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ABSTRACT Water contamination in extensive aquatic resources is a pressing issue, especially during
current drought conditions across the world. To adress this, a novel approach involving a heterogeneous
sensing capabilities fleet of four autonomous surface vehicles is introduced for efficient contamination
mapping. To reduce costs, vehicles may be equipped with low quality sensors meaning measurements
reliability differs between vehicles and affects model accuracy. The diverse sensing capabilities are
characterized by a wide range of sensor standard deviations, addressing the applicability of the framework
in real-world scenarios with commercial sensors. This research leverages Gaussian Processes to accurately
model spatial distribution of contamination, integrating measurements from the vehicles to understand
contamination patterns comprehensively. Additionally, an informative path planning strategy is introduced
based on a centralized neural network which implements a Double Deep Q-Learning algorithm, driving the
decision-making process of all agents. Effective learning hinges on accurately defining the observation and
reward functions, for which several proposals will be compared. These tailored definitions are essential for
guiding the learning process, and minimizing the error towards the main goal: to obtain the best possible
contamination model. Remarkably, the proposed system demonstrates superior performance in Ypacaraí
Lake scenario, surpassing traditional heuristics like lawn mower or particle swarm optimization by up to
82% in reducing mean squared error in highly contaminated regions for several combinations of agents.

INDEX TERMS Autonomous vehicles, deep reinforcement learning, environmental monitoring,
heterogeneous multirobot systems, informative path planning.

I. INTRODUCTION
Water resources, such as rivers, seas, or lakes, play a vital
role in preserving life and sustaining the diverse ecosystems
and societies of the planet. Unfortunately, these invaluable
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resources are increasingly threatened by pollution, drought,
climate change, and uncontrolled overexploitation [1]. These
factors result in a serious deterioration of water quality,
as in the case of Ypacaraí Lake, the largest body of water
in Paraguay. It covers an area of roughly 60 km2, and is
surrounded by important cities such as San Bernardino and
Areguá. Despite its importance, the lack of connections
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to external water flows makes it vulnerable to human-
induced problems. Untreated wastewater, agricultural pollu-
tion, or unregulated development cause excessive nutrient
enrichment in the lake, known as eutrophication. This pro-
duces uncontrolled growth of harmful organisms, depletion
of oxygen levels in deep water, and mass deaths of aquatic
species, which endanges its ecosystem’s sustainability [2].
Urgent intervention is required to prevent further damage.

Addressing this problem requires a reliable model based
on water quality parameters. However, due to the lake’s
size, gathering accurate data is challenging, especially in
the inner areas. The manual sampling method is resource
intensive and inefficient. To overcome this challenge, more
advanced and efficient monitoring mechanisms need to be
implemented. The use of Autonomous Surface Vehicles
(ASVs) is gaining importance in aquatic environments [3].
Equipped with water quality sensors, as shown in Fig. 1, they
offer an affordable and versatile solution to collect samples
from any part of the lake. The challenge here relies on an
efficient Informative Path Planning (IPP) for ASVs, where
they use sensor data to plan routes, considering factors like
data importance, obstacle avoidance, and battery efficiency.
As will be detailed in Section III, IPP is a strategy to optimize
the paths of autonomous agents to efficiently collect data
in environments, focusing on areas of highest informational
value.

When dealing with large bodies of water, a fleet of ASVs
is essential. Although each ASV presents a cost-effective
alternative individually, the collective expense grows with
the size of the fleet. A significant part of this cost comes
from onboard measurement sensors, whose prices and quality
vary, often dictated by budgetary constraints. This budgetary
variability results in a heterogeneous sensing capabilities
fleet where some ASVs are equipped with high-quality and
expensive sensors, offering precise measurements with a
low standard deviation, indicating high reliability in the
data. On the contrary, other ASVs are outfitted with more
economical sensors that, while cost-effective, offer data
with a higher standard deviation, denoting less reliability
and precision. This heterogeneity in sensor quality plays a
crucial role in IPP, since it directly affects each vehicle’s
ability to tune and update the contamination model. The
challenge of this work is to synergize these various inputs to
obtain the best possible contamination model, especially in
heavily contaminated locations. To do this, it must be ensured
that the data collection path for each ASV is efficiently
planned to compensate for the shortcomings of the sensors
and take advantage of their strengths. To maximize the
effectiveness of the ASV fleet in characterizing contaminated
areas, a targeted approach is employed: ASVs with best
quality sensors are designated to the most contaminated
zones, ensuring precise data collection where it is crucial,
and the others should cover less critical areas. This strategy
ensures detailed and accurate mapping of the most affected
areas, while efficiently utilizing the fleet’s diverse sensor
capabilities. This requires intricate and active coordination

FIGURE 1. Example of an ASV prototype for the measurement of water
quality parameters, equipped with GPS for path planning.

among vehicles and a continuous exchange of information.
Due to the large amount of information to be processed,
IPP can be considered NP-hard [4], so their scalability
and dimensionality make an approach based on Machine
Learning one of the best alternatives, proven in cases such
as the salesman problem [5].

This work will address the problem of finding an efficient
Ypacaraí Lake monitoring algorithm for heterogeneous
ASVs using Deep Reinforcement Leaning (DRL) techniques,
more specifically the Deep Q-Learning algorithm [6]. In pur-
suit of an efficient and scalable solution, the proposed strategy
involves employing a single centralized neural network that
coordinates a diverse fleet of vehicles. However, given the
egocentric nature of the agents, if desired each could run
its own on-board neural network simply by requesting the
information of current state. The crux of the proposed
approach lies in the design of a sophisticated scenario
observation function. This function is responsible for feeding
the neural network with comprehensive structured input.
These inputs take the form of multiple matrices, representing
the collected data, information to differentiate agents from
each other and their positions, as well as the discretized
lake map. As a result, the framework will estimate the
most appropriate movement based on a tailored reward
function. The design of the reward function is critical as it
aims to encourage actions that are predicted to reduce the
model’s error relative to the ground truth, even though the
actual error is not directly accessible. It must be based on
other indirect accessible indicators. Water quality parameter
(WQP) samples will be taken at each position and treated
as Gaussian random variables. A spatial correlation matrix,
using the Gaussian Process (GP) with RBF kernel [7],
captures the statistical relationship between these samples.
This method is especially useful when working with noisy
sensors, since depending on the standard deviation of the
measurement, the model will take it into account to a greater
or lesser degree. Consequently, the IPP task should involve
a sequential determination of the next sampling location that
maximizes information gain.

In summary, the main contributions of this work are:
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i) The development of a model-free DRL framework to
solve the IPP problem for a heterogeneous multi-agent
fleet of ASVs according to the quality of their sensors.

ii) The definition of two tailored observation functions and
two reward functions to follow a policy whichminimizes
the error of the model.

iii) A comprehensive evaluation and comparison with other
path planners for water quality monitoring approaches,
addressing the scalability problem in the context of the
Ypacaraí Lake.

The structure of the article is as follows: it starts with
a review of related research in Section II. Section III
formally outlines the Informative Path Planning problem and
explains how a simulated space with Ground Truth data is
generated for sampling. Section IV details the methodology,
introducing the Gaussian Process and describing the Deep
Reinforcement Learning algorithm. Section V presents,
analyzes, and compares diverse results and simulations,
including comparisons with other path planning techniques.
The article concludes in Section VI with some conclusions
and future research directions.

II. RELATED WORK
The application of autonomous vehicles in the field of scien-
tific applications is increasingly emerging [8], [9], thanks to
technological advances such as machine and deep learning.
These unmanned vehicles find applications in scientific
fields such as subsea pipeline inspections [10], water quality
monitoring [11], bathymetry [12], and agriculture [13],
among others. They enable more efficient, accurate, and
sustainable environmental monitoring and data collection.
However, optimizing their trajectories is essential due to
battery limitations.

Planning these paths is not a trivial task, so the
optimization algorithms to solve this problem may be
diverse, including bio-inspired algorithms [3], [14], Bayesian
Optimization [15], or DRL algorithms [16]. DRL has
proven to be particularly effective in the context of path
planning for multi-agent agent case, such in [17], where
two approaches are suggested: a Double Deep Q-Network
and a Dueling Architecture for Q-values optimization. The
suggested methods are relying on a centralized Deep Q-
Network, employing convolutional neural networks (CNN),
with an individual fully-connected layer for up to three
agents, following the assumption that agents possess identical
properties and abilities. The objective is to maximize area
coverage before the vehicles’ battery runs out. Contrary to
the architecture mentioned above, in this work the layers of
the proposed network are shared by all the agents, so that the
network does not grow even if the number of agents increases.

In [18], a completely different method is proposed,
introducing a Bayesian Optimization method for predicting
multiple water quality parameters in Ypacaraí Lake using
a single ASV. The approach employs Gaussian Processes
(GPs) and combines different acquisition functions to balance

objectives and improve overall model performance. However,
minimizing all functions simultaneously is challenging,
as they often are counterbalanced. Simulations demonstrate
that more collected samples lead to reduced Mean Squared
Error, supporting the suitability of the GP regression model
to effectively model water quality variables. Inspired by these
compelling findings, the GPs will be adopted in the current
article to harness their proven capabilities.
In [19], a monitoring system for Ypacaraí Lake is

developed that uses a fleet of ASVs controlled by an improved
Particle Swarm Optimization (PSO) algorithm based on a
GP as surrogate model. With PSO, a population of potential
solutions, represented as particles, moves through the search
space to find the best solution. Each particle adjusts its
position and velocity based on its own experience and
the experiences of its neighbors. The algorithm aims to
find the global optimum in the search space by iteratively
updating the particles positions and velocities. In [20], a
heterogeneous PSO-based swarm is proposed which uses a
topological k-nearest neighbor, capable of switching between
exploration or exploitation dynamics with an adaptive
repulsion parameter. Despite the fact that PSO is an heuristic
that excels in simpler, static optimization tasks where the
primary goal is to find a good-enough solution efficiently,
the methodology employed in this paper choose DRL over
PSO for autonomous path planning due to the DRL’s ability
to learn and adapt to the environment through its interactions,
which makes it better suited for problems involving complex
sequential decision-making, like autonomous navigation.

The work [13] introduces an adaptive path planning
method for precise agricultural monitoring with Unmanned
Aerial Vehicles (UAVs). It used a deep learning model to
optimize flight paths, detecting for necessary high-resolution
semantic segmentation. This allows depth inspections at low
altitude to be performed only when necessary, conserving
battery power. In [21], a cooperative IPP strategy is presented
that uses UAV squads for terrain monitoring, employing DRL
to achieve a collective mission purpose in a efficient manner.
In [22], DRL works in conjunction with local Gaussian
processes to obtain a contamination map, achieving great
results. Despite the similarities, unlike this previous work,
the one proposed in this paper takes noise into account in the
agent measurements, making the optimization of the routes
and the achievement of a good contamination map a more
complex task. The demonstrated efficiency of DRL in IPP
and its successful application in conjunction with Gaussian
Processes, as evidenced in the referenced studies, provide
a solid foundation for its utilization in the methodologies
employed in this research.

In [23], innovative algorithms are proposed for het-
erogeneous multirobot systems (HMRS) to enhance their
performance in adversarial catching tasks, such as security
and rescue missions. These algorithms employ actor-critic
DRL approaches, coupled with asymmetric self-play and
curriculum learning strategies, to promote effective cooper-
ation among agents within and across groups, facilitating
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FIGURE 2. Conceptual image of the framework proposed in this work.
The deep neural network is in charge of the decision making process of
the actions performed by the agents. In each movement, each agent takes
a noisy sample of the ground truth, which is used to update the
contamination model estimated by a Gaussian Process, which knows the
standard deviation associated to the sensor of each agent. The neural
network input is formed by the contamination map estimation and its
uncertainty, the navigation map and the positions of the agents, whose
values also represent the sensor quality by its standard deviation. The
standard deviation of the observing agent is also an additional input that
is introduced to the network directly in the dense layer.

effective teamwork in complex scenarios with real-world
constraints. In contrast to that previous work, in the present
paper agents can take the same actions and share the joint
information, but having different measurement capabilities
they cannot contribute equally to the final goal: to obtain the
best model. These differences in capabilities are introduced
through the observation function, which indicates the quality
of the observing agent and that of its partners.

Given the complexity of the stated problem, the basis
of the framework proposed (see Fig. 2) combines DRL
with a GP as surrogate model, as seen in [18] and
[19], for a multi-agent fleet of four ASVs. The use of
representative matrices as states to guide the actions of agents
is inspired by [22]. Two observation functions are proposed
that offer deterministic knowledge of the environment and
self-perception of the quality and position of the agent and
of the rest. In addition, two reward functions based on these
observations are proposed. Although previous works has
shown potential, they has primarily focused on homogeneous
multirobot systems, leaving a research gap for the task
of monitoring water resources with heterogeneous ASVs.
They are cost-effective, but sensors are one of the most
expensive components. As a result, the fleet may have
sensors of differing standard deviation, resulting in a HMRS.
Current literature overlooks sensor quality and its impact
on modeling. This approach introduces a new consideration
by incorporating the inherent noise associated with sensor
measurements into the decision-making process of the agents.
In this sense, the associated sampling error directly influences
the accuracy of the contamination model estimation obtained
and the agent’s ability to influence the surrogate model,

with lower standard deviation measurements being more
significant. In the proposed framework, agents adopt different
policies to optimize global information collection based on
the quality of their respective sensors, a facet that has not yet
been addressed in previous work. Moreover, this is a highly
generalizable perspective, as it allows the incorporation
of sensors in a wide range of standard deviation. This
implies that agents will have to follow different policies
depending on their measurement capability to obtain the
highest possible collective reward. Using DRL in HMRS
applications presents challenges outlined in [8]: training
complexity due to collaboration patterns between teams and
within a team, and uncertainty in real-world scenariosmaking
it difficult to flexibilize training to cope with unexpected
events. To address this, a noise-adaptive centralized network
is proposed that adapts agent policies based on sensor quality
to simplify training. This approach enables future real-world
implementation for monitoring with ASVs.

III. STATEMENT OF THE PROBLEM
IPP can be described as a computational strategy or algorithm
designed to plan routes in a way that maximizes the
acquisition of valuable information about the environment.
In this application, the IPP focuses on optimizing data
collection by guiding vehicles to locations where the model
error E(t) decreases with respect to the real information.
In the multi-agent assumption, the objective is to find a set of
trajectories9 := [ψ1, ψ2, . . . , ψN ] optimized to collectively
minimize the model error (1), while respecting the constraint
that they do not cause collisions between agents or between
agents and obstacles.

9∗ = argmin
9

∑
ψ∈9

E(t)ψ (1)

Under this strategy, a trajectory can be defined by a
sequence of visited waypoints at which to take measurements
Xn for each agent n in a fleet of N agents.

A. SCENARIO AND OTHER ASSUMPTIONS
With the purpose of training agents for real-world situations,
it is necessary to develop a simulator that accurately
reflects the real constraints. Throughout this research,
several assumptions are considered. At each time step t ,
every vehicle takes one action from the set of possible
actions A, which corresponds to the eight motion directions
[S, SE,E,NE,N ,NW ,W , SW ]. Only actions that go to a
safe place are allowed, by means of a low level control that
ensures it without any error. With each action taken, the
agents move a fixed distance of dstraight or ddiagonal in the
selected direction, depending on whether the action follows
a straight or diagonal direction, and collect a water measure
at their new location, repeating iteratively. All movements
are assumed to take the same time to be performed, so all
ASVs move synchronously, although the Euclidean distance
between two consecutive waypoints is greater for diagonal
movements. Trips will be limited to a maximum distance of
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dmax , beyond which the battery energy reaches a minimum
safety reserve for the vehicle to return to its base, so it
will be eliminated from the map and it will not be able
to take any action. This research assumes that vehicles can
be heterogeneous from the sensors quality point of view.
They will have the same motion capabilities, but the noise
of the measurement sensors may be different. The measures
collected are taken from a ground truth, denoted as Y , which
is generated from a static scalar field fixed before launching
the mission. However, the field is unknown to the agents,
except at the points where they collect samples. The samples
model for each agent can be represented as:

yx = Y (x)+ ϵx , (2)

where x =
[
xlat , xlong

]
is the position of the vehicle taking the

sample and ϵx is a noise depending on the standard deviation
associated with the vehicle sensor. In this way, ϵx behaves
as a uniform probability distribution for each agent over the
course of an episode. The function Y : R2

→ R returns
the ground truth value in that position. To facilitate training
and comparisons across different scenarios, the values of Y
are normalized within the range of 0 to 1, referred to as the
Normalized WQP. The measurement values do not represent
any particular WQP, but can describe any of them, as will be
seen in Section III-B. Under these circumstances, this will
mean that a value of 0 indicates a reasonable value for the
WQP, while a value of 1 indicates an out-of-normal parameter
value, and is associated with high contamination. In all
simulations, it will be assumed that the contamination is static
throughout the episode, since the dynamics of movement of
the parameters to be measured evolve much slower than the
measurement process.

To make the simulation more manageable and efficient,
the real navigation map is discretized into a homogeneous
grid through which the agents will move, turning into a cell
map, such that M : R2

→ R. Non-navigable areas, such
as obstacles or shorelines, are indicated with M(x) = 0,
and it will be assumed that vehicles cannot sample in these
locations. There will be no moving obstacles in the scenario
other than the possible interaction of the vehicles with each
other, thus, agents cannot occupy the same cell. To ensure
the safety of the four vessels, the deployment positions will
always correspond to four fixed locations in the south of the
map (near the San Blas Pier), from which the vehicles can
depart in no particular order, as seen in Fig. 3. Additionally,
vehicles are not required to finish their trip at the same
location where they departed. It is assumed that they still have
sufficient remaining autonomy to return to shore from any
location at the conclusion of their measurement period.

B. GROUND TRUTHS MODELS
In the context of contamination modeling, ground truth
models play a crucial role in representing the true underlying
state of contamination in natural water resources. It has
been previously demonstrated in research such as [24]
that some physical-chemical water parameters such as pH,

FIGURE 3. Discretized Ypacaraí Lake map with the four deployment
positions marked.

FIGURE 4. Example of several contamination maps of Ypacaraí Lake
obtained through a Shekel function.

electrical conductivity, dissolved oxygen levels, ORP or
particle concentrations (nutrients, heavy metals, bacteria)
follow a smooth spatial distribution. This research will focus
on contamination models that follow this pattern. To create
a simulation model that matches the behavior of these
parameters, a Shekel function will be used [25]. It is one
of such mathematical models commonly employed for sim-
ulation purposes in various fields, including contamination
analysis. This is a mathematical benchmark function that
allows researchers and practitioners to generate known and
controlled environments with specific characteristics. The
function has twomain parameters that determine the positions
of the peaks in the input space and the prominence of the
peaks, through the c elements. In this work, this ground truth
generator will provide randomly generated Y scalar functions
to the learning algorithm preprocessed to fit the Ypacaraí
Lake map, as seen in Fig. 4. The highest values of each peak
will be homogeneously distributed over the map and may be
found outside the navigable areas.

IV. METHODOLOGY
In view of the statements and constraints in Section III, the
problem can be formulated as a Partially Observable Markov
Decision Process (POMDP). These decision processes can
be scaled up to the multi-agent case by establishing a
partially observable state st only accessible by an observer
n, whereby the observation function can be set as otn =
O(st ). The primary objective in a POMDP is to find the
optimal policy π∗ that maximizes the expected accumulated
reward over time, that is, a mapping from an observation otn
of the state space to an action such that at+1n = π∗(otn).
The accumulated reward can be denoted as

∑T
t=0 R(s

t , atn),
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limited by a determined optimization time T for each agent
n ∈ [1,N ] belonging to the fleet. The complete state st
contains comprehensive information about the environment.
However, the observation of agents does not have direct
access to all information, such as the ground truth scalar field.
Instead, agents only observe a subset of this information,
such as the navigation map M, the position of the agents
(observer and non-observers), or the model generated from
the measurements obtained up to a given time, among others.

This section will explain in detail the methodology used
to i) obtain a contamination model from the samples taken
by using GPs, and ii) train the movement policy of the ASVs
using DRL.

A. GAUSSIAN PROCESS AS SURROGATE MODEL
A Gaussian Process is a probabilistic model that represents
a distribution over functions, treating functions as joined
random variables [7]. Unlike parametric models that have a
fixed set of parameters, a GP is a non-parametric modeling
approach characterized by a mean function µ(x) and a
covariance (or kernel) function k(x, x ′), allowing it to
capture complex patterns and uncertainties in data. Therefore,
they provide a powerful framework for modeling spatial
dependencies and uncertainties, such in contamination maps,
as they can be employed to predict values of an unknown
function Y (x). Thus, the prediction using a GP can be
expressed as:

Y (x) ∼ GP(µ(x), k(x, x ′)). (3)

The covariance function, on the one hand, captures the
underlying patterns and relationships between the data points,
i.e., is a way of expressing how similar the function values are
at different inputs x and x ′, as seen in [7]. On the other hand,
the mean function ensures that the model is consistent with
the observed data distribution and is a way of expressing the
prior knowledge about the function.

In the same way as [26], in this paper GPs are employed as
online prediction methods to generate contamination models.
These models have a dual purpose: firstly, the main reason
for the trips, which is to capture an estimate of the spatial
structure of lake contamination levels, and secondly, it serves
as an observer of the real information not accessible in the
POMDP, the ground truth scalar field. To predict the values
at each location on the map, the function must be pre-fitted
with sets of input and output values {X , y}. In the context of
measuring WQPs, X is the set of sampling coordinates, and y
is the set of measurements of WQPs obtained at each of these
locations.

Given that the selection of the kernel function plays a
crucial role in the formulation of hypotheses on spatial
correlations, it is imperative to choose a kernel that alignswell
with the characteristics of the WQPs under consideration.
As presented in [26], a strong initial option is to employ
a Radial Basis Function (RBF) type kernel, also known
as the Gaussian kernel, as it is particularly suitable for
scenarios where smooth and continuous spatial variations in

contamination levels are anticipated. This kernel decreases
the correlation exponentially as the distance between the
samples increases, adjusting the degree of influence through
a hyperparameter ℓ called length-scale. In the context of
pollution modeling, this can be interpreted as the distance
over which WQPs levels show a significant correlation, i.e.,
the spatial spread. For its part, the scale kernel provides
additional flexibility through the s parameter, as it allows the
amplitude (or variance) of the kernel to be better modeled
based on the variability of the data. This influences the
smoothness of the covariance function. The optimization
of these hyperparameters is performed by maximizing the
log marginal likelihood through Adam optimization method,
given a set of collected data from the training data {X , y} and a
prior value of 0 in this case, assuming that the measurements
are normalized [7]. During optimization, it is crucial to
set reasonable bounds for the hyperparameters (minimum
and maximum values) to ensure that they remain within a
plausible range and to promote numerical stability and faster
convergence.

The evaluation of the covariance function for each pair
of points (x, x ′) can be grouped into a square matrix called
covariance matrix K, where each element Ki,j = k(xi, xj).
In realistic modeling situations, as in this scenario, it is
necessary to deal with noisy observations, since there is
no access to the values of the functions themselves (2).
Assuming that the noise is Gaussian, additive, independent,
and identically distributed, it can be modeled by adding a
diagonal variance term σ 2

n I to the part of the covariance
matrix associated with the observed data points. Thus, the
covariance matrix for all possible locations X∗ is defined as
follows:

K =
[
K + σ 2

n I K∗
KT
∗ K∗∗

]
=

[
K (X ,X )+ σ 2

n I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

]
(4)

Usually X∗ represents the locations of unknown values,
i.e., the locations not visited and to be estimated, but since
the measurements taken by the agents in this work have
noise it is also necessary to make predictions at the locations
where samples have already been taken, so X∗ denotes all
the locations that can be visited. Hence, all map data can be
estimated with the GP by its mean and uncertainty as:

µ(X∗) = KT
∗ [K + σ

2
n I ]
−1y

σ (X∗) = K∗∗ − KT
∗ [K + σ

2
n I ]
−1K∗ (5)

In this research, the standard deviation of the measurement
sensors is known. Thus, the diagonal variance terms are not
parameters to be adjusted, they are assumed constant and can
be adequately modeled such that σ 2

n = σ
2
sensors.

B. DEEP REINFORCEMENT LEARNING
DRL is a branch of machine learning that combines deep
learning with reinforcement learning. Deep learning uses
neural networks to learn from data, while reinforcement
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learning guides the learning of agents who make sequential
decisions in an environment, as in this proposal, for which
they receive feedback in the form of positive or negative
rewards [27]. The agent learns a policy π , which maps the
best action given a state of the environment. The optimal
policy π∗ should give actions that result in the highest
expected cumulative reward Q(s,a), considering the uncertain
nature of the environment [28].

π∗(s) = argmax
a

Q(s, a) (6)

In this paper, the Double Deep Q-Learning algorithm (D-
DQL) is suggested as a universal and effective framework
for optimizing discrete action policies, as seen in [17], [23],
and [21]. In D-DQL the idea is to decouple the selection of
the best action from the evaluation of that action to mitigate
the overestimation bias present in standard DQL, as seen
in [29]. D-DQL also demonstrates greater stability during
training, and often converges to policies closer to optimality
compared to DQL, making it more effective in complex
environments, as in this case. To do this, two functions
are introduced, and therefore two deep neural networks are
used to estimate each of them. The Q(s, a) function is used
to select the best action using an epsilon-greedy policy
applied to the estimated rewards. To stabilize the training,
a duplicate Q function called target Qtarget (s, a) is employed,
which estimates the reward obtained by performing the best
action selected by the other network [29]. During training,
the Q learning algorithm employs an iterative process to
update the Q values based on observed rewards and estimated
discounted future rewards, with the goal of minimizing the
difference between the network prediction and the actual
reward obtained, to converge to an optimal policy. These
updates are performed by taking steps to reduce the Bellman
error [30], such that:

Q(s, a)← Q(s, a)

+ α

[
R+ γ · Qtarget (s′, argmax

a′
(Q(s′)))− Q(s, a)

]
(7)

where Q(s,a) is the current Q-value for state s of the
environment and the selected action a = argmax(Q(s)),
i.e., the expected cumulative reward, α is the learning rate,
R is the immediate reward obtained for taking action a in
state s, γ is the discount factor that weights future rewards,
and Qtarget (s′, argmaxa′ (Q(s

′))) is the expected cumulative
reward computed using the target Q-network to evaluate in
the next state s′ the best action selected for the function Q,
as the argmaxa′ operation selects the action with the highest
Q-value.

As with DRL the Q-function is approximated by a Deep
Neural Network (DNN), this can be expressed as Q(s, a, θ ),
where θ are the trainable weights of the DNN. The Q-
function is estimated by collecting experiences, which are
sequences of states (s), actions (a), next states (s′), and
rewards (R). These experiences are stored in a prioritized

experience-replay buffer to train the parameters θ of the
networkwith batches where themost informative experiences
are the most likely to be selected, as developed in [31]. The
parameters are tuned by error backpropagation and taking a
stochastic gradient descent step in the direction that reduces
the loss L, given the learning rate. The loss function is
constructed from the quadratic difference between the current
Q estimate and the Q-target value:

L(θ )

=

[
R+ γ · Qtarget (s′, argmax

a′
(Q(s′; θ )); θ−)− Q(s, a; θ )

]2
(8)

where θ− are the frozen parameters of the target network.
The special feature of the target network is that its parameters
are updated more gradually than the main Q-network. This
update is performed using Polyak averaging [32], where its
parameters are replaced with those of the main network,
depending on a smoothing factor τ that controls the update
rate. If this factor is one, the update is known as hard update,
directly copying the main network’s parameters, while a
smaller factor ensures gradual updates, enhancing learning
stability.

To achieve an effective learning, an early stage of
exploration of the state-action space is necessary, where
both good and bad experiences must be stored to avoid
bias. In order to balance this exploration-exploitation of the
network, a ϵ-greedy policy is employed. Each agent has
a probability of ϵ to perform a random action, inducing
exploration movements. With a probability of 1-ϵ, the agent
tends to select the action that the Q-function suggests as the
optimal one, prioritizing exploitation of learned knowledge.
This strategy allows a balance between trying out new actions
and sticking to what the agent has found to be effective,
by trial and error. During the initial stages of training, ϵ is
set high to gather a diverse set of experiences, and as training
progresses, it is gradually reduced to promote exploitation of
knowledge gained from past experiences.

C. OBSERVATION FUNCTION
The observation function, O(s), is a mapping mechanism
that transforms the complete state of the environment into
a partial observable state. This enables an agent to interpret
and respond effectively, learning to interact effectively with
the environment as it extracts the crucial parts of its state.
The representativeness of the observation is crucial, as it
determines the information available to the agent. The
observation process is defined as a function on = O(s),
where the state s of an agent n is observed. This work will
use a visual representation of the state, since this method has
been previously shown to significantly improve performance
in similar situations [17], [22]. To do this, as mentioned in
Section III, the navigation map and all other information to
which the agent has access (it does not have access to the
complete state) are discretized and represented in matrices.
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This representation proves to be efficient, as CNN excel at
extracting features from such visual states, as will be outlined
below. Therefore, the observing representation will consist of
5 channel-states, such that:

1) Discretized navigation mapM, with 1 value wherever it
corresponds to visitable areas, and 0 where it does not.

2) The mean map expected by the Gaussian Process µ(X ),
normalized in the range of [0, 1], where X are the visitable
locations.

3) Two alternatives are proposed to provide information
about the level of environment exploration performed by
the agents:
A) The min-max normalized standard deviation (SD)

predicted by theGP σ (X ), denoted as uncertaintymap,
previously used in other works [22].

B) A matrix symbolizing a knowledge map, Kmap(X ),
where each pixel has a knowledge value between
0 and 1, representing the understanding of that area.
Initially, all pixels are set to 0, indicating unexplored
areas. When an agent explores a pixel, the value
of the pixel is updated, storing the reliability of
the n agent’s sensor knagent , measured by the inverse
of the sensor’s standard deviation, scaled between
0.25 and 1. Thus, a higher pixel value means a better
knowledge of the area, since higher quality sensor
samples have been taken. The value 0.25 ensures
differentiation from unvisited pixels (value 0). If a
pixel is revisited by a more reliable agent (higher
kagent ), the value of the pixel is updated to reflect
the more accurate knowledge. This setup creates a
dynamic map where each pixel’s value represents
the best-available knowledge of that area, continually
improving as more reliable agents visit, as represented
in Fig. 5. This alternative to the uncertainty map is
proposed due to the fact that constant changes in
uncertainty estimation in relation to the measurements
made can make it a hesitant reference and affect the
exploration of the agents.

4) A matrix with zeroes except in the position of the
observing agent n on the map, P(n). The value stored
in the position of the agent is the knagent , which allows
to differentiate the quality of each agent’s sensor by the
observation of the status, determining the best action to
be taken accordingly.

5) A matrix with zeroes except in the positions of the other
n− active agents, P(n−). The values are defined in the
same way as for channel 4, storing kn

−

agent .

In this way, the two suggested approaches to be assessed
as observation functions can be described as follows:

on =


Oσ (s) where: s =

〈
M, µ(X ), σ (X ),P(n),P(n−)

〉
or

OK (s) where: s =
〈
M, µ(X ),Kmap(X ),P(n),P(n−)

〉
(9)

The difference between the two proposed observation
functions is, therefore, that one (Oσ ) introduces in the
observation the uncertainty map of the GP, and the other (OK )
an innovation of this paper that has been named knowledge
map.

D. REWARD FUNCTION
The reward function evaluates the optimality of actions taken
by any agent given a mission objective in a reinforcement
learning environment. It assigns a numerical value to
each state-action, indicating how beneficial or detrimental
the choice of that action was in that specific state. The
formulation of the reward function is of utmost importance,
since it guides the agent toward the goal that the agent is
trying to achieve through action making [28]. This paper
proposes the use of threeweighting parameters, obtaining two
reward functions by combining the first one with each of the
other two.

1) GP-MEAN WEIGHTING
As seen in [22], changes in the mean µ(X ) of the GP
model serve as a reliable metric for reward adjustments.
Thus, this first reward function rµ(s, a) will consider as
a positive reward the disparity between the mean of the
model at two consecutive time steps, such that 1µ(X ) =∑
|µ′(X ) − µ(X )|. This formulation is based under the

reasonable assumption that obtaining data that change
the mean with respect to the previous one implies an
improvement in the estimation due to a gain of information.
When dealing with heterogeneous agents with different
measurement capabilities, the use of GPs will also adjust the
model according to the measurement confidence apart from
the likelihood of the data. That is, a good agent will cause
a greater change in the model than one with a higher SD if
they obtain the same measurement. This will encourage the
better agents to go to areas where a high change is likely to
occur, such as the most polluted areas, as they will get a larger
reward than the worst ones.

To reward the change in the model it is necessary to
create the concept of influence area I of the measure taken
by the agent. Thus, this reward function will calculate the
discrepancy between the models of two consecutive steps
only in the radius Rinfluence that delimits the area of influence
of the agent. The length of this area is a parameter that
is chosen based on evidence of correlation between nearby
measurements and the size of contamination peaks. When
areas of influence overlap, there can be instances where an
agent, despite not taking an optimal action, benefits from
the positive action of another, leading to an overvaluation of
its contribution. To prevent such non-optimal policies from
occurring, it becomes essential to weight rewards according
to how much each agent has contributed to the improvement
of the model in that area. For this purpose, a weighting wSD is
made according to how good each of the overlapping agents
is. That is, the lower the standard deviation of its sensor, the
higher the percentage of that zone’s total reward it will take.
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FIGURE 5. Representative example of a state seen through the observation function OK .

The weighting for an agent n can be denoted as:

wnSD(x) = 1−
SDn∑N
j SDj

(10)

where N are all the active agents that satisfy x ∈ IN . Thus,
the reward associated with this weighting parameter can be
defined as:

rµ(s, an) =
∑
x∈IN

[
|1µ(x)| · wnSD(x)

]
(11)

2) GP-UNCERTAINTY WEIGHTING
In addition to the use of the mean, an additional reward
term is also proposed to benefit those actions that produce a
high decrease in the expected uncertainty of the GP, with the
aim of promoting exploration. This reward function will be
associated with the observation function Oσ , which captures
the uncertainty map. In the same way as for the mean, the
disparity in model uncertainty between two consecutive steps
can be defined such that 1σ (X ) =

∑
|σ ′(X ) − σ (X )|.

It is important to emphasize that the absolute value is used
because, with the adjustment of the internal parameters of
the model when taking new samples, the uncertainty could
increase or decrease, and both cases can be beneficial for
improvement, as seen in [22]. That is, in absolute terms, there
may be an increase in uncertainty when new hyperparameters
of the GP are found that overcome the previous ones and
provide a better model from a likelihood point of view.
Similarly to the mean, agents with better measurement
sensors will achieve a larger change in uncertainty, as their
measurement will be more reliable. Furthermore, the reward
received by the agent will also be that which belongs to its
area of influence and is weighted by wSD, as seen in (10),
when there is overlap between several agents.

rσ (s, an) =
∑
x∈IN

[
|1σ (x)| · wnSD(x)

]
(12)

3) KNOWLEDGE AND MEASURE WEIGHTING
As the uncertainty of the GP during the adjustment process
can be very volatile and overly optimistic, another approach
is introduced to encourage exploration which used the

knowledge map, associated with the observation function
OK . For this reward function there will be a first weighting
parameter wknow determined from the Kmap information, and
a second weightingwmeas depending on the measure obtained
by the agent. In this way, the first weighting will be calculated
as a function of a value denoted as klocal , meaning the local
knowledge of the visited location. To obtain it, there can be
2 casuistries:
i) The current cell x has already been visited in the episode:

the klocal of the cell will be directly the value stored in
Kmap(x).

ii) The current cell x has not yet been visited: in this
case, the 3 best neighbors in the adjacent cells of x are
searched in Kmap, i.e., the 3 with the highest values. The
average of them is calculated and taken as the klocal of
the current cell. Therefore, if Kmap(x) = 0 and all its
neighbors are zero, klocal(x) will be zero as well.

Once the klocal of the current cell is obtained, it is compared
to whether it is better than the knowledge provided by the
agent, kagent . Recall that the knowledge provided by the agent
is inversely proportional to its standard deviation scaled in
the range [1, 0.25]. Hence, in the case of being better, the
weighting will be calculated by the difference between the
knowledge contributed by the agent and the klocal , with an
offset of 0.25 due to the scaling range, limiting to 1 the
maximum possible. If it is not better, the weighting value
will be the complement of the klocal , i.e., one minus klocal .
Thus, if the knowledge is already high in the area, the reward
will be low, while if the cell has not been visited it will be
the maximum: 1, encouraging the visit of areas with low
knowledge.

wnknow(x)

=

{
0.25+

(
knagent − klocal(xn)

)
if knagent < klocal(xn)

1− klocal(xn) if knagent > klocal(xn)

(13)

On the other hand, the weighting parameter wmeas will
be directly the measurement taken by the sensor, since it is
normalized between 0 and 1 and can be used directly as a
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FIGURE 6. Conceptual image of DNN architecture used to estimate Q-function. It consists of a first convolutional stage as a feature
extractor, followed by a second stage of fully connected layers. It has an additional input to recognize the quality of the observer agent by
its SD. The last stage is split in two, which is known as Dueling-DQN. One part estimates the Advantage Function A(s, a) and the other the
Value Function V (s). All activation functions between layers are performed by the ReLU function.

multiplication factor. This factor is intended to maximize the
zones with high contamination sites, since it is where the
change in the model is more abrupt, and more measurements
need to be taken to obtain a good model. The combination of
the two weightings parameters results in:

rk,m(s, an) = wknow · wmeas (14)

4) RESULTING REWARD FUNCTIONS
From these reward sub-functions (11)(12)(14), the two final
reward functions proposed in this work for every n agent can
be defined as:

R1(s, an) = C1 · rµ(s, an)+ C2 · rσ (s, an)

R2(s, an) = C1 · rµ(s, an)+ C3 · rk,m(s, an) (15)

where C1, C2 and C3 are parameters to be assessed in order
to obtain an effective learning during training. In this way,
R1 will be the reward function associated with the observation
function OA(s), the one with the uncertainty map of the
model, and R2 will be associated with observation function
OB(s), the one with the knowledge map.

E. ACTION COLLISION MASKING
Although DRL proves to be effective in learning to avoid
obstacles in the environment [17], the nature of individ-
ual action computation prevents each agent from having
knowledge of the actions planned by others. In order to
facilitate training and improve efficiency, it will adopt the
coordination technique proposed in [22], where actions that
lead to collision are prohibited. There, agents are ordered
according to the joint highest value of Q, and the agent with
the highest value of Q decides an action without considering
the other agents. Sequentially, the following agents obtain
the new future position of the previous one, considering it
as an obstacle, thus blocking actions leading to the same
cell. Therefore, although the agents decide their actions
sequentially, the actual movement of the vehicles occurs

simultaneously. This greedy heuristic, denoted as AMask in
Algorithm 1, allows the most optimistic agent to perform
the action first, giving it priority since it is the one with the
highest expected reward.

F. DUELING NEURAL NETWORK ARCHITECTURE
Once the Double Deep Q-Learning, the observation and
reward functions and action masking for collisions have been
defined, the neural network proposed to be employed can
be explained in more detail. In this multi-agent problem,
a single neural network will be used for all agents. This
approach, known as Centralized Training and Exploration
with Decentralized execution via policy Distillation [33],
has achieved good results in similar work [22]. The
main advantage of this method is its scalability and low
computational cost compared to other proposals where there
is a network for each agent. With this method, due to the
egocentric observation of the state, the same neural network
can determine the best actions depending on the agent it
observes. This method becomes especially challenging when
facing with a fleet of heterogeneous agents, where the same
action can give very disparate rewards depending on the
quality of the agent’s measurement, but since the actions
they can take and the perception of the environment are
the same, these are considered interchangeable experiences,
and all the experiences generated are stored indistinctly in
the experience buffer so that they can be used later during
training.

The implementation of the neural network depicted in
Fig. 6 is proposed, similar to the one used in [22]. This
consists of a first stage of three convolutional layers, such as
a convolutional encoder, originally proposed in [6]. It serves
as a feature extractor of the scenario observation, such as the
navigation map, the model, and the positions of the agents
with the value kagent . The output of the three convolutional
layers is followed by a fully connected layer, and its output is
merged with an additional external input where the standard
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deviation value of the observing agent is introduced. This
additional input proposed is intended to help the network
in the process of identifying the observing agent, and to
serve as a reinforcement to know that depending on this
identifier, it can get a different reward for the same pair of
environment state and action. This value fusion is followed
by two more fully connected layers, and after them, given
the complexity of the Q-function to be estimated, a division
known as Dueling Q-Network [34] is introduced, where two
estimators are used for the Q-function: the Value Function
V (s) and the Advantage Function A(s, a), allowing a better
representation of the cumulative reward. The former returns
a value based on the estimated reward according to the state s
in which it is, regardless of the action to be taken. That is,
it is a measure of the intrinsic quality of the current state,
e.g., if the value is high, it means that it is an area where a
high reward is expected regardless of the action to be taken.
The latter returns the advantage of taking a specific action a
in a state s versus the other possible actions, i.e., it measures
how each action changes the intrinsic quality of the current
state. Thus, as denoted in [34], the Q(s, a) value is computed
as follows, being |A| the dimension of the action space.

Q(s, a) = V (s)+

(
A(s, a)−

1
|A|

∑
a

A(s, a)

)
(16)

Finally, the pseudo-code of Dueling DQL with other
implementations is described in Algorithm 1.

V. SIMULATION RESULTS
This section presents the settings and parameters selected for
the training and simulations performed. First, a comparison
will be made between the proposed observation functions
and the reward functions, with a discussion of the advantages
and scalability of the framework. Subsequently, the best
approach obtained will be compared with other previous
algorithms and heuristics from the literature. All simulations
and training have been carried out on a server running
Ubuntu 20.04, equipped with an Intel Dual Xeon Gold 5220R
CPU2.20 GHz, 192Gb of RAM and two GPUs: Nvidia
Quadro A4000 48GB and Nvidia RTX 3090 25GB. Each
training process has lasted around 30 hours of computation,
due to the high number of episodes. GPyTorch1 libraries
are used to define the Gaussian processes and PyTorch2 for
the neural networks. The code is available in the Github
repository [https://github.com/amendb/] for reproduction of
the results.

A. PERFORMANCE METRICS
In the field of model and algorithm evaluation, the proper
selection of performance metrics is essential to understand
the effectiveness and efficiency of the proposed solutions.
In this case, the metrics will provide a quantitative measure of
performance towards the ultimate goal of the study: to obtain

1https://gpytorch.ai/
2https://pytorch.org/

Algorithm 1 Double Deep Q-Learning Algorithm With
Action Masking (AMask) to Avoid Collisions
1: Initialize buffer replay memory B to capacity |B|
2: Initialize Q-network with random weights θ

3: Initialize target Q-network Q′ cloning weights θ ′ = θ

4: for episode = 1 to Nepisodes do
5: activei← True
6: Reset environment
7: while any(activei) do
8: Take new measures and update GP
9: for every agent i active do

10: Get observation of the state oi = O(s)
11: if U (0, 1) < ϵ then
12: ai← AMask (U (0, 1), . . . ,U (0, 1))
13: else
14: ai← AMask (Q(oi, a), . . . ,Q(oi, a))
15: end if
16: end for
17: Move every agent i following action ai
18: Get every reward ri using (15)
19: Get new observations o′i
20: Store in B every transition < oi, ai, ri, o′i >
21: if B > b then
22: Sample random batch b of (o, a, r, o′) from

B
23: Loss backpropagation
24: Update weights θ by gradient descent step
25: Soft update Q-target parameters θ ′ from θ

26: end if
27: if di > dmax then activei← False
28: end if
29: end while
30: if ϵ > ϵmin then ϵ ← ϵ − ϵreduction
31: end if
32: end for

the best possible contamination model. Thus, three metrics
will be analyzed:

• MSE: Mean Squared Error (MSE) between the contam-
ination Ground Truth and the model obtained through
Gaussian Process regression. It will be calculated at
three stages: 33%, 66% and 100% of the episode in order
to observe the evolution. The lower the MSE, the better
is the model.

MSE =
1
n

n∑
i=1

(Y (xi)− µ(xi))2

• MSEpeaks: The same metric, but calculated only in
locations where Y (xi) > 0.9, i.e., contamination peaks,
at three stages: 33%, 66% and 100% of the episode.

• R2: Quantifies the proportion of variance in the depen-
dent variable that can be predicted by the independent
variable. The closer the value is to 1, the better is the
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TABLE 1. Environment and gaussian process parameters.

model.

R2 = 1−

∑n
i=1 (Y (xi)− µ(x))

2∑n
i=1

(
Y (xi)− Y (X )

)2
• CMSE: The CumulativeMSE (CMSE) is the aggregated
MSE across all time step points t . It allows assessing
the overall trend of the model performance over multiple
episodes, giving a global view. The lower the CMSE, the
better is the model.

CMSE =
T∑
t=1

MSEt

B. BASE SETTINGS
Although the chosen scenario is the Ypacaraí Lake, this
algorithm can be implemented in any other environment.
The movements are performed synchronously, although the
diagonal movements travel a larger space than the straight
ones. At each movement, a sample of the location is taken
and the GP-model is updated. The model parameters have
been defined on the basis of the known information of the
chosen scenario, but could be adapted if another scenario is
selected. This information is compiled in Table 1. The range
of standard deviations of the sensor coupled to the agents has
been obtained through a market study, with the purpose of
comparing the possibilities of modeling water contamination
with more expensive and with cheaper sensors.

C. REWARD AND OBSERVATION STUDY
In order to consider all the proposals, both the two
observation functions Oσ (s) and OK (s) (Section IV-C),
as well as the two reward functions R1 and R2 (Sec-
tion IV-D), several trainings have been performed. Each
training performs 100.000 missions of the same duration
(25km), being 51 movements the maximum possible per
episode. In each mission, the four agents appear randomly
in four fixed positions, as described in Section III-A. The
learning parameters used during training are detailed in

TABLE 2. List of hyperparameters for training DQL algorithm.

Table 2, adjusted with reference to those used in similar
studies [22]. To balance exploration and exploitation and
allow the network to learn very diverse experiences stored in
the prioritized experience replay, the ϵ value of the ϵ-greedy
policy during the first 33% of episodes will decrease linearly
from 1 to 0.05. After 33% of episodes, ϵ will remain constant
at the minimum value. To adjust the network weights, batches
of 128 in size will be taken by applying a learning rate of
1 × 10−4. Similarly, the selection of the parameters of the
GP kernel is fundamental to guarantee the convergence of the
estimation, so the parameters shown in Table 2 were set to
achieve a good fit to the expected contamination maps.

During the training process, several configurations of
observation functions and parameters C1, C2 y C3 have been
tested, being those shown in Table 3 the ones that have
obtained the best results. When dealing with heterogeneous
drones that may be modifiable, which would totally change
the behavior of them, in order to compare between proposals
it is necessary to set conditions. Therefore, as the combina-
tions of agents could be infinite within the standard deviation
range of 0.005 to 0.5, three combinations of agents will be
chosen for validation:

i) Combination 1: All agents have sensors that obtain rel-
atively good measurements, so their standard deviations
values are set to mean/low: [0.007, 0.020, 0.056, 0.091].

ii) Combination 2: All agents have sensors that obtain rela-
tively bad measurements. Their standard deviations val-
ues are set to mean/high: [0.213, 0.381, 0.130, 0.197].

iii) Combination 3: Two agents have sensors that obtain
relatively good measurements, and two others have
sensors that obtain relatively bad measurements. The
standard deviations values of the ensemble are set to:
[0.007, 0.020, 0.213, 0.130].

Under the selected configurations for the agents, the three
fundamental cases are comprehensively addressed, thus
providing a robust estimate of the overall performance.
Several combinations of observation-reward functions have
been evaluated. However, the comparison will focus on the
five that have shown the most outstanding results. Two
of these approaches are associated with the observation
function Oσ , and R1 is set as the reward function, with
parameters [C1,C2] = [10, 0] and [10, 5]. The remaining
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TABLE 3. Average metrics comparison between best combinations of observation and reward function parameters for D-DQL during the same
100 episodes. Three combinations of agents are evaluated. Highlighted values correspond to the best performance value.

three approaches correspond to the observation functionOK ,
and R2 is configured as the reward function, with parameters
[C1,C3] = [10, 25], [10, 50], and [10, 100]. These particular
configurations have been selected due to their superior
performance and will undergo further evaluation. For this
purpose, 100 episodes with different ground truths generated
by Shekel functions will be conducted for each of the five
best combinations of observation-reward functions. In this
comparison, all environment conditions are identical between
methods to avoid bias in the interpretation of the results.
The episodes of the evaluation process were performed on
a laptop equipped with an 8 GB Nvidia RTX 3070 Laptop
graphics card, where each motion step composed of the
four agents was processed in an average of approximately
24 milliseconds. It should be noted that the computational
load is not significant in the context of this application
since vehicles travel long distances for long periods of time,
making the computational time meaningless relative to the
task at hand.

Table 3 shows the evaluation results for the selected
performance metrics. The approaches using the observation
function OK with its corresponding reward function R2 are
clearly the ones with the best overall metrics at the end of
the episode. Of their three combinations of reward weights,
the last two are the ones that obtain the best contamination
models according to the metrics, being the reward function
with C1 = 10 and C3 = 100 awarded with the lowest
MSEpeaks at the end of the episode. Comparing it to the worst
case of this metric, which is obtained for all combinations
of agents with the set < Oσ ,C1 = 10,C2 = 5 >,
the improvement is substantial: over 72% for the first
combination of agents, over 20% for the second, and about
68% for the third.

Compared to the set < OK ,C1 = 10,C3 = 50 >,
the second set with the lowest MSEpeaks100%, the first improves
it by more than 30% for the first combination of agents,
more than 4% in the second combination, and close to
27% for the third combination. In contrast, these two best
performing cases obtain very similar MSE, R2 and CMSE
values for the complete map at 100% of the episode for
all agent configurations. In fact, in MSE100% metrics, the
differences are close to 2% between these two best cases,
where depending on the combination of agents one or the
other leads, as happens with the R2 metric. It is also observed
that the convergence of both is faster than the rest of the
proposals, generally achieving the best MSE metrics for
both 33% of the episode and 66%, as well as lower CMSE
values throughout the entire episode. In addition, with the
confidence intervals (CI) of the MSE something similar
happens: these two cases obtain a smaller value than the
other ones, but among them, depending on the combination
of agents, sometimes one obtains better values than the other.
However, either the CI of theMSEpeaks or its mean are always
better for the combination < OK ,C1 = 10,C3 = 100 >,
which is logical, since it is the one that more rewards finding
high measurements during the training process, and therefore
visiting high contamination areas.

When all sensors have poor quality in the measurement
(high standard deviation), as in agent combination 2, the
differences between algorithms are not so remarkable, which
shows that it is very complicated even to get an acceptable
model due to the high noise in the measurement and,
therefore, also to take good actions for the agents. However,
in agent combination 3, where two high-quality agents are
mixed with two low-quality ones, the differences in the
metrics with respect to combination 1 are not so pronounced.
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TABLE 4. Average metrics comparison between D-DQL, RWPP, LMPP, and PSO [19] algorithms during the same 100 episodes. Three combinations of
agents are evaluated. Highlighted values correspond to the best performance value.

This indicates two important things: i) When there are agents
with such a difference in measurement quality, the model
is able to adjust for variations in data quality, indicating
the robustness of the GP. In other words, even when some
agents provide less accurate or less reliable measurements,
the model manages to mitigate their impact and maintain an
acceptable performance. ii) The ‘‘bad’’ agents take advantage
of the reliable measurements taken by the ‘‘good’’ ones, who
generate a greater change in themodel, and consequently they
also receive a state in the observation that is more faithful to
reality, allowing them to make better decisions.

Having reached this point, the crucial question arises:What
should be prioritized in the model, a slightly better overall
MSE but worse performance in contamination peaks, or vice
versa? As stated in the introduction Section I, the objective
was to develop a system for detecting high contaminated
areas in order to treat them, thus prioritizing them in the
IPP. Furthermore, since the differences in the MSE for the
entire map are minor between the two best performing cases,
it is decided to prioritize the model that excels in predicting
contamination peaks, and the combination < OK ,C1 =

10,C3 = 100 > should be chosen as the best candidate.

D. COMPARISON WITH OTHER METHODS
In this section a comparison of the selected D-DQL
policy with other algorithms will be performed. The same
comparison metrics, GPs and ground truth maps will be used,
and the algorithms will also use action collision masking to
choose only safe actions. Three algorithms will be used for
the comparison:

• Random Walker Path Planner (RWPP): In this
approach, each agent moves following a fixed random
exploration direction in space, until it encounters an
obstacle. At that point it randomly re-sets a new
exploration direction, but avoids the direction from
which it came so as not to retrace its steps.

• Lawn Mower Path Planner (LMPP): This algorithm
uses a strategy to explore that ensures complete and
efficient coverage of an area. Its name comes from the
way a lawn mower cuts the grass. Each agent moves in a
random initial direction until it encounters an obstacle,
then takes a perpendicular direction, and continues along
a path parallel to the previous one.

• GP-based Particle Swarm Optmization (PSO): This
approach is based on the research [19], from which the
acceleration coefficients have been extracted. There, the
fleet is a group of particles which are used to explore the
search space. Each particle has a position and velocity,
and these values are updated over time influenced by
the distance between the current position and other four
components: the personal best position, the global best
position including all particles, the position of maximum
uncertainty of the GP, and the position of maximum
mean of the GP. To balance exploration and exploitation,
each of these distances is weighted by a fixed value and
a random component.

Another set of 100 scenarios is used to compare theD-DQL
with these other approaches. The combination of agents
properties will also remain the same. The results are presented
in Table 4. Here it can be seen how D-DQL demonstrates its
higher performance, being the algorithm that obtains the best
results in almost all metrics. In general, the improvement is
remarkable, especially in the MSEpeaks100%, where it improves
the RWPP by about 70%, 20% and 69% for the three agent
combinations respectively, the LMPP by 82%,28% and 80%
and the PSO by 72%, 21% and 63%. This improvement,
although less noticeably, is also reflected in other metrics
such as the MSE of the total map (see also Fig. 8), the CMSE,
and the R2 score. In combination 2 of agents (agents with high
standard deviation), as was the case in the comparison of DRL
approaches, the differences are not so pronounced, since the
impossibility of taking reliable samples means that the virtues
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FIGURE 7. Example of paths followed by Combination 1 of agents for the
proposed D-DQL algorithm compared to other heuristic algorithms
(RWPP, LMPP, GP-based PSO [19]) in one random episode.

of the algorithms are minimized, and the differences with the
ground truth are high despite performing good actions. Fig. 9
shows the average cumulative reward over 100 episodes of
the proposed D-DQL algorithm for the three combinations
of agents, as well as the reward that the other heuristics
presented for comparison would obtain in the case that they
were rewarded with the same reward function. It can be
seen, as expected, that the D-DQL algorithm has the highest
reward, but it is interesting to note that the order of the other
algorithms sorted from highest to lowest reward matches
the order obtained in Fig. 8, which shows the MSE. This
consistency indicates that the proposed reward function is
effective in incentivizing the desired behavior of the agents
in the system, which is to obtain a model with low error.

Fig. 7 clearly illustrates the strategies of each algorithm.
LMPP proves to be robust in intensifying specific areas;
however, by performing such redundant and inefficient
trajectories in the current problem, with the addition of the
constraint on the maximum distance traveled, agents find it
difficult to cover large areas of the map. Additionally, lack
of consideration of the actions taken in the decision process
means that areas with high contamination are addressed
with the same priority as any other area. Similarly, the
RWPP shows surprisingly highly explorative trajectories, but
being also a basic heuristic, it does not take into account
contextual information of the environment it visits, resulting
in a suboptimal use of available resources to address the
current problem. Still, despite following a simple strategy,
it obtains the second place in most metrics, showing that a
good policy to follow to obtain a good model is to perform a
highly explorative patrol. D-DQL shows a wide exploration
of the map, as well as an intensification in the contamination
peaks, especially with the best agents, achieving an adequate
policy for the needs of the problem.

FIGURE 8. Box plot of the MSE100% for the 3 combinations of agents
according to the four algorithms compared during 100 episodes.

FIGURE 9. Box plot of the accumulated reward for the 3 combinations of
agents according to the four algorithms compared during 100 episodes.
The reward that would have been obtained by the algorithms that are not
reward-driven is also computed, that is, heuristics other than DRL.

Meanwhile, the PSO algorithm, despite being based on
acquiring information from the GP and taking it into account
for decision making, does not obtain good overall metrics,
being the one that obtains the worst MSE for the complete
map in all combinations of agents. As shown in Fig. 7, GP-
based PSO intensifies heavily on contamination peaks when
it finds them, but even then it does not get good results. The
main reason is that, despite being a good heuristic algorithm,
for the particles in PSO to acquire information independently
and efficiently, it is crucial that their initial starting points
are sparse in the search space. If the particles start too
close together, they will perceive similar information and
tend to converge to similar solutions, behaving almost as a
single particle. This causes the trajectories to converge to
suboptimal or local solutions, rather than exploring the search
space more exhaustively in search of peaks. To overcome
this limitation two solutions are possible: i) Perform an
initial positioning phase without sampling, which would
imply a battery expense, and therefore a reduction in the
time available for the subsequent measurement phase. ii)
Distribute the starting points of the vessels in different
locations of the lake. However, this solution would require the
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FIGURE 10. Example of paths followed in a new environment (Port of a
Coruña, Spain) with a new set of agents for the proposed D-DQL
algorithm compared to other heuristic algorithms (RWPP, LMPP, GP-based
PSO [19]) in one random episode.

transport of the boats to their starting positions, which could
involve the use of another type of vehicle, adding logistical
complexity to the process. Both solutions are inefficient, and
it is mainly at this point where the proposed DRL algorithm
stands out, which is capable of performing an adaptive
deployment by having the ability to dynamically adapt the
behavior of the algorithm regardless of the initial positions.

E. GENERALIZATION TO OTHER SCENARIOS
To ensure the generalizability of the algorithm, a new training
is performed with the same parameter configuration but in
a new environment: the port of A Coruña (Galicia, Spain).
The main novelty compared to Ypacaraí Lake is the greater
complexity of its layout, representing a non-convex set.
In this map there is much less possibility of going between
two points in a straight line than in the previous case,
due to the tighter angles of its borders. In addition, new
values for the standard deviations of the agent’s sensor set
will also be determined to prove the correct operation of
the algorithm with the above selected parameters. These
new standard deviations values of the ensemble are set to:
[0.008, 0.030, 0.095, 0.170]. An example of traced paths
is shown in Fig.7, where it can be seen how the D-DQL
algorithm visits a high percentage of the map and focuses
on the peaks, as in the case of Lake Ypacaraí. In contrast,
for the other heuristics, the task is further complicated due
to the higher complexity of the boundaries. In addition, the
MSE100% resulting from the estimation of the contamination
map of each algorithm is shown by a box plot in Fig. 11,
where again it can be observed how the D-DQL algorithm
significantly outperforms the other methods.

VI. CONCLUSION AND FUTURE LINES
In this paper an Informative Path Planning approach has
been developed for a fleet of Autonomous Surface Vehicles

FIGURE 11. Box plot of the MSE100% for the new set of agents in the new
environment (Port of a Coruña, Spain) according to the four algorithms
compared during 100 episodes.

for contamination monitoring in large water resources. The
fleet consists of heterogeneous vehicles with different sensing
capabilities, i.e. they all measure the same variable but do so
with different qualities depending on the standard deviation
of the sensor they incorporate. The objective is for agents to
cooperate to achieve the best possible contamination model
by optimizing their movements, paying special attention to
high-contamination areas. For this purpose, a discretized in
cells scenario is created that simulates the acquisition of
WQP in the visited locations. With these measurements,
by employing a Gaussian process, a surrogated model of the
lake is obtained. Ypacaraí Lake is the selected scenario for
the simulations, due to its serious real pollution problems, but
any other map can be considered instead.

This paper proposes to solve this problem by applying a
DRL framework that receives as input a visual representation
of the state. For this framework, state-of-the-art methods such
as prioritized experience replay, Dueling Deep Q-Network
or action collision masking have been applied to obtain a
reward-maximizing policy. In order to achieve the objectives,
the most outstanding contributions have been: i) to define
several modalities of observation of the states, including
in them information about the qualities of the sensors of
the agents and their movement through the map and ii) to
propose reward functions that motivate actions resulting in
the improvement of the model, but taking into account the
different qualities of the agents. The main advantage of the
proposal, which is a contribution to the monitoring processes
compared to other approaches, is that the heterogeneous
agents can be modified for each scenario, since the network
has been trained for a wide range of standard deviation
values, so that the combinations are infinite and can cover a
large number of real measurement devices only by knowing
their standard deviation. This implies a great scalability of
the method, since it only uses a single centralized neural
network that shares the experiences of all the agents, and
decides the best action for each one individually. Although
this algorithm has been applied in aquatic monitoring, it can
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also be extended to other similar applications of pollution
detection or other measurements, either aerial or terrestrial.

The proposed method, although promising, has some
limitations that need to be considered. Firstly, although it
is intrinsic to the problem itself, in order to obtain the
best model it is necessary to have sensor data with low
standard deviations, which is not always possible. Despite
this, in this method agents learn policies that help to mitigate
this drawback, being able to adapt to situations in which low
quality sensors are presented, and taking advantage of that
information for the common goal. In addition, the application
of this method requires some level of prior knowledge of
the environment, such as contamination behavior, to design
an appropriate reward function. D-DQL and other DRL
algorithms may face stability issues during training, such as
divergence of the Q-function value or instability in policy
learning, which may necessitate a long training period with
significant computational capacity. Lastly, these algorithms
might struggle to generalize the acquired knowledge from
one environment to significantly different environments,
demanding additional training.

The best DRL algorithm obtained, in the end, is com-
pared with other common heuristics such as Lawn Mower,
Random Walker or Particle Swarm Optimization, obtaining
in the resulting contamination models a very significant
improvement in metrics such as MSE, R2 and CMSE. Thus,
the fusion of Gaussian processes with deep reinforcement
learning stands out as an outstanding technique for this
type of mission. In the comparisons made, the drones start
from the same deployment area for practical and efficiency
reasons, reflecting real-world scenarios. However, further
research could explore the deployment of teams of agents
from different positions, such as a configuration where two
agents in each fleet start from separate locations. Following
the current line of research, future work may explore the
application of the proposed methodology in similar situations
with multi-objective maps. Specifically, the measurement of
various water quality variables could be considered, thus
extending the approach to a more diverse set of targets.
The primary goal would be to maximize the acquisition
of information from all WQPs to simultaneously improve
all models involved in the process. This approach could
provide a more complete and holistic view of water quality,
addressing multiple relevant aspects by integrating them into
a unified process. In addition, it could be explored how
the adaptability and efficiency of the approach proposed in
this article is maintained or improved in more complex and
multifaceted contexts.
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