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Abstract. In this work we propose new structure-preserving multiple time stepping methods for numerical simulation of charge
transfer by intrinsic localized modes in nonlinear crystal lattice models. We consider, without loss of generality, one-dimensional
crystal lattice models described by classical Hamiltonian dynamics, whereas charge (electron or hole) is modeled as a quantum
particle within the tight-binding approximation. Proposed multiple time stepping schemes are based on symplecticity-preserving
symmetric splitting methods recently developed by the authors. Originally developed explicit splitting methods do not exactly
conserve total charge probability, thus, to improve charge probability conservation and to better resolve high frequency oscillations
of the charge in numerical simulations with large time steps we incorporate multiple time stepping approach when solving split
charge equations. Improved numerical results with multiple time stepping methods of charge transfer by mobile discrete breathers
are demonstrated in a crystal lattice model example.

INTRODUCTION

Important phenomenon of charge transfer by nonlinear lattice excitations is of particular interest in solid state physics.
Recently, transport of charge in silicates by moving nonlinear localized exictations has been experimentally confirmed,
a phenomenon known as hyperconductivity [1, 2]. Intrinsic localized modes (ILMs), such as discrete breathers, kinks
and solitons, have been extensively studied in different crystal lattice models [3, 4]. Commonly, such crystal lattice
models at zero temperature are described by classical canonical Hamiltonian dynamics with empirical particle in-
teraction potentials, such as Lennard-Jones and Morse potentials, to name a few, and by thermostated Hamiltonian
dynamics, e.g., Langevin dynamics, at a given temperature [5].

Due to different oscillation time scales of charge and lattice particles the transport of charge (electron or hole)
by ILMs [4, 6, 7, 8] poses new numerical simulation challenges, which has motivated to consider splitting methods
for direct numerical integration of coupled lattice-charge differential equations. Authors in [9] have demonstrated
that lattice-charge dynamics can be stated into classical canonical Hamiltonian form and, although the Hamiltonian
is not separable in all variables, explicit symplectic and time-reversibility preserving numerical integrators can be
constructed with good approximate energy and charge conservation in long-time numerical simulations. This work
is stimulated by observations that total charge probability is not exactly conserved by explicit numerical integrators,
in contrast to semi-implicit splitting methods (also proposed in [9]), and multiple time stepping schemes, such as the
impulse method [5, 10], can be easily incorporated into splitting methods with potentially minimal increase in compu-
tational time, thus, ensuring higher accuracy in resolving high frequency oscillations of the charge while performing
long-time numerical simulations with large time steps.



LATTICE-CHARGE HAMILTONIAN DYNAMICS

In this section we describe coupled lattice-charge mathematical model in dimensionless form modeled with the total
Hamiltonian H = Hlat + Hc, i.e., the sum of the lattice and charge Hamiltonians, respectively, where
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and letters Q, P, D, A and B indicate split Hamiltonian terms, which individual Hamiltonian dynamics can be solved
exactly with symplectic analytic flow maps φQ

t , φP
t , φD

t , φA
t and φB

t , respectively, and is used to construct structure-
preserving explicit splitting methods in [9].

In Eq. (1) and (2) N is the number of lattice particles, qn ∈ R, pn ∈ R and Mn > 0 are the nth particle’s position,
momentum and rescaled mass, respectively. In the lattice Hamiltonian (1) U is the on-site potential and V is the
particle interaction potential energy. For example, such lattice model (1) arises in modeling of a three-dimensional
layered crystal, where the on-site potential U models forces from the whole crystal, while the interaction potential V
models repulsive and, potentially, as well as attractive forces between particles along a close-packed direction.

Variables an and bn entering the charge Hamiltonian (2) are the real and imaginary parts of
√

2τcn, where τ is
the dimensionless Planck’s constant, cn is the probability amplitude and Pn = |cn|

2 defines the probability of finding
an electron or hole at site n. The total probability

∑N
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introduction of this normalization allows to obtain Hamiltonian dynamics in canonical form [9].
Symmetric charge hopping function J(qn, qn′ ) ≥ 0, i.e., J(qn, qn′ ) = J(qn′ , qn), describes charge transfer be-

tween states n and n′. The transfer function J is often modeled with exponential decay [4, 6] in the following form:
J(qn, qn′ ) = J0 exp

(
−αrn,n′

)
, where rn,n′ = |qn − qn′ | and the dimensionless parameter α > 0 specifies the rate of

exponential decay, while the constant J0 ≥ 0 models the probability of charge transfer from one site to another and is
model dependent. Smooth function En ∈ R in (2) describes charge energy at site n and, in general, is dependent on the
lattice particle positions, or can be modeled as constant.

Canonical Hamiltonian equations are well known to be symplectic, which implies also phase volume preserva-
tion. Apart from the conservation of the total Hamiltonian H, the total charge probability above is also conserved.
Coupled lattice-charge dynamics is also time-reversible, i.e., Hamiltonian equations are invariant under the transfor-
mation ρ(q, a,−p,−b,−t) = (q, a, p, b, t), where q = (q1, q2, . . . , qN)T , a = (a1, a2, . . . , aN)T , p = (p1, p2, . . . , pN)T and
b = (b1, b2, . . . , bN)T . In addition, equations are invariant under a constant rotation of charge variables an and bn, i.e.,
for any given angle θ ∈ R Hamiltonian equations are invariant under the transformation η(q, ā, p, b̄, t) = (q, a, p, b, t),
where ā = cos(θ)a − sin(θ)b and b̄ = sin(θ)a + cos(θ)b.

The system of canonical Hamiltonian equations derived from H is highly nonlinear and, thus, it is very desirable
to obtain an explicit numerical integration scheme, while at the same time preserving as many as possible structural
properties of the system stated above.

MULTIPLE TIME STEPPING METHODS

We propose explicit multiple time stepping methods based on the explicit symplecticity-preserving symmetric method
PQDABADQP constructed in [9] with the following numerical flow map
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where h > 0 is the time step. Notice that the method (3) is constructed from the composition of symplectic analytic flow
maps and the symmetry of the method is insured by the Strang splitting. Recall that a composition of symplectic flow
maps is also symplectic, which is also true for composition of symmetric flow maps, and that symmetric methods are
time-reversibility preserving [10]. The method (3) does not exactly conserve Hamiltonian H, and neither total charge
probability nor rotational invariance, but symplectic methods are known to have very good approximate Hamiltonian
conservation properties in long-time numerical simulations [10].



The first multiple time stepping method PQDABADQP with the numerical flow map reads:
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where we apply composition φA
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h/2K K-times with K-times smaller time steps. As the second method

we propose also to include piece D into the K-times composition, i.e., the numerical flow map of the second multiple
time stepping method PQDABADQP reads:
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Note that both methods PQDABADQP and PQDABADQP are still symlectic, symmetric and second order as
the original explicit method PQDABADQP in (3). In addition, during the application of the flow maps φD

h , φA
h and

φB
h for any h the lattice particle positions qn do not change, only the momenta values pn get modified. Thus, both

multiple time stepping methods (4)–(5) require only one lattice force and function En and J evaluations per time step.
Interested readers in explicit representations of all analytic flow maps φQ

t , φP
t , φD

t , φA
t and φB

t are referred to [9].

NUMERICAL RESULTS

For numerical demonstrations of proposed multiple time stepping methods (4)–(5) we consider crystal lattice example
model described in [9]. Example model considers periodic crystal lattice with only fixed close neighbor interactions,
i.e., particle qn interacts only with its two neighboring particles qn−1 and qn+1, in addition, the charge can hop only
from site n to its two neighboring sites n − 1 and n + 1, respectively.

In the dimensionless example model, we consider periodic lattice on-site potential and the Lennard-Jones poten-
tial for particle interactions, i.e.,

U(qn) = 1 − cos(2πqn), V(|qn − qn′ |) = 0.05

( 1
|qn − qn′ |

)12

− 2
(

1
|qn − qn′ |

)6 ,
respectively. We model charge energy function En as a nonconstant function

En(qn) = Uc(qn) + E0, E0 ∈ R, Uc(qn) = −
1
2
τ(qn − q0

n)2,

where τ = 10−3, q0
n = n − 1 are equilibrium positions of lattice particles and the charge on-site potential Uc is chosen

to be a harmonic potential. The charge hopping function J is considered to have exponential decay as described above
with parameter values: α = 15 and J0 = τ exp(α)/2 [9].

We investigate conservation properties of conserved quantities for different values of E0/τ, which defines high
frequency oscillations of the charge. In Fig. 1 we illustrate numerical results for time step value h = 0.01, in lattice with
N = 64 and with K = 10 in multiple time stepping methods. In the left plot of Fig. 1 we show maximal relative errors
of the Hamiltonian, while in the right plot of Fig. 1 we show maximal relative errors of the total charge probability, over
the whole computational time segment [0,Tend], where Tend = 100. Numerical simulations are performed for twenty-
five different ratio E0/τ values given by the following formula: E j

0/τ = 103(1.6 j−1 − 1)/(1.624 − 1)τ−1, j = 1, . . . , 25,
and errors are averaged over eleven numerical simulations with different initial conditions using excitation patterns:

(pn∗−1, pn∗ , pn∗+1)T = γ(−1, 2,−1)T , γ ∈ R,0, (an∗ , bn∗ )T =
√
τ(1,−1)T , (6)

while setting the remaining values of pn, an and bn to zero, and qn = q0
n, where γ > 0 leads to a mobile breather

solution traveling to the right and γ < 0 leads to a discrete breather solution traveling to the left. With such initial
conditions (6) we are able to generate nonlinear and localized solutions of charge transfer by mobile discrete breathers
in our example model. For Fig. 1 results were obtained with γ j = 0.4 + jhγ, where hγ = 0.05 and j = 0, . . . , 10.

Figure 1 clearly illustrates not only reduction of errors in total charge probability conservation, but in the Hamil-
tonian errors as well, especially for large values of ratio E0/τ. Hamiltonian error curves of methods (4)–(5) agree very
well with the Hamiltonian error curve of semi-implicit exactly charge conserving splitting methods proposed in [9].
Interestingly, the probability errors of the method (4) has exactly reduced by factor 100 compared to the errors of the
method (3), which can be attributed to the second order approximation and K = 10, while the method’s (5) errors are
even smaller, suggesting that it is important to also include piece D in K-times composition, compare (4) with (5).
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FIGURE 1. Hamiltonian (left) and total probability (right) conservation errors of splitting methods PQDABBADQP,
PQDABADQP and PQDABADQP averaged over eleven numerical simulations of charge transfer by mobile discrete breathers.

CONCLUSIONS

In this work we have demonstrated first results of the development of multiple time stepping methods for numerical
simulations of charge transfer by mobile discrete breathers in nonlinear crystal lattice models. Results demonstrate
that application of multiple time stepping methods improves not only total charge probability conservation, but the
Hamiltonian errors as well. Further research is concerned with analysis of choice of value K and obtaining error plots
for the Hamiltonian and total charge probability as a function of computational work, and with applications of the
multiple time stepping methods to crystal lattice models with realistic potentials.
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