([8]) Let X, be the space ¢5 renormed as follows. For @ = i Trek
({ex} denotes the standard basis in ¢5) set =
1 [e%e] 2
||x\|m251711P <x721+m+1 x%) ;o mz=1
k=n+1
Clearly || - ||m is equivalent to the usual norm in f3. X, is NUC for each m > 1,

and it is easy to check that it satisfies the non-strict Opial condition. Thus, the
conclusion of Theorem 4.3 holds for these spaces. However, by non-strict Opial
condition we have for any x € X,

limsup ||z — e, > 1,
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while for all k,n with k <n

1

m

= lek —enllm = 1.

Thus we conclude

A( X, {en}) 2 cofen}

1
vm+1
and, in particular A(X,,, {e,}) is not compact.

Note that we cannot apply Lami-Dozo’s theorem [9] to obtain a fixed point
because X,,, does not satisfy strict Opial condition.
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