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ORIGINAL RESEARCH

Improving the Detection of Potential Cases 
of Familial Hypercholesterolemia: Could 
Machine Learning Be Part of the Solution?
Christophe A. T. Stevens , MSc; Antonio J. Vallejo-Vaz , PhD; Joana R. Chora , PhD; Fotis Barkas , PhD; 
Julia Brandts , MD; Alireza Mahani, PhD; Leila Abar, PhD; Mansour T. A. Sharabiani, PhD*;  
Kausik K. Ray , FMedSci*

BACKGROUND: Familial hypercholesterolemia (FH), while highly prevalent, is a significantly underdiagnosed monogenic disorder. 
Improved detection could reduce the large number of cardiovascular events attributable to poor case finding. We aimed to 
assess whether machine learning algorithms outperform clinical diagnostic criteria (signs, history, and biomarkers) and the 
recommended screening criteria in the United Kingdom in identifying individuals with FH-causing variants, presenting a scal-
able screening criteria for general populations.

METHODS AND RESULTS: Analysis included UK Biobank participants with whole exome sequencing, classifying them as having 
FH when (likely) pathogenic variants were detected in their LDLR, APOB, or PCSK9 genes. Data were stratified into 3 data sets 
for (1) feature importance analysis; (2) deriving state-of-the-art statistical and machine learning models; (3) evaluating models’ 
predictive performance against clinical diagnostic and screening criteria: Dutch Lipid Clinic Network, Simon Broome, Make 
Early Diagnosis to Prevent Early Death, and Familial Case Ascertainment Tool. One thousand and three of 454 710 participants 
were classified as having FH. A Stacking Ensemble model yielded the best predictive performance (sensitivity, 74.93%; pre-
cision, 0.61%; accuracy, 72.80%, area under the receiver operating characteristic curve, 79.12%) and outperformed clinical 
diagnostic criteria and the recommended screening criteria in identifying FH variant carriers within the validation data set (fig-
ures for Familial Case Ascertainment Tool, the best baseline model, were 69.55%, 0.44%, 65.43%, and 71.12%, respectively). 
Our model decreased the number needed to screen compared with the Familial Case Ascertainment Tool (164 versus 227).

CONCLUSIONS: Our machine learning–derived model provides a higher pretest probability of identifying individuals with a mo-
lecular diagnosis of FH compared with current approaches. This provides a promising, cost-effective scalable tool for imple-
mentation into electronic health records to prioritize potential FH cases for genetic confirmation.
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Familial hypercholesterolaemia (FH) is a highly prev-
alent autosomal codominant genetic condition 
occurring with a prevalence of ≈1:311 in the world-

wide general population.1,2 FH results in lifelong (from 
birth) exposure to high low-density lipoprotein choles-
terol (LDL-C) levels, increasing the risk of premature 

atherosclerotic cardiovascular disease (ASCVD), more 
notably coronary artery disease (CAD).1,3 However, if 
individuals with FH are identified and prescribed ef-
fective cholesterol-lowering treatments early, then 
much of their future adverse health outcomes can be 
avoided.4 Yet FH remains largely underdiagnosed, with 
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an estimated 22.5 million adults with FH remaining to 
be identified globally (<10% identified).1,2

The definitive method for diagnosing FH is through 
molecular (genetic) testing, recognized as the gold 
standard. There are currently no population-wide ge-
netic testing programs. Typically, genetic testing for FH 
is initiated by secondary and tertiary care specialists 
following a referral from primary care. These referrals 
are based on the physician’s clinical suspicion of FH, 
for example, prompted by a premature ASCVD event 
such as an acute coronary syndrome. Specialists 
then use clinical diagnostic criteria, such as the Dutch 
Lipid Clinic Network (DLCN), Make Early Diagnosis to 
Prevent Early Death, or Simon Broome,5–7 which were 
derived and validated on genetically confirmed cohorts 
of patients, to assess the likelihood of a positive, con-
firmatory genetic diagnosis in a patient with suspected 
FH. Yet these clinical diagnostic criteria demand thor-
ough phenotypical assessments and detailed family 
histories, necessitating direct patient consultations. 
Such comprehensive data may not be consistently 
documented in electronic health records (EHRs), 
rendering these criteria less practical for automated, 
large-scale screening approaches within the general 
population through primary care EHR systems, where 
many undiagnosed cases of FH likely exist. Screening 
criteria, on the other hand, are specifically developed 
for identifying potential FH cases in the general popu-
lation through automated screening of EHRs.

Screening criteria may circumvent the limitations of 
clinical diagnostic criteria, as they do not rely on the 
availability of detailed information on family history 
and physical signs and thus offer the ability to identify 
true cases of FH at scale. However, examples like the 
Familial Case Ascertainment Tool (FAMCAT) currently 
recommended in the United Kingdom, have not been 
exclusively derived and validated in molecularly con-
firmed cohorts of patients with FH, potentially leading 
to the identification of individuals with hypercholester-
olemia due to secondary or polygenic causes rather 
than (monogenic) FH itself.8,9 This distinction is crucial 
because individuals with FH have a higher average risk 
of ASCVD than patients with secondary or polygenic 
hypercholesterolemia, and their identification not only 
offers an opportunity to prevent ASCVD events but 
also facilitates cascade screening among relatives. 
Moreover, applying screening criteria that were not ex-
clusively derived from molecularly defined individuals, 
like FAMCAT, may result in the referral of numerous 
unnecessary cases for genetic testing. This approach 
may lead to increased health care costs due to a higher 
number of individuals needing to be screened to find 
true FH diagnoses, exemplifying a low-yield strategy.

In our study, we aimed to assess whether statistical 
and machine learning (ML) algorithms encompassing 
diverse variables captured in EHRs could outperform 

CLINICAL PERSPECTIVE

What Is New?
•	 The study derived and evaluated the utility of 

novel models derived from machine learning (ML) 
for the automated identification of genetically con-
firmed cases of familial hypercholesterolemia (FH) 
in the general population using variables available 
within electronic health records .

•	 Our novel ML-derived model exhibits supe-
rior sensitivity and a lower number needed to 
screen for FH when compared with clinical di-
agnostic criteria and the automated screening 
criteria currently recommended in the United 
Kingdom for large-scale screening of EHRs.

•	 The data set, derived from the UK Biobank, 
includes 454 710 adults with whole exome se-
quencing, of which 1003 have genetically vali-
dated (likely) pathogenic FH variants, providing 
a robust foundation for model development.

What Are the Clinical Implications?
•	 Integration of ML-derived models into elec-

tronic health recaords  for prioritizing genetic 
confirmation of FH offers a more effective and 
efficient approach in finding FH in adult popula-
tions in general populations and diverse clinical 
settings.

•	 Superior sensitivity and lower number needed 
to screen of the new ML model offer promise 
for the detection of a higher percentage of true 
individuals with FH with fewer tests, enabling 
targeted preventive measures.

•	 Implementing ML screening criteria may en-
hance early identification and management, po-
tentially reducing acute myocardial infarctions, 
revascularizations, and cardiovascular death 
resulting from undetected cases.

Nonstandard Abbreviations and Acronyms

ASCVD	 atherosclerotic cardiovascular disease
AUC	 area under the receiver operating 

characteristic curve
DLCN	 Dutch Lipid Clinic Network
FAMCAT	 Familial Hypercholesterolaemia Case 

Ascertainment Identification Tool
FH	 familial hypercholesterolemia
LLM	 lipid-lowering medication
LR	 logistic regression
ML	 machine learning
NNS	 number needed to screen
UKB	 UK Biobank
XGBoost	 eXtreme Gradient Boosting
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clinical diagnostic criteria and screening criteria in pro-
viding an automated process for identifying individuals 
subsequently confirmed to have an FH-causing variant 
and thus potential clinical utility. We derived and eval-
uated several models for identifying a molecular diag-
nosis of FH in the UK Biobank (UKB). We designed our 
models to operate within the constraints of real-world 
EHR data, where detailed clinical signs used in diag-
nostic criteria used by specialists in secondary care 
are often absent. Afterwards, we compared their ef-
fectiveness in identifying individuals with a confirmed 
genetic diagnosis of FH against both widespread clin-
ical diagnostic criteria and the FAMCAT screening cri-
teria. Our evaluation included assessing sensitivity and 
determining the number needed to screen (NNS) for 
those with positive genetic testing for FH. To conclude 
our analysis, we calculated and compared the clinical 
utility of screening and diagnostic criteria against our 
de novo ML-derived model within a hypothetical large-
scale automated screening program targeting the UK 
population aged >40 years. This assessment focused 
on the number of identified patients with FH and the 
tests required by each criterion and our chosen model.

METHODS
Availability of Data and Source Code
The data used in this study are available from the 
UK Biobank, but restrictions apply to the availabil-
ity of these data and are therefore not publicly avail-
able. Researchers will need to apply to access the 
UK Biobank database at www.​ukbio​bank.​ac.​uk. The 
source code is withheld due to intellectual property 
rights.

Data Source
We used data from the UKB study (application 67789), 
a prospective study of >500 000 participants aged 40 
to 69 years when recruited from 2006 to 2010, all of 
whom granted written informed consent for partici-
pation. The UKB encompasses comprehensive data 
pertaining to participants’ lifestyle, environmental in-
fluences, genotype, and phenotype information, with 
the ongoing monitoring of their health status facilitated 
through the integration of EHRs.10,11 Only participants 
with whole exome sequencing data were retained 
for the analysis. The UKB study has been approved 
from the Northwest Multi-centre Research Ethics 
Committee as a Research Tissue Bank.

Definition of FH
FH was defined as the presence of a pathogenic variant 
in 1 of 3 genes, namely, low-density lipoprotein recep-
tor (LDLR), apolipoprotein B (APOB), and proprotein 

convertase subtilisin/kexin type 9 (PCSK9). The LDLR 
variants were classified according to a simplified ver-
sion of the FH LDLR variant interpretation guidelines, 
an implementation of the American College of Medical 
Genetics and Genomics guideline,12 proposed by the 
ClinGen FH Variant Curation Expert Panel,13 and to 
the level of pathogenicity reported in the ClinVar da-
tabase (Data S1). Given the absence of specific APOB 
and PCSK9 gene variant classification guidelines, 
we assessed variant pathogenicity using the ClinVar 
database. Individuals with at least 1 “pathogenic” or 
“likely pathogenic” variant, hereafter simply referred to 
as “pathogenic variants,” were considered FH carriers 
(Data S2).

Data Preparation
Variables used to predict the FH-carrying status 
were used “as-is” or derived from the occurrence of 
International Classification of Diseases, Tenth Revision 
(ICD-10) and Office of Population Censuses and 
Surveys version 4 codes (comorbidities and proce-
dures), and medication labels within patients’ records 
(Data  S3). Variables with >20% missing values were 
excluded. Categorical variables were converted into 
binary vectors. Numerical variables were centered 
and scaled. The multivariate imputation by the chained 
equations method was used to impute missing data in 
the remaining variables.

The data were separated into 3 data sets, all strat-
ified by age, sex, and FH-carrying status: (1) feature 
importance data set (20% of participants) using 3-fold 
cross-validation, (2) derivation data set (60%) using 5-
fold cross-validation, and (3) validation data set (20%) 
(Figure 1). The relatively low numbers of folds used in 
the feature importance and derivation data sets were 
arbitrarily chosen to ensure that each fold contained 
a sufficient number of participants across various age 
groups, by sex, and FH-carrying status. Missing data 
imputation and data transformations were applied sep-
arately within each data set and cross-validation fold 
to avoid data leakage that may lead to bias. Unscaled 
versions of the imputed derivation and validation data 
sets were kept to respectively recalibrate the clinical 
diagnostic criteria and FAMCAT and to establish the 
performances of the comparators in the validation data 
set (Data S4).

Statistical and ML Models
The UKB variables included in our analysis were se-
lected on the basis of the established definitions of 
how FH can be clinically identified, including variables 
used as predictors in diagnostic criteria and other vari-
ables readily available within EHRs. Each feature’s im-
portance in predicting the outcome was established 
by deriving an eXtreme Gradient Boosting (XGBoost) 
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model on the feature importance data set. New mod-
els were derived using 9 algorithms (logistic regression 
[LR], least absolute shrinkage and selection pera-
tor (L1), Ridge (L2), Elastic Net(L1+L2), random forest, 
Support Vector Machines, Artificial Neural Networks, 
XGBoost, Stacked Ensemble) and different hyper-
parameter configurations within our cross-validation 
scheme (Data S5). The synthetic minority oversampling 
technique was used to decrease the effect of class im-
balance, but it was not performed when assessing the 
performance of our models in the validation folds of 
our cross-validation scheme and within the validation 
data set.

Comparators: Clinical Diagnostic Criteria 
and FAMCAT Algorithm
The DLCN, Simon Broome, and Make Early Diagnosis 
to Prevent Early Death clinical diagnostic criteria were 
adapted, keeping only variables present in the UKB, 
to compare their predictive performances against our 
models. This is a common practice when applying 
clinical diagnostic criteria to EHRs, as some variables 
are infrequently recorded in clinics and unavailable in 
EHRs.14 The variable indicative of a positive genetic test 
was removed from the Simon Broome and DLCN cri-
teria, as this is the primary outcome of our study. We 
pooled the different diagnosis categories into “unlikely” 
and “possible” FH for each clinical diagnostic crite-
ria. For the DLCN criteria, we scaled the total score 

achieved by a patient between 0 and 1 and applied a 
receiver operating characteristic curve analysis to es-
tablish the threshold with the highest combined sensi-
tivity and specificity within the derivation data set. We 
also implemented a modified version of FAMCAT, a re-
cent EHRs-derived linear model (Data S6).15

Statistical Analysis
The sensitivity and positive predictive value (PPV) 
metrics were used to select the best model in the 
derivation data set’s validation folds, whereas the 
sensitivity, PPV, specificity, area under the receiver 
operating characteristic curve (AUC), logloss, and 
negative predictive value were used to report models’ 
performances in the validation data set. The calibra-
tion of our final model and comparators was calcu-
lated using the Hosmer–Lemeshow goodness-of-fit 
statistic, Spiegelhalter’s z-test, Brier score statistics, 
and calibration plots. The reciprocal of the PPV, which 
is conceptually equivalent to the NNS for an FH variant 
carrier, was also used.

Clinical characteristics were compared using χ2 
tests for binary variables, hypergeometric tests for 
categorical (nonbinary) variables, and Wilcoxon rank-
sum tests (or Mann–Whitney U test) for continuous 
variables. Statistical significance was defined as 
P<0.05 with Bonferroni correction. Statistical analy-
ses were conducted using R software version 4.0.2 (R 
Foundation for Statistical Software, Vienna, Austria). 

Figure 1.  Data partitioning and ML methodology.
FH indicates familial hypercholesterolemia; DLCN, Dutch Lipid Clinic Network; FAMCAT, Familial Hypercholesterolemia Case 
Ascertainment Tool; ML, machine learning; SMOTE, synthetic minority oversampling technique; and XGBoost, eXtreme Gradient 
Boosting.
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This article complies with the Transparent Reporting 
of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis statement (Data S7).16

RESULTS
In the first step of our analysis, we annotated the ge-
netic variants of the 454 710 UKB participants included 
in our analysis and found 1003 carriers of known path-
ogenic variants; the prevalence of genetically defined 
FH was 1:453 (95% CI, 1:426–1:482). The list of genetic 
variants identified and the number of genetic variants 
linked to FH, their pathogenicity, the numbers of car-
riers by gene, their treatment status, and associated 
LDL-C levels are available in Tables S1 and S2.

Individuals with a pathogenic variant in the LDLR 
gene, the most common locus for pathogenic variants 
in our data set (n=999/1003 [99.6%]), had higher LDL-C 
levels than carriers of benign variants (+0.51 mmol/L 
median difference overall, q-value <0.0001) regardless 
of their treatment status. The 2 carriers of a pathogenic 
variant in the APOB or PCSK9 genes (n=2/1003; 0.2% 
in each gene) had higher median differences in LDL-C 
levels (APOB: +1.01 mmol/L; PCSK9: +1.14 mmol/L) 
than carriers of benign variants but lacked sufficient 
power to meet the significance threshold (q-value 
>0.99 and 0.43, respectively). No homozygous or 
double-heterozygous carriers of pathogenic variants 
were identified, but 5 individuals were compound het-
erozygotes in the LDLR gene (Table S3). In Figure 2, a 
violin plot shows LDL-C levels as a function of treat-
ment and variant pathogenicity. LDL-C levels in this 
plot largely overlap but with noticeable right skew in 
the LDL-C levels of pathogenic variants carriers, which 
illustrates the difficulty in identifying individuals with FH 
on the basis of LDL-C levels alone.

Table  1 and Table  S4 summarize the clinical 
characteristics of the UKB participants stratified by 

FH-carrying status (ie, participants with FH: individ-
uals carrying [likely] pathogenic variants; participants 
without FH: individuals not carrying any variant, car-
rying [likely] benign variants, or variants of uncertain 
significance), and the strength and directions of asso-
ciation between each clinical feature and FH status. 
Statistically significant P values, marked by an asterisk, 
were defined as those <0.0003 (ie, Bonferroni adjusted 
α of 0.05 divided by 166 tests). Women were 0.052% 
more likely to carry a pathogenic FH variant than men 
(P*=0.0002) and median age was similar in individuals 
with and without FH ( 58 years). More than 95% of par-
ticipants were White individuals.

Differences in comorbidities, procedures of the heart 
and arteries, family history, laboratory measurement, 
and prescriptions between individuals with and without 
FH are available in Table  1 and summarized here for 
convenience. No significant differences were found in 
traditional cardiovascular disease risk factors, such as 
hypertension, diabetes, body mass index, and smoking 
between individuals with and without FH. Absolute dif-
ferences between these 2 groups show that prevalence 
of ASCVD, CAD, and peripheral artery disease were 
higher in individuals with FH (+8.02% ASCVD, +4.96% 
premature ASCVD; +9.38% CAD; +2.4% peripheral ar-
tery disease; P *≤0.0001), whereas the prevalence of 
cerebral vascular disease overall or stroke specifically 
did not significantly differ by FH status. Percutaneous 
coronary procedures were more frequent among in-
dividuals with FH occurring in 8.97% versus 5.64%, 
which represents an absolute difference of +3.34% 
(P*<0.0001). Patients with FH had higher proportions 
of self-reported family history of heart disease (57.93% 
in FH versus 44.08% in non-FH) or documented (ICD-
10) family history of CAD (10.37% in FH versus 4.96% 
in non-FH), which represent absolute differences of 
+13.85% and +5.40%, respectively (P*<0.0001).

In terms of lipid measurements, the levels of total cho-
lesterol, non–high-density lipoprotein cholesterol, and 

Figure 2.  Violin plot of LDL-C levels by pathogenicity of carried variants and 
treatment status in the UK Biobank participants.
LDL-C indicates low density lipoprotein cholesterol.
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Table 1.  Characteristics of Participants Included in the Study Stratified by FH Status

Missing 
data*, %

Not FH (N=453 707)†, 
n (%) FH (N=1003)†, n (%) Difference‡, % 95% CI‡, % P value§,‖

Sex, male 0.00 207 720/453 707 (45.78) 400/1003 (39.88) −5.90 −8.99 to −2.82% 0.0002**

Sex, female 0.00 245 987/453 707 (54.22) 603/1003 (60.12%) 5.90 2.82 to 8.99% 0.0002**

Age at recruitment, y 0.00 58.00 (50.00 to 63.00) 58.00 (50.00 to 
63.00)

0 −1.00 to 0.00 0.42

Race or ethnicity 1.39

White 427 508/447 484 (95.54) 935/991 (94.35) −1.19 −2.68 to 0.3 0.09

Asian 10 257/447 484 (2.29) 27/991 (2.72) 0.43 −0.63 to 1.5 0.31

Black 7088/447 484 (1.58) 23/991 (2.32) 0.74 −0.25 to 1.73 0.06

Mixed 2631/447 484 (0.59) 6/991 (0.61) 0.02 −0.48 to 0.52 0.73

Waist, cm 0.22 90.00 (80.00 to 99.00) 89.00 (79.00 to 
98.00)

−1.00 −2.00 to 0.00 0.006

Body mass index, kg/m2 0.39 26.82 (24.21 to 29.99) 26.94 (23.94 to 
30.01)

0.12 −0.17 to 0.41 0.97

Body massindex category 0.39

Overweight 193 143/451 956 (42.73) 417/1001 (41.66) −1.08 −4.18 to 2.03 0.51

Normal 143 848/451 956 (31.83) 330/1001 (32.97) 1.14 −1.83 to 4.1 0.42

Obese 112 817/451 956 (24.96) 252/1001 (25.17) 0.21 −2.53 to 2.95 0.84

Smoking 0.11

Never 247 095/453 224 (54.52) 548/1003 (54.64) 0.12 −3.02 to 3.25 0.92

Previous 156 783/453 224 (34.59) 358/1003 (35.69) 1.10 −1.92 to 4.12 0.44

Current 47 501/453 224 (10.48) 89/1003 (8.87) −1.61 −3.42 to 0.2 0.10

Prefer not to answer 1845/453 224 (0.41) 8/1003 (0.80) 0.39 −0.21 to 0.99 0.05

Diabetes, type 2 0.00 35 378/453 707 (7.80) 79/1003 (7.88) 0.08 −1.64 to 1.8 0.97

Diabetes, any type 0.00 37 462/453 707 (8.26) 86/1003 (8.57) 0.32 −1.47 to 2.1 0.76

Hypertension 0.00 132 295/453 707 (29.16) 304/1003 (30.31) 1.15 −1.75 to 4.05 0.44371

Atherosclerotic cardiovascular 
disease

0.00

No disease 385 138/453 707 (84.89) 771/1003 (76.87) −8.02 −10.68 to −5.36 <0.0001**

Nonpremature disease 50 359/453 707 (11.10) 142/1003 (14.16) 3.06 0.85 to 5.27 0.003

Premature disease 18 210/453 707 (4.01) 90/1003 (8.97) 4.96 3.14,6.78 <0.0001**

Coronary artery disease 0.00

No disease 403 536/453 707 (88.94) 798/1003 (79.56) −9.38 −11.93 to −6.83 <0.0001**

Nonpremature disease 36 870/453 707 (8.13) 125/1003 (12.46) 4.34 2.24,6.43 <0.0001**

Premature disease 13 301/453 707 (2.93) 80/1003 (7.98) 5.04 3.32 to 6.77 <0.0001**

Myocardial Infarction 0.00

No disease 432 260/453 707 (95.27) 919/1003 (91.63) −3.65 −5.41,-1.88 <0.0001**

Nonpremature disease 16 956/453 707 (3.74) 60/1003 (5.98) 2.24 0.73 to 3.76 <0.001

Premature disease 4491/453 707 (0.99) 24/1003 (2.39) 1.40 0.41 to 2.4 0.0001**

Angina 0.00

No disease 425 360/453 707 (93.75) 879/1003 (87.64) −6.12 −8.2 to −4.03 <0.0001**

Nonpremature disease 21 785/453 707 (4.80) 85/1003 (8.47) 3.67 1.9 to 5.45 <0.0001**

Premature disease 6562/453 707 (1.45) 39/1003 (3.89) 2.44 1.2 to 3.69 <0.0001**

Peripheral artery disease 0.00

No disease 439 723/453 707 (96.92) 948/1003 (94.52) −2.40 −3.86 to −0.94 0.0001**

Nonpremature disease 11 620/453 707 (2.56) 44/1003 (4.39) 1.83 0.51 to 3.14 <0.001

Premature disease 2364/453 707 (0.52) 11/1003 (1.10) 0.58 −0.12 to 1.27 0.02

Cerebrovascular disease 0.00

No disease 438 102/453 707 (96.56) 976/1003 (97.31) 0.75 −0.31,1.8 0.16

 (Continued)
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LDL-C were 0.54 to 0.58 mmoL/L higher (0.2 mmoL/L 
higher for apolipoprotein B) among individuals with 
FH compared with individuals without FH (P*<0.0001). 
By contrast, the triglyceride levels were 0.2 mmoL/L 
lower among individuals with FH versus those without 
FH (P*<0.0001). The proportions of documented pre-
scriptions of lipid-lowering medications (LLMs; statins, 
ezetimibe, fibrates, or bile acid sequestrants) were 
higher in individuals with FH than in individuals without 
FH (+31%, +12%, +1%, and + 0.63% higher, respec-
tively, P*<0.0001). Similarly, the proportions of docu-
mented prescriptions of non-LLMs (antiplatelets and β 

blockers) were 9.70% and 5.51% higher for individuals 
with FH than for individuals without FH (P*<0.0001).

Figure 3 shows the 10 most important features 
identified by our XGBoost Feature Importance algo-
rithm (Data S8) that yielded a 3-fold cross-validated 
AUC of 86% in the feature importance data set. 
The 4 most important features were LDL-C lev-
els, statin use, triglycerides, and apolipoprotein B 
levels. Other important predictors included waist 
circumference, a recorded family history of CAD, 
age, diastolic blood pressure, apolipoprotein A 
levels, and the use of any medication linked to 

Missing 
data*, %

Not FH (N=453 707)†, 
n (%) FH (N=1003)†, n (%) Difference‡, % 95% CI‡, % P value§,‖

Nonpremature disease 12 106/453 707 (2.67) 20/1003 (1.99) −0.67 −1.59 to 0.24 0.21

Premature disease 3499/453 707 (0.77) 7/1003 (0.70) −0.07 −0.64 to 0.49 0.98

Stroke 0.00

Nonpremature disease 441 905/453 707 (97.40) 985/1003 (98.21) 0.81 −0.07 to 1.68 0.08

No disease 8697/453 707 (1.92) 12/1003 (1.20) −0.72 −1.44 to 0 0.11

Premature disease 3105/453 707 (0.68) 6/1003 (0.60) −0.09 −0.61 to 0.44 0.94

Heart percutaneous intervention 0.00 25 570/453 707 (5.64) 90/1003 (8.97) 3.34 1.52 to 5.16 <0.0001**

Arteries percutaneous intervention 0.00 9386/453 707 (2.07) 36/1003 (3.59) 1.52 0.32 to 2.72 0.001

Family history of heart disease 
(self-assessed)

0.00 199 975/453 707 (44.08) 581/1003 (57.93) 13.85 10.74 to 16.96 <0.0001**

Family history of coronary artery 
disease (documented)

0.00 22 524/453 707 (4.96) 104/1003 (10.37) 5.40 3.47 to 7.34 <0.0001**

Total cholesterol, mmol/L 4.44 5.66 (4.92 to 6.44) 6.24 (5.34 to 7.48) 0.58 0.46 to 0.72 <0.0001**

Non-HDL cholesterol, mmol/L 12.30 4.19 (3.49 to 4.94) 4.73 (3.90 to 5.87) 0.54 0.46 to 0.74 <0.0001**

HDL cholesterol, mmol/L 12.29 1.40 (1.17 to 1.68) 1.39 (1.18 to 1.66) −0.01 −0.05 to 0.03 0.64

LDL cholesterol (measured), mmol/L 4.61 3.53 (2.95 to 4.13) 4.07 (3.33 to 5.06) 0.55 0.43 to 0.62 <0.0001**

Triglycerides, mmol/L 4.51 1.49 (1.05 to 2.16) 1.34 (0.97 to 1.91) −0.15 −0.21 to −0.10 <0.0001**

Apolipoprotein A, g/L 12.77 1.51 (1.35 to 1.70) 1.47 (1.31 to 1.64) −0.04 −0.06 to −0.03 <0.0001**

Apolipoprotein B, g/L 4.91 1.02 (0.87 to 1.18) 1.18 (1.01 to 1.40) 0.16 0.14 to 0.18 <0.0001**

C-reactive protein, mg/L 4.64 1.34 (0.66 to 2.79) 1.15 (0.52 to 2.44) −0.19 −0.26 to −0.13 <0.0001**

Glycated hemoglobin, HbA1c, mmol/
mol

4.66 35.30 (32.80 to 38.00) 35.70 (33.20 to 
38.50)

0.4 0.10 to 0.80 <0.001**

Statin 0.00 80 846/453 707 (17.82) 491/1003 (48.95) 31.13 27.99 to 34.28 <0.0001**

Ezetimibe 0.00 3546/453 707 (0.78) 126/1003 (12.56) 11.78 9.68 to 13.88 <0.0001**

Fibrate 0.00 1549/453 707 (0.34) 14/1003 (1.40) 1.05 0.28 to 1.83 <0.0001**

Bile acid sequestrant 0.00 301/453 707 (0.07) 7/1003 (0.70) 0.63 0.07 to 1.2 <0.0001**

β Blocker 0.00 33 796/453 707 (7.45) 130/1003 (12.96) 5.51 3.38 to 7.64 <0.0001**

Antiplatelet 0.00 67 280/453 707 (14.83) 246/1003 (24.53) 9.70 6.98 to 12.41 <0.0001**

Medication: ATC A 0.00 174 494/453 707 (38.46) 456/1003 (45.46) 7 3.87 to 10.14 <0.0001**

Medication: ATC B 0.00 81 857/453 707 (18.04) 280/1003 (27.92) 9.87 7.05 to 12.7 <0.0001**

Medication: ATC C 0.00 196 087/453 707 (43.22) 656/1003 (65.40) 22.18 19.19 to 25.18 <0.0001**

ATC indicates Anatomical Therapeutic Chemical classification system (A, alimentary tract and metabolism; B, blood and blood-forming organs; C, 
cardiovascular system); FH, familial hypercholesterolemia; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; and LDL-C, low-density lipoprotein.

*Percentage of missing values overall. Morbidities, family history, operation, and medication values were assumed to be negative when no codes were found.
†Median (25% to 75%) for numerical; count/Ncase/controls (%) for categorical variable (binary or >2 levels).
‡Difference in percentage for categorical variables and in median unit for continuous variables.
§Wilcoxon test rank sum test for continuous variables; 2-sample test for equality of proportions for binary categorical variable; hypergeometric test for 

categorical variables (>2 levels).
‖P values marked with a superscript double star “**” are statistically significant at the 5% significance level after Bonferroni correction for 166 tests.

Table 1.  Continued
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the cardiovascular disease system (ie, Anatomical 
Therapeutic Chemical code C).

We derived a series of models that included 27 pre-
dictor variables and the FH status as the binary out-
come variable. We report our models’ performances 
in the training and validation data set in Table 2. The 
final list of predictors was chosen on the basis of the 
results of our feature importance analysis, statistical 
significance, clinical knowledge, and expected avail-
ability within EHRs (Table  S5). The 7 ML algorithms 
initially included in our analysis (ie, LR, least absolute 
shrinkage and selection operator, Elastic Net, Ridge, 
random forest, XGBoost, Artificial Neural Networks, 
and Support Vector Machines) provided similar perfor-
mances on the validation folds of the derivation data 
set and in the validation data set. However, the random 
forest algorithm provided marginally higher PPV than 
the other algorithms.

We generated 3 stacking ensembles using (1) all 
our initial ML-derived models (ie, excluding LR) as base 
learners; (2) the top 5 models in terms of PPV as base 
learners; and (3) the best model, in terms of PPV, for 

each of our 7 initial algorithms as base learners. The 
stacking ensembles yielded lower logloss than any 
of our initial models, meaning that their probabilis-
tic estimates for each observation were closer to the 
observed FH status. The stacking ensemble model 
combining the top 5 models by PPV was chosen as 
our best model due to its ability to retain a high sensi-
tivity, specificity, and AUC in the cross-validation folds 
of the derivation data set (Table 2).

In Figure 4 and Table 3, we compared the perfor-
mances of our chosen model in the validation data 
set, that is, the stacking ensemble, to those of mod-
ified clinical diagnostic criteria and FAMCAT. In terms 
of AUC, our model outperformed other criteria and 
our LR model, but especially the clinical diagnostic 
criteria methods (AUC ML-derived model, 79.12%; 
LR, 77.05%; FAMCAT, 71.12%; DLCN, 67.13%; Simon 
Broome, 61.30%). Our model had the highest sensitiv-
ity (ML-derived model, 74.93%; LR, 69.10%; FAMCAT, 
69.55%; DLCN, 64.23%; Make Early Diagnosis to 
Prevent Early Death, 7.16%; Simon Broome, 35.12%) 
and was also more specific and precise than screening 

Figure 3.  Ten most important features using XGBoost feature importance and the information gain metrics in the UK 
Biobank.
Information gain quantifies the reduction in uncertainty or randomness achieved by including a specific feature in a model. Coverage 
refers to the proportion of data points or instances explained by a specific feature. Frequency refers to the relative number of 
instructions in which a feature was used to predict the outcome by an algorithm. ATC code C indicates Anatomical Therapeutic 
Chemical code for medications that impact the cardiovascular system; FamHx CAD, family history of coronary artery disease; and 
LDL-C, low density lipoprotein cholesterol.
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and diagnostic criteria with sensitivity >50% but less 
specific and precise than the logistic regression model 
(specificity: ML-derived model, 72.80%; LR, 78.10%; 
FAMCAT, 65.43%; DLCN, 62.72%).The NNS of our 
model and LR were also lower than those of screen-
ing and diagnostic criteria overall (ML-derived model, 
164 [95% CI, 154–175]; LR, 144 [95% CI, 130–164]; 
FAMCAT, 227 [95% CI, 208–250]; DLCN, 263 [95% CI, 
239–293]) and across tertiles of age (Table  3), more 
notably in older individuals. While the difference in sen-
sitivity and NNS among the different approaches may 
seem small, when applying these approaches at the 
population level, the numbers become clinically rele-
vant. Table 4 shows the difference in the yield of pa-
tients with FH identified and number of tests required by 
our model compared with DLCN, FAMCAT, and our lo-
gistic regression model. Our model had higher calibra-
tion performance than FAMCAT (Hosmer–Lemeshow 
test: P=0.015 versus <2.2e-16; Spiegelhalter’s z-test: 
P=0.001 versus <2.2e-16; Figure 5 and Table S6).

DISCUSSION
The present study demonstrates that ML algorithms 
could improve the detection of individuals likely to have 
genetically confirmed FH. Our top-performing model 
exhibits superior predictive accuracy compared with 
FAMCAT, the algorithm currently recommended in pri-
mary care settings in England. Moreover, application 
of our ML algorithm would reduce the NNS for ge-
netic confirmation by about one-quarter, which would 
reduce unnecessary referrals to lipid clinics and po-
tentially unnecessary genetic testing, a relevant con-
sideration at a time of increasing health care workload 
and ever restricted health care budgets. Our results 
suggest that the advantage of using ML over simpler 
models, like our logistic regression model, is mainly 
reflected in the sensitivity metric and at the expense 
of specificity and PPV. Nonetheless, even a minor 
improvement in sensitivity could lead to a substantial 
increase in identifying FH through population screen-
ing. Additionally, the explainability (ie, the capability to 
comprehend how the model arrived at its prediction) 
offered by simpler models may be less essential in 
screening compared with diagnostic applications. To 
date, in England, the path to diagnosing FH typically 
begins with a clinician’s suspicion on the basis of fac-
tors like premature CAD, severely elevated cholesterol 
levels, or a suggestive family history, followed by ap-
plication of the Simon Broome criteria or other clinical 
diagnostic criteria to assess the likelihood of an FH di-
agnosis, which should be subsequently confirmed by a 
specialist, usually through genetic testing. FAMCAT of-
fers an alternative approach to screening primary care 
EHRs for potential FH cases, leading to specialist re-
ferrals. This automated approach enhances detection 

rates and makes genetic testing more cost-effective by 
prioritizing high-probability candidates. Yet the valid-
ity of screening algorithms relies on the accuracy and 
completeness of the underlying data set. Real-world 
EHRs vary in data quality and frequently show missing 
values. Anamnesis-related variables, especially family 
history, are less likely to be recorded compared with 
procedure codes, laboratory results, and medication.

Consequently, when developing a screening algo-
rithm, it is imperative to emphasize commonly recorded 
variables to ensure its applicability in routine clinical 
practice. For example, although the DLCN criteria is 
the most widely used clinical diagnostic criteria in spe-
cialist secondary or tertiary care clinics17,18 and the best 
performing among all diagnostic criteria in terms of pre-
dictive accuracy in the validation data set, our findings 
suggest that for improving pretest probability in EHRs, 
it is less useful than our model or FAMCAT. This may 
in part reflect the fact that clinical signs used in spe-
cialist clinics are not routinely captured in nonspecialist 
settings, and hence modified clinical diagnostic criteria 
did not perform well compared with newer models for 
EHR screening. Furthermore, FAMCAT necessitates 
data related to family history of elevated cholesterol 
and FH, which may not be consistently available, or in-
correctly reported/captured. In contrast, our model en-
compasses a single family history variable, along with 
other variables, such as 10 prescribed medications 
and procedures that are more likely to be consistently 
recorded in EHRs. A projection of the clinical utility of 
our model and the currently recommended screen-
ing criteria (ie, FAMCAT) show that our model could 
identify 74.93% of the 106 109 patients with FH aged 
≥40 years in the United Kingdom versus 69.55% with 
FAMCAT (ie, 79 507 versus 73 798). This represents an 
additional 5709 patients identified using our model. 
Furthermore, with an NNS of 167, our model would 
require 13 039 148 tests to identify 79 507 patients, 
but with an NNS of 227, contrary FAMCAT would re-
quire 16 752 146 tests to identify 73 798 patients. This 
means that, at the population level, our model would 
require around 4 million fewer tests to identify around 
6000 more patients with FH than FAMCAT. Therefore, 
integrating our model into EHRs as a pretest tool to 
prioritize those most likely to yield a positive molecular 
diagnosis would translate into considerable financial 
savings for health care systems.

In contrast with clinical diagnostic criteria and 
FAMCAT, which respectively rely on point-based scor-
ing system and statistical linear models, our model is 
developed through ML techniques that excel in cap-
turing high-degree interactions and nonlinear asso-
ciations among predictor variables and outcomes.19 
Several studies have examined the use of ML algo-
rithms for identifying patients with FH in different coun-
tries and EHR data sets, including the United States, 
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Table 2.  Machine Learning Model Performances on the Validation Folds of the Cross-Validation Derivation Data Set and 
the Validation Data Set

No. Algorithm

Validation cross-validation folds derivation data set, mean (SD on CV folds) Validation data set, mean (SD on 10 bootstrapped samples)

Sensitivity* Specificity* Accuracy* PPV* NPV* Logloss† AUC* Sensitivity* Specificity* Accuracy* PPV* NPV* Logloss† AUC*

0 Logistic 
regression

71.93 (1.50) 78.78 (2.24) 78.76 (2.23) 0.75 
(0.07)

99.92 
(0.00)

0.40 (0.02) 82.07 
(1.12)

69.10 (3.96) 78.10 (0.17) 78.08 (0.17) 0.69 
(0.04)

99.91 
(0.01)

0.48 
(0.00)

77.05 
(2.74)

1 LASSO 55.81 (3.96) 64.33 (2.85) 64.31 (2.84) 0.35 
(0.02)

99.85 
(0.01)

0.62 (0.01) 65.64 
(2.37)

57.66 (3.34) 64.97 (0.16) 64.96 (0.16) 0.36 
(0.02)

99.86 
(0.01)

0.66 
(0.00)

66.99 
(2.10)

2 LASSO‡,§ 71.75 (2.38) 79.83 (0.93) 79.81 (0.93) 0.78 
(0.03)

99.92 
(0.01)

0.43 (0.02) 81.89 
(1.64)

64.28 (3.00) 81.38 (0.17) 81.34 (0.17) 0.76 
(0.04)

99.90 
(0.01)

0.48 
(0.00)

77.87 
(1.63)

3 LASSO 72.08 (2.71) 79.00 (1.45) 78.99 (1.44) 0.76 
(0.05)

99.92 
(0.01)

0.39 (0.01) 81.98 
(1.18)

69.50 (3.28) 75.47 (0.09) 75.46 (0.08) 0.62 
(0.03)

99.91 
(0.01)

0.50 
(0.00)

77.22 
(1.83)

4 LASSO 71.94 (1.82) 79.45 (1.80) 79.43 (1.80) 0.77 
(0.07)

99.92 
(0.01)

0.40 (0.01) 81.86 
(0.88)

65.62 (2.00) 80.02 (0.14) 79.99 (0.14) 0.72 
(0.02)

99.90 
(0.01)

0.50 
(0.00)

78.32 
(1.14)

5 LASSO 71.75 (1.66) 79.57 (1.49) 79.55 (1.48) 0.77 
(0.04)

99.92 
(0.00)

0.40 (0.00) 82.46 
(1.14)

68.21 (3.39) 75.67 (0.12) 75.65 (0.12) 0.62 
(0.03)

99.91 
(0.01)

0.51 
(0.00)

77.22 
(1.81)

6 LASSO 72.26 (3.75) 78.40 (1.79) 78.39 (1.78) 0.74 
(0.03)

99.92 
(0.01)

0.40 (0.01) 81.81 
(1.26)

69.30 (2.39) 77.12 (0.07) 77.10 (0.07) 0.67 
(0.02)

99.91 
(0.01)

0.52 
(0.00)

79.30 
(1.48)

7 Elastic Net 67.93 (6.35) 69.30 (3.09) 69.30 (3.07) 0.49 
(0.04)

99.90 
(0.02)

0.56 (0.01) 74.59 
(1.75)

65.82 (2.18) 68.67 (0.11) 68.66 (0.11) 0.46 
(0.02)

99.89 
(0.01)

0.61 
(0.00)

74.13 
(1.38)

8 Elastic Net 71.76 (3.55) 79.49 (2.28) 79.48 (2.27) 0.77 
(0.08)

99.92 
(0.01)

0.42 (0.01) 81.82 
(1.14)

70.75 (2.61) 76.55 (0.17) 76.54 (0.17) 0.66 
(0.03)

99.92 
(0.01)

0.49 
(0.00)

79.58 
(1.45)

9 Elastic Net‡,§ 71.59 (3.52) 79.83 (2.04) 79.81 (2.03) 0.78 
(0.07)

99.92 
(0.01)

0.40 (0.01) 82.30 
(0.86)

68.51 (3.26) 77.75 (0.18) 77.73 (0.18) 0.68 
(0.03)

99.91 
(0.01)

0.46 
(0.00)

78.85 
(1.73)

10 Elastic Net 72.91 (2.53) 77.86 (1.57) 77.85 (1.56) 0.72 
(0.03)

99.92 
(0.01)

0.40 (0.01) 82.04 
(1.29)

68.56 (3.32) 79.36 (0.09) 79.34 (0.09) 0.73 
(0.03)

99.91 
(0.01)

0.48 
(0.00)

78.87 
(1.90)

11 Elastic Net§ 71.26 (3.02) 80.08 (1.15) 80.06 (1.15) 0.79 
(0.05)

99.92 
(0.01)

0.40 (0.01) 82.11 
(1.29)

67.76 (3.65) 79.80 (0.14) 79.77 (0.13) 0.74 
(0.04)

99.91 
(0.01)

0.48 
(0.00)

79.03 
(1.93)

12 Elastic Net 71.77 (1.98) 78.16 (1.22) 78.14 (1.21) 0.72 
(0.03)

99.92 
(0.00)

0.40 (0.01) 81.76 
(0.72)

68.31 (1.86) 79.37 (0.16) 79.35 (0.17) 0.73 
(0.02)

99.91 
(0.01)

0.48 
(0.00)

79.39 
(1.11)

13 Ridge 70.43 (3.57) 73.70 (2.32) 73.69 (2.31) 0.59 
(0.04)

99.91 
(0.01)

0.50 (0.01) 78.41 
(1.53)

69.00 (3.45) 75.17 (0.16) 75.15 (0.15) 0.61 
(0.03)

99.91 
(0.01)

0.54 
(0.00)

76.42 
(1.65)

14 Ridge 72.09 (1.83) 78.15 (1.32) 78.13 (1.31) 0.73 
(0.03)

99.92 
(0.00)

0.42 (0.01) 81.80 
(1.15)

70.85 (3.41) 76.14 (0.22) 76.12 (0.22) 0.65 
(0.03)

99.92 
(0.01)

0.49 
(0.00)

79.48 
(1.47)

15 Ridge 70.60 (2.22) 79.15 (1.05) 79.13 (1.05) 0.74 
(0.04)

99.92 
(0.01)

0.41 (0.01) 82.36 
(0.91)

69.90 (2.97) 76.77 (0.13) 76.76 (0.13) 0.66 
(0.03)

99.91 
(0.01)

0.49 
(0.00)

78.31 
(2.14)

16 Ridge 71.60 (2.48) 79.06 (2.22) 79.04 (2.21) 0.75 
(0.06)

99.92 
(0.01)

0.39 (0.01) 81.86 
(1.08)

66.42 (3.17) 79.19 (0.12) 79.16 (0.12) 0.70 
(0.03)

99.91 
(0.01)

0.48 
(0.00)

78.16 
(2.11)

17 Ridge‡ 72.25 (1.60) 79.22 (1.45) 79.20 (1.45) 0.77 
(0.04)

99.92 
(0.00)

0.40 (0.01) 82.13 
(1.33)

68.61 (3.35) 77.32 (0.15) 77.30 (0.15) 0.67 
(0.03)

99.91 
(0.01)

0.48 
(0.00)

77.25 
(2.15)

18 Ridge 71.44 (3.26) 79.47 (1.77) 79.45 (1.76) 0.77 
(0.04)

99.92 
(0.01)

0.41 (0.02) 82.11 
(0.86)

66.07 (4.81) 77.54 (0.15) 77.52 (0.15) 0.65 
(0.05)

99.90 
(0.01)

0.50 
(0.00)

76.89 
(2.49)

19 RF 68.27 (3.72) 79.66 (2.39) 79.64 (2.38) 0.74 
(0.06)

99.91 
(0.01)

0.37 (0.01) 81.19 
(0.40)

68.96 (2.68) 76.50 (0.11) 76.49 (0.11) 0.65 
(0.03)

99.91 
(0.01)

0.48 
(0.00)

79.11 
(1.58)

20 RF§ 68.61 (2.93) 81.23 (2.40) 81.20 (2.39) 0.81 
(0.09)

99.91 
(0.01)

0.37 (0.01) 81.79 
(0.45)

62.29 (4.61) 76.35 (0.08) 76.32 (0.08) 0.58 
(0.04)

99.89 
(0.01)

0.54 
(0.00)

78.42 
(1.78)

21 RF 68.11 (1.85) 79.89 (1.63) 79.87 (1.63) 0.75 
(0.07)

99.91 
(0.01)

0.36 (0.01) 80.93 
(1.03)

68.41 (2.84) 77.91 (0.09) 77.89 (0.09) 0.68 
(0.03)

99.91 
(0.01)

0.48 
(0.00)

79.32 
(1.78)

22 RF 69.24 (4.08) 79.83 (2.38) 79.81 (2.37) 0.76 
(0.05)

99.92 
(0.01)

0.37 (0.02) 81.58 
(0.57)

67.16 (4.31) 79.23 (0.16) 79.20 (0.16) 0.71 
(0.05)

99.91 
(0.01)

0.51 
(0.00)

78.68 
(1.86)

23 RF‡ 70.25 (4.33) 80.23 (0.34) 80.21 (0.34) 0.78 
(0.05)

99.92 
(0.01)

0.37 (0.01) 81.65 
(0.75)

64.38 (3.99) 83.28 (0.14) 83.24 (0.14) 0.85 
(0.05)

99.91 
(0.01)

0.45 
(0.00)

80.25 
(1.78)

24 RF 70.60 (4.74) 79.29 (2.59) 79.27 (2.58) 0.75 
(0.07)

99.92 
(0.01)

0.36 (0.02) 81.94 
(0.71)

64.53 (3.26) 78.82 (0.12) 78.79 (0.12) 0.67 
(0.04)

99.90 
(0.01)

0.49 
(0.00)

78.05 
(1.88)

25 RF 68.27 (1.67) 79.42 (1.05) 79.40 (1.04) 0.73 
(0.04)

99.91 
(0.00)

0.37 (0.00) 81.69 
(0.75)

59.50 (3.87) 80.71 (0.12) 80.66 (0.12) 0.68 
(0.05)

99.89 
(0.01)

0.48 
(0.00)

77.50 
(1.97)

26 RF 71.59 (4.13) 78.60 (1.58) 78.58 (1.57) 0.74 
(0.02)

99.92 
(0.01)

0.36 (0.02) 81.88 
(0.51)

69.55 (3.39) 78.45 (0.16) 78.43 (0.16) 0.71 
(0.03)

99.91 
(0.01)

0.45 
(0.00)

79.80 
(1.73)

27 XGBoost‡,§ 67.92 (2.87) 80.95 (1.12) 80.93 (1.11) 0.78 
(0.02)

99.91 
(0.01)

0.45 (0.01) 80.74 
(0.83)

66.72 (3.12) 80.30 (0.11) 80.27 (0.11) 0.74 
(0.03)

99.91 
(0.01)

0.52 
(0.00)

78.95 
(1.92)

 (Continued)
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United Kingdom, South Africa, Italy, Sweden, and 
China. However, only 4 studies have explicitly focused 
on developing models for identifying FH within the 
general population.20–23 In the United States, Banda 
et  al20 and Myers et  al21 derived models to identify 
FH among high-risk patients with ASCVD, based 
on unstructured and structured EHRs, respectively. 
However, these models require the identification of 
high-risk populations with established disease, that is, 
secondary prevention, where the prevalence of FH is 
much higher,2 and are therefore less generalizable to 
primary prevention, where the aim is to identify individ-
uals before a first ASCVD event. Furthermore, consid-
ering their definitions of the FH outcome incorporated 

both clinical and genetic diagnoses, these algorithms 
would be expected to be sensitive but less specific 
for the gold standard genetic diagnosis of FH. In the 
United Kingdom, Gratton et al22 and Akyea et al23 de-
veloped models specifically for identifying FH within 
primary care EHRs. However, Akyea and colleagues′ 
definition of the FH outcome was not limited to the mo-
lecular diagnosis of FH, making it uncertain whether 
these were true cases of FH. The study by Gratton 
et al was conducted using an earlier and smaller UKB 
data release and focused on 1 type of model, namely, 
LR, least absolute shrinkage and selection operator, 
which our study suggests is not the best-performing 
algorithm. Moreover, their best-performing model 

No. Algorithm

Validation cross-validation folds derivation data set, mean (SD on CV folds) Validation data set, mean (SD on 10 bootstrapped samples)

Sensitivity* Specificity* Accuracy* PPV* NPV* Logloss† AUC* Sensitivity* Specificity* Accuracy* PPV* NPV* Logloss† AUC*

28 XGBoost 68.93 (2.76) 79.23 (1.23) 79.21 (1.22) 0.73 
(0.04)

99.91 
(0.01)

0.46 (0.01) 80.53 
(1.21)

61.94 (5.41) 80.37 (0.14) 80.33 (0.15) 0.69 
(0.06)

99.90 
(0.01)

0.51 
(0.00)

78.83 
(1.73)

29 XGBoost§ 69.77 (3.51) 80.33 (1.50) 80.31 (1.49) 0.78 
(0.05)

99.92 
(0.01)

0.41 (0.02) 81.58 
(0.85)

61.14 (2.29) 80.70 (0.14) 80.65 (0.14) 0.70 
(0.03)

99.89 
(0.01)

0.47 
(0.00)

78.28 
(1.29)

30 XGBoost 71.43 (1.46) 79.14 (1.22) 79.13 (1.22) 0.75 
(0.04)

99.92 
(0.00)

0.41 (0.01) 81.59 
(1.06)

70.70 (4.19) 76.10 (0.17) 76.08 (0.16) 0.65 
(0.04)

99.91 
(0.01)

0.49 
(0.00)

79.54 
(1.45)

31 ANN 70.09 (1.78) 79.45 (1.58) 79.43 (1.58) 0.75 
(0.04)

99.92 
(0.00)

0.41 (0.01) 81.58 
(1.27)

68.06 (3.03) 77.68 (0.11) 77.65 (0.11) 0.67 
(0.03)

99.91 
(0.01)

0.51 
(0.00)

78.99 
(1.41)

32 ANN‡ 71.76 (1.27) 79.26 (2.09) 79.25 (2.09) 0.77 
(0.09)

99.92 
(0.01)

0.40 (0.00) 81.90 
(1.24)

63.73 (2.97) 78.05 (0.11) 78.02 (0.12) 0.64 
(0.03)

99.90 
(0.01)

0.48 
(0.00)

77.21 
(1.38)

33 ANN 72.43 (2.10) 77.53 (1.82) 77.52 (1.82) 0.71 
(0.04)

99.92 
(0.01)

0.39 (0.01) 82.06 
(1.16)

67.46 (3.63) 76.92 (0.12) 76.89 (0.12) 0.64 
(0.03)

99.91 
(0.01)

0.48 
(0.00)

78.13 
(2.03)

34 ANN 71.41 (3.50) 78.49 (3.02) 78.47 (3.01) 0.74 
(0.08)

99.92 
(0.01)

0.43 (0.01) 81.97 
(1.50)

67.36 (4.38) 79.72 (0.12) 79.69 (0.12) 0.73 
(0.05)

99.91 
(0.01)

0.49 
(0.00)

79.59 
(1.77)

35 ANN 70.58 (2.83) 78.76 (1.76) 78.74 (1.75) 0.73 
(0.05)

99.92 
(0.01)

0.40 (0.01) 81.69 
(1.30)

69.70 (4.82) 76.97 (0.13) 76.95 (0.13) 0.67 
(0.05)

99.91 
(0.01)

0.49 
(0.00)

78.45 
(2.72)

36 ANN 71.09 (2.78) 79.22 (2.05) 79.20 (2.04) 0.75 
(0.05)

99.92 
(0.01)

0.40 (0.01) 81.89 
(0.87)

69.50 (3.77) 77.74 (0.10) 77.72 (0.10) 0.69 
(0.04)

99.91 
(0.01)

0.49 
(0.00)

79.38 
(2.07)

37 SVM 70.92 (3.35) 77.83 (1.43) 77.81 (1.42) 0.70 
(0.03)

99.92 
(0.01)

0.41 (0.01) 81.30 
(1.25)

66.87 (2.30) 74.01 (0.12) 73.99 (0.12) 0.57 
(0.02)

99.90 
(0.01)

0.49 
(0.00)

78.41 
(1.16)

38 SVM 71.76 (1.69) 78.74 (0.48) 78.73 (0.47) 0.74 
(0.01)

99.92 
(0.00)

0.41 (0.00) 81.87 
(1.21)

62.74 (3.98) 78.86 (0.13) 78.83 (0.13) 0.65 
(0.04)

99.90 
(0.01)

0.50 
(0.00)

78.21 
(2.50)

39 SVM 71.94 (2.45) 78.37 (2.13) 78.36 (2.12) 0.74 
(0.08)

99.92 
(0.01)

0.41 (0.01) 82.13 
(1.24)

60.25 (3.48) 81.12 (0.18) 81.08 (0.18) 0.70 
(0.04)

99.89 
(0.01)

0.49 
(0.00)

77.65 
(1.79)

40 SVM‡ 71.10 (1.58) 79.80 (1.13) 79.78 (1.13) 0.77 
(0.04)

99.92 
(0.00)

0.39 (0.01) 82.27 
(0.94)

64.08 (2.65) 77.55 (0.14) 77.52 (0.14) 0.63 
(0.03)

99.90 
(0.01)

0.49 
(0.00)

78.35 
(2.09)

41 Stacking 40 
models

75.92 (2.88) 78.72 (3.85) 78.72 (3.84) 0.80 
(0.12)

99.93 
(0.01)

0.01 (0.00) 83.21 
(0.81)

74.88 (2.94) 74.20 (0.15) 74.20 (0.15) 0.64 
(0.03)

99.93 
(0.01)

0.01 
(0.00)

81.18 
(1.59)

42 Stacking 5 
models with 
the highest 
PPV overall (§)

75.58 (3.73) 79.02 (4.65) 79.01 (4.63) 0.82 
(0.15)

99.93 
(0.01)

0.01 (0.00) 83.16 
(0.85)

74.93 (2.44) 72.80 (0.15) 72.80 (0.14) 0.61 
(0.02)

99.92 
(0.01)

0.01 
(0.00)

79.12 
(2.01)

43 Stacking 
models with 
highest PPV f (‡)

75.76 (2.60) 78.44 (3.95) 78.44 (3.94) 0.79 
(0.10)

99.93 
(0.00)

0.01 (0.00) 82.90 
(0.97)

74.18 (2.64) 74.17 (0.13) 74.17 (0.13) 0.63 
(0.02)

99.92 
(0.01)

0.01 
(0.00)

79.33 
(1.66)

The chosen models in the validation folds of the derivation data set (ie, our “best models”) are highlighted in bold font. The 5 best models in terms of PPV are 
in italics. AUC indicates area under the receiver operating characteristics curve; CV, cross-validation; LASSO, least absolute shrinkage operator; NPV, negative 
predictive value; PPV, positive predictive value; RF, random forest; SVM: support vector machine; and XGBoost, eXtreme Gradient Boosting.

*Expressed in percentage and SD using probability cutoff obtained using ROC curve analysis on the training (validation cross-validation folds derivation data 
set) and validation folds (validation data set).

†Expressed in terms of the natural logarithms of the losses.
‡Indicates chosen models in the validation folds of the derivation data set (ie, our “best models”).
§Indicates the 5 best models in terms of PPV.

Table 2.  Continued
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requires the incorporation of a polygenic risk score 
as an input variable, which necessitates prior genetic 
testing and has a different aim than the present study, 

namely, to derive an algorithm to better identify “true” 
FH by reducing the NNS to ascertain a correct molec-
ular diagnosis.

Figure 4.  Receiver operating characteristics curve for our chosen model and 
modified versions of existing screening criteria and clinical diagnostic criteria.
DLCN indicates Dutch Lipid Clinic Network; FAMCAT, Familial Hypercholesterolemia 
Case Ascertainment Tool; MEDPED: Make Early Diagnosis to Prevent Early Death; and 
ML, machine learning.

Table 3.  Comparison of Performances Between Our Chosen Model and Existing Clinical Diagnostic Criteria Diagnostic 
Methods and the FAMACT Algorithm

Algorithm 
and clinical 
diagnostic 
criteria

Validation data set
Validation data set stratified by 
age terciles

Sensitivity* Specificity* Accuracy* PPV* NPV* Logloss† AUC* NNS NNS≤53 NNS>53≤61
NNS 
>61

Chosen 
“best” 
stacking 
model

74.93 (2.44) 72.80 (0.15) 72.80 (0.14) 0.61 (0.02) 99.92 (0.01) 0.01 (0.00) 79.12 (2.01) 164 111 203 187

Logistic 
regression

69.10 (3.96) 78.10 (0.17) 78.08 (0.17) 0.69 (0.04) 99.91 (0.01) 0.48 (0.00) 77.05 (2.74) 144 106 165 176

FAMCAT 69.55 (3.27) 65.43 (0.11) 65.43 (0.11) 0.44 (0.02) 99.90 (0.01) 0.14 (0.00) 71.12 (1.19) 227 117 237 325

DLCN 64.23 (3.49) 62.72 (0.17) 62.73 (0.17) 0.38 (0.02) 99.87 (0.01) 1.08 (0.00) 67.13 (2.23) 263 196 303 357

MEDPED 7.16 (2.06) 99.73 (0.02) 99.52 (0.02) 5.50 (1.58) 99.79 (0.00) 0.06 (0.00) NA 18 10 31 35

Simon 
Broome

35.12 (2.46) 87.49 (0.18) 87.38 (0.18) 0.62 (0.04) 99.84 (0.01) 0.77 (0.00) 61.30 (1.23) 161 108 222 213

AUC indicates area under the receiver operating characteristics curve; DLCN, Dutch Lipid Clinic Network; FAMCAT, Familial Hypercholesterolemia Case 
Ascertainment Tool; LR, logistic regression; MEDPED, Make Early Diagnosis to Prevent Early Death; NNS, number needed to screen; NPV, negative predictive 
value; and PPV, positive predictive value.

*Expressed in percentage and SD using probability cutoff obtained using receiver operating characteristics curve analysis on the derivation dataset (cutoffs: 
Ensemble ML=0.0023, FAMCAT=0.0022, LR=0.0022, DLCN=0.6155, Simon Broome=0.6155, MEDPED=0.5).

†Expressed in terms of the natural logarithms of the losses.
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While large-scale ML-powered screening of EHRs 
may not seemingly align with contemporary recom-
mendations for universal pediatric screening and re-
verse child–parent cascade testing,24,25 it still has a 
crucial role to play in addressing this genetic disorder. 
Calls for pediatric screening are driven by the compel-
ling rationale that early detection and timely interven-
tions can significantly reduce FH-associated morbidity 
and death.2 However, the implementation of universal 
screening in children is much debated and rarely im-
plemented globally. Moreover, it is likely that a 2-step 
approach will be needed with measuring LDL-C levels 
as a first step, which is currently not routinely under-
taken during childhood.24 Finally, and importantly, al-
though pediatric screening could help identify younger 
affected parents, there will be many adult patients 
with FH with no children or whose children are aged 

>18 years (adults) who would not be identified through 
reverse cascade testing, unlike with ML-driven EHR 
screening. Furthermore, the identification of older pa-
tients with FH can considerably simplify the cascade 
genetic testing process, as unequivocal identification of 
a common ancestor reduces the number of necessary 
genetic tests. Several limitations merit consideration. 
While we believe our model may provide a practical 
tool for improving the identification of true FH cases 
in adults, which might be implemented into EHRs, we 
did not test it directly in an EHR system; instead, we 
evaluated it in the UKB, a large biorepository of volun-
teers that could have different characteristics. Similarly, 
our study used adapted versions of conventional FH 
clinical diagnostic criteria (DLCN, Simon Broome, 
Make Early Diagnosis to Prevent Early Death) and the 
FAMCAT algorithm, excluding variables not in the UKB. 

Table 4.  Projected Clinical Utility of Our ML-Derived Model Against DLCN and FAMCAT in a Population of 33 Million UK 
Individuals

Comparator
Differences in the number of patients  
identified (106 109 individuals with FH)

Differences in the number of genetic tests required 
to identify FH; based on sensitivity and NNS

ML vs DLCN Median, 11 352
95% CI, 11 323 to 11 380
P value<0.0001

Median, −4 900 935
95% CI, −4 903 916 to −4 897 955
P value<0.0001

ML vs FAMCAT Median, 5726
95% CI, 5698 to 5753
P value<0.0001

Median, −3 733 824
95% CI, −3 736 334 to −3 731 313
P value<0.0001

ML vs logistic regression Median, 6181
95% CI, 6150 to 6212
P value<0.0001

Median, 2 403 587
95% CI, 2 401 470 to 2 405 705
P value<0.0001

DLCN indicates Dutch Lipid Clinic Network; FAMCAT, Familial Hypercholesterolemia Case Ascertainment Tool; FH, familial hypercholesterolemia; ML, 
machine learning; and NNS, number needed to screen. Corresponds to the number of individuals aged ≥40 y in the UK, and assuming an FH prevalence of 
1:311 in the general population (as reported in Hu et al2), represents 106 109 individuals with FH.

Figure 5.  Calibration plots.
The (A) Stacking Ensemble ML models and (B) FAMCAT algorithm on the validation data set. FAMCAT indicates Familial 
Hypercholesterolemia Case Ascertainment Tool; and ML, machine learning.
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However, this aligns with clinical practice where absent 
data impact risk prediction. We thus believe that our 
study reflects actual medical practice in primary care. 
The UKB recording of prescribed medications is often 
incomplete, for example, lacking dose details, making 
it frequently not possible to back-calculate untreated 
LDL-C levels. This limitation extends to the FAMCAT 
variables related to medication intensity, and it is also a 
usual case with EHRs and health databases, revealing 
constraints imposed by the unavailability of the neces-
sary information in EHRs to back-calculate untreated 
LDL-C from treated LDL-C levels. This point, however, 
reflects real-world data recording and, because our 
model is intended to be applied for screening of EHRs 
and health databases, we had to consider the LDL-C 
as recorded. Excluding the large proportion of patients 
receiving LLMs, or those on LLMs for whom not all 
needed information is recorded to back-calculate the 
LDL-C levels, would substantially reduce the applica-
bility and usefulness of the model and will not be ap-
propriate (and bias the results) as treated and untreated 
patients or those with more or less detailed information 
recorded may differ between them. Additionally, and 
importantly, to minimize this issue, being or not being 
on an LLM was a variable that we also included in the 
models, thus accounting for whether patients (and so 
their LDL-C levels) were on treatment. Participants were 
aged >40 years, mostly White adults, thus limiting gen-
eralizability to other age groups and ethnicities who may 
have different phenotypes, genotypes, and prevalence 
associated with FH.2,26 That said, our ML algorithm still 
provides lower NNS than FAMCAT across all terciles 
of age, and most adults do not have their first LDL-C 
measurement before the age of 40 years (Table  3).7 
Additionally, the age range of participants in this study 
aligns with the national UK National Health Service 
Health Check screening program. During this period, 
individuals without preexisting conditions undergo free 
National Health Service Health Checks every 5 years. 
This continuous screening provides a consistent flow 
of clinical information to EHRs, facilitating their poten-
tial identification through automated EHR screening for 
FH. While genetic mutations causing FH are present 
at birth, and thus the risk of having FH remains con-
stant during one’s lifetime, the likelihood for our model 
to identify individuals carrying an FH mutation may vary 
with age, as older individuals without FH may develop 
symptoms that resemble FH due to other health con-
ditions (Table 3). Therefore, we believe that our model 
could be implemented as part of programs such as the 
National Health Service Health Check screening pro-
gram (or similar country-specific programs), starting at 
age 40 years and repeated every 5 years to account for 
new data collection and the manifestation of FH-related 
symptoms. Also, we did not apply the full ClinGen FH 
Variant Curation Expert Panel variant classification 

criteria but solely used genetic markers and a data-
base of genetic variants to avoid using the predictors 
to both define and predict the outcome, which would 
be a major issue and artificially increase our perfor-
mance. Consequently, our achieved predictive per-
formance should be interpreted as conservative, with 
the expectation that efficacy would likely be even more 
pronounced in populations characterized by higher FH 
prevalences. We should highlight the methodological 
limitation of the XGBoost feature importance algorithm, 
which may have inflated the importance of continuous 
variables or categorical variables with high cardinality 
(ie, variables with a large number of unique categories 
or groups). Importantly, the feature importance analy-
sis was carried out in a subset of the data to reduce 
overfitting, but it should be acknowledged that the 
data in the validation data set may exhibit a different 
distribution compared with the derivation data set. 
Consequently, this discrepancy could potentially result 
in different features being identified as important when 
conducting the feature importance analysis. To ad-
dress this, we compared the distribution of predictors 
across the various data sets and the statistically signif-
icant differences in proportions or medians observed 
were not deemed clinically relevant. Additionally, given 
the variations in how algorithms encode relationships 
between predictors and outcomes, we anticipate that 
the feature importance rankings in Figure 3 would dif-
fer had we conducted the analysis on our final ensem-
ble model using Shapley methods, rather than using 
the XGBoost model. Finally, although we used a der-
ivation and a validation data set, external validation is 
required. Unfortunately, genetically characterized re-
cords are not commonly available in current EHRs on 
a scale that enables swift validation. Nevertheless, be-
fore considering widespread deployment, it is crucial 
to prioritize external validation and substantiation of our 
model’s clinical utility.

Future work should concentrate on implementa-
tion and validation within live EHR systems of our ML 
screening model. Considering the diverse landscape 
of EHR systems characterized by complex data stan-
dards ranging from proprietary to open standards like 
Fast Healthcare Interoperability Resources, alongside 
varied coding systems such as READ and Systematized 
Nomenclature of Medicine Clinical Terms codes, it be-
comes imperative to devise system-specific “wrapper” 
mapping functions. These functions will seamlessly 
transform EHR data into the requisite inputs for our 
model, enhancing its integration across a spectrum of 
EHR systems. In summary, the novel model developed 
through state-of-the-art ML methodologies has the 
potential to more accurately identify individuals carry-
ing a pathogenic variant associated with FH than the 
current recommended screening tool. The ML-derived 
model has potential applications to EHRs in providing 
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large-scale automated screening, thus helping priori-
tizes individuals for genetic testing, reducing the num-
ber of required tests to identify more true cases of FH 
with potential efficiencies and savings for resource-
stretched health systems.
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