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Tracking-Based Distributed Equilibrium Seeking
for Aggregative Games
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Giuseppe Notarstefano, Member, IEEE

Abstract— We propose fully-distributed algorithms for
Nash equilibrium seeking in aggregative games over net-
works. We first consider the case where local constraints
are present and we design an algorithm combining, for each
agent, (i) the projected pseudo-gradient descent and (ii) a
tracking mechanism to locally reconstruct the aggregative
variable. To handle coupling constraints arising in gener-
alized settings, we propose another distributed algorithm
based on (i) a recently emerged augmented primal-dual
scheme and (ii) two tracking mechanisms to reconstruct,
for each agent, both the aggregative variable and the cou-
pling constraint satisfaction. Leveraging tools from singular
perturbations analysis, we prove linear convergence to the
Nash equilibrium for both schemes. Finally, we run extensive
numerical simulations to confirm the effectiveness of our
methods and compare them with state-of-the-art distributed
equilibrium-seeking algorithms.

Index Terms— Game theory, Optimization algorithms,
Network analysis and control, Distributed algorithms.

I. INTRODUCTION

RECENT years have seen an increasing attention to the
computation of (generalized) Nash equilibria in games

over networks [1]–[3]. Indeed, numerous applications falling
within different domains such as smart grids management [4],
[5], economic market analysis [6], cooperative control of
robots [7], electric vehicles charging [8]–[10], network conges-
tion control [11], and synchronization of coupled oscillators in
power grids [12] can be modeled as networks of selfish agents
– aiming at optimizing their strategy according to an associated
individual cost function – that compete with each other over
shared resources.

Among these examples, one can often find instances modeled
as an aggregative game, where the strategies of all the
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agents in the network are coupled through the so-called
aggregative variable (expressing, e.g., the mean strategy), upon
which each agent’s cost function depends; see, e.g., [13]–
[15] for a comprehensive overview. Our work investigates
such a framework proposing novel distributed algorithms for
generalized Nash equilibrium (GNE) seeking under partial
information, i.e., assuming that each agent is only aware of its
own local information (e.g., its strategy set and cost function)
and can communicate only with few agents in the network.
This restriction naturally calls for the design of fully-distributed
mechanisms for GNE seeking.

Our approach is motivated by recent developments in
cooperative optimization, where agents in a network collab-
orate to minimize the sum of individual objective functions
depending both on local decision variables and an aggregative
variable [16]–[20].

A. Related work
In the context of NE problems in aggregative form, first

attempts to design equilibrium seeking algorithms involve semi-
decentralized approaches in which a central entity gathers and
shares global quantities (such as the aggregative variable and/or
a dual multiplier) with all the agents [21]–[28].

To relax the communication requirements, [29] proposes a
gradient-based algorithm for non-generalized games with di-
minishing step-size that relies on dynamic averaging consensus
(see, e.g., [30], [31]) to reconstruct the aggregative variable in
each agent. Such a method has been refined in [32] to deal
with privacy issues and, as a consequence, only guarantees
approximate equilibrium computations. In [33], the distributed
computation of an approximate Nash equilibrium is guaranteed
through a best-response-based algorithm requiring multiple
communication exchanges per iteration. In [34], instead, an
asynchronous distributed algorithm based on proximal dynam-
ics is proposed.

Looking at GNE problems where the agents’ strategies are
coupled also by means of constraints, in [35] the distributed
computation of an approximate NE is guaranteed through
an algorithm requiring, however, several communication ex-
changes per iteration. Exact convergence is instead guaranteed
in [36], where a distributed algorithm with diminishing step-
size is proposed, combining dynamic tracking mechanisms,
monotone operator splitting, and the Krasnosel’skii-Mann fixed-
point iteration. An exactly convergent distributed equilibrium-
seeking algorithm with constant step-size is given in [37],
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where the authors propose a distributed method based on a
forward-backward splitting of two preconditioned operators
requiring a double communication exchange per iteration.
Finally, distributed equilibrium-seeking algorithms based on
proximal best-responses are proposed in [38].

B. Contributions

The main contribution of the paper is the design and the
analysis of novel, fully distributed iterative – i.e., discrete-
time – algorithms for (generalized) NE seeking in aggregative
games over networks. First, to address the case where local
constraints are present, we combine a projected pseudo-gradient
method with a local, auxiliary variable that compensates for
the lack of knowledge of the aggregative variable in each agent.
Successively, we deal with the case of coupling constraints,
however, no local constraints are present. To achieve this, we
take inspiration from a recent augmented primal-dual scheme
for centralized, continuous-time optimization [39] and resort
to (i) an averaging step to enforce consensus among the
agents’ multipliers and (ii) two auxiliary variables to locally
reconstruct both the aggregative variable and the coupling
constraint status. Both iterative schemes are analyzed from a
system-theoretic perspective that allows us to establish linear
convergence to the (G)NE. To the best of our knowledge, the
algorithm proposed for the case where coupling constraints
are present is the first distributed scheme in the literature with
guaranteed linear convergence to a GNE (see Appendix A
for the formal definition). As such, it constitutes the main
contribution of our paper. Moreover, as discussed in detail
in Section II-B, such a linear convergence rate is enabled by
our system-theoretic interpretation, which offers a new proof-
line perspective. Further, we also guarantee linear convergence
when only local constraints are present. A similar result is also
achieved by the recent contribution [38] (see [38, Rem. 12]):
our algorithm complements the proximal best-response scheme
of [38] by constituting its gradient-based counterpart. Proximal
algorithms require solving some optimization program (which
in turn may rely on some iterative method), whereas our
projected gradient descent step can allow a simpler update
rule if the projection can be performed in an easy manner.
As such, gradient-based approaches are often computationally
less intensive compared to proximal ones, as verified in the
numerical simulations of Section V (see Table III); however,
such a conclusion is case-dependent.

As a side technical contribution, in contrast with existing
methods, our algorithms (i) do not require compactness of the
local feasible sets and (ii) allow for a general form of the
aggregative variable, thus not necessarily requiring the mean
of the agents’ strategies to operate. To better classify our work
within the existing literature, Tables I and II compare it with
the most relevant works. Specifically, Table I considers the
framework without coupling constraints, while Table II the
one with coupling constraints (GNE) (note that some of the
technical conditions and variables appearing in the table entries
will become clear in the sequel).

The analysis of our iterative algorithms is carried out by
relying on a singular perturbations approach that allows us

to see each procedure as the interconnection between a slow
subsystem and a fast one. Specifically, the slow dynamics are
produced by the update of the strategies and, in the case with
coupling constraints, of the mean of the multipliers over the
network. The fast dynamics, instead, describes the evolution
of the auxiliary variables used to compensate for the lack
of knowledge of the global quantities and, in the case with
coupling constraints, the consensus error among the agents’
multipliers. Based on this interpretation, we construct two
auxiliary, simplified subsystems, known as boundary layer and
reduced system, to separately study the fast and slow dynamics,
respectively. Leveraging this connection, we first provide
the convergence properties of these auxiliary dynamics with
Lyapunov-based arguments, and then we merge the obtained
results to establish linear convergence to the (G)NE of the
whole interconnection. This last step relies on a general theorem
(cf. Theorem II.5) considering a class of singularly perturbed
systems that includes the proposed iterative algorithms. In
detail, this theorem shows that global exponential stability
results for the interconnection can be achieved, while typical
results in literature only provide semi-global properties (see [40,
Prop. 8.1], or [41, Ch. 11] for the continuous-time case). To
the best of our knowledge, similar results are not yet available
in the literature: besides the construction of a novel, fully
distributed iterative mechanism with appealing features for
their practical implementation, they offer a new proof line for
equilibrium-seeking problems.

Finally, we provide detailed numerical simulations to confirm
the effectiveness of our methods and compare them with state-
of-the-art distributed NE-seeking algorithms.

C. Paper organization

In Section II we introduce aggregative games over networks,
while in Section III-A we propose and analyze a novel
distributed algorithm to find NE when only local constraints
are present. In Section IV we devise a novel distributed
GNE-seeking algorithm to address the case of linear coupling
constraints. Finally, in Section V we provide detailed numerical
simulations to test our methods. The proof of the result on
singular perturbations – instrumental in the derivation of our
main theorems – is deferred to Appendix B; Appendices C –
D gather the proofs of all other technical results and lemmas.

Notation: A matrix M ∈ Rn×n is Schur if all its eigenvalues
lie in the open unit disc. The identity matrix in Rm×m is Im.
0m is the all-zero matrix in Rm×m. The vector of N ones
is denoted by 1N , while 1N,d := 1N ⊗ Id with ⊗ being
the Kronecker product. Dimensions are omitted whenever
clear from the context. Given a function of two variables
f : Rn1 × Rn2 → R, we denote as ∇1f ∈ Rn1 its gradient
with respect to its first argument and as ∇2f ∈ Rn2 its gradient
with respect to the second one. The vertical concatenation
of column vectors v1, . . . , vN ∈ Rn is COL(v1, . . . , vN ). Rn

+

is the positive orthant in Rn. diag(v1, . . . , vn) denotes the
diagonal matrix whose i-th diagonal element is given by vi.
blkdiag(M1, . . . ,MN ) is the block diagonal matrix whose i-th
block is Mi ∈ Rni×ni . Given a vector x ∈ Rn and a set
X ⊆ Rn, PX [x] denotes the projection of x on X . For matrix
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[29] [33] [32] [38] Our algorithm
Linear rate ✗ ✗ ✗ ✓ ✓
Step-size Diminishing - Diminishing - Constant
Exactness ✓ ✗ ✗ ✓ ✓

Communications per iterate 1 v 1 1 1

Equilibrium assumptions F strictly monotone ∃! equilibrium,
xi,br(·) non-expansive F strongly monotone F strongly monotone F strongly monotone

Local constraint set Compact and convex Compact and convex Unconstrained Closed and convex Closed and convex
Gradient unboundedness ✓ ✓ ✗ ✓ ✓

Aggregative variable 1
N

N∑
i=1

xi
1
N

N∑
i=1

xi
1
N

N∑
i=1

xi
1
N

N∑
i=1

xi
1
N

N∑
i=1

ϕi(xi)

Algorithmic structure Gradient-based Best-response-based Gradient-based Proximal-based Gradient-based

Graph Undirected,
time-varying Directed Undirected,

time-varying Undirected Directed

TABLE I: Setup without coupling constraints.

[35] [36] [37] [38] Our algorithm
Linear rate ✗ ✗ ✗ ✗ ✓
Step-size Constant Diminishing Constant - Constant
Exactness ✗ ✓ ✓ ✓ ✓

Communications per iterate v 1 2 1 1
Equilibrium assumptions F strongly monotone F cocoercive F strongly monotone F strongly monotone F strongly monotone

Local constraints Compact and convex Compact and convex Compact and convex Closed and convex Unconstrained
Coupling constraints Not specified SCQ SCQ SCQ κ1I ≤ AA⊤ ≤ κ2I

Gradient unboundedness ✗ ✓ ✓ ✓ ✓

Aggregative variable 1
N

N∑
i=1

xi
1
N

N∑
i=1

xi
1
N

N∑
i=1

xi
1
N

N∑
i=1

xi
1
N

N∑
i=1

ϕi(xi)

Algorithmic structure Gradient-based Gradient-based Gradient-based Proximal-based Gradient-based

Graph Directed Undirected,
time-varying Undirected Undirected Directed

TABLE II: Setup with coupling constraints, where SCQ stands for Slater’s Constraint Qualification.

(resp., vector) A ∈ Rm×n (v ∈ Rn), we denote as [A]j ([v]j) its
j-th row (j-th component). Given two matrices A,B ∈ Rm×m,
A ≻ B (resp. A ≽ B) is equivalent to saying that A − B
is positive definite (resp. semidefinite). Given x ∈ Rn and
M ∈ Rn×n such that M =M⊤ ≻ 0, ∥x∥M =

√
x⊤Mx.

II. MATHEMATICAL PRELIMINARIES

A. Problem definition and main assumptions
We consider a population of N ∈ N agents – designated by

the set I := {1, . . . , N} – whose interaction is described by
the following collection of coupled optimization problems:

∀i ∈ I :


min
xi∈Xi

Ji(xi, σ(x)) (1a)

s.t. Aixi +
∑

j∈I\{i}

Ajxj ≤
∑
i∈I

bi. (1b)

In words, every agent i ∈ I seeks an individual strategy
xi ∈ Xi ⊆ Rni to minimize a local cost defined by the
function Ji : Rni × Rd → R, which depends on xi as well as
on some aggregate measure of other agents’ strategies σ(x) ∈
Rd, where x := COL(x1, . . . , xN ) ∈ Rn and n :=

∑N
i=1 ni.

The agents’ decisions shall satisfy some global constraints
which can be expressed in the affine form Ax ≤ b, where
A := [A1 · · · AN ] ∈ Rm×n and b :=

∑
i∈I bi ∈ Rm. The

aggregative variable σ(·) formally reads as

σ(x) :=
1

N

∑
i∈I

ϕi(xi), (2)

where each aggregation rule ϕi : Rni → Rd models the
contribution of the corresponding strategy xi to the aggregate

σ(x). We define the constraint functions ci : Rni → Rm,
c−i : Rn−ni → Rm, and c : Rn → Rm as follows:

ci(xi) = Aixi − bi (3a)

c−i(x−i) =
∑

j∈I\{i}

(Ajxj − bj) (3b)

c(x) = ci(xi) + c−i(x−i) = Ax− b, (3c)

where x−i := COL(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ Rn−ni .
Then, the collective vector of strategies x belongs to the feasible
set C := {x ∈ X | c(x) ≤ 0} ⊆ Rn.

We refer to any equilibrium solution to the collection of inter-
dependent optimization problems (1) as aggregative GNE [3]
(or simply GNE), and to the problem of finding such an
equilibrium as GNE problem (GNEP) in aggregative form
– as opposed to a NE problem (NEP) which is characterized by
local constraints only. We will design distributed algorithms
to find aggregative GNEs, which formally correspond to the
following definition:

Definition II.1 (Generalized Nash equilibrium [3]). A collective
vector of strategies x⋆ ∈ C is a GNE of (1) if we have:

Ji(x
⋆
i , σ(x

⋆)) ≤ min
xi∈Ci(x⋆

−i)
Ji(xi,

1
N ϕi(xi) + σ−i(x

⋆
−i)),

for all i ∈ I, with Ci(x−i) := {xi ∈ Xi | Aixi ≤ bi −
c−i(x−i)} and σ−i(x

⋆
−i) :=

1
N

∑
j∈I\{i} ϕj(x

⋆
j ). □

We remark that the definition of NE follows directly from the
above by noting that, in the case without coupling constraints,
it holds Ci(x⋆−i) ≡ Xi.
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An equivalent definition of GNE requires one to find a fixed
point of the best response mapping xi,br : Rn−ni → Rni of
each agent, which is formally defined as:

xi,br(x−i) ∈ argmin
xi∈Ci(x−i)

Ji (xi, σ(x))

= argmin
xi∈Ci(x−i)

Ji
(
xi,

1
N ϕi(xi) + σ−i(x−i)

)
,

In fact, a collective vector of strategies x⋆ is a GNE if, for
all i ∈ I, x⋆i = xi,br(x

⋆
−i). Next, we enforce customary

assumptions about the regularity of some quantities in (1).

Standing Assumption II.2 (Cost functions). For all i ∈ I,
the function Ji(·, ϕi(·)/N + σ−i(x−i)) is of class C1, i.e., its
derivative exists and is continuous, for all x−i ∈ Rn−ni . □

A key ingredient in this game-theoretic framework is the
so-called pseudo-gradient mapping F : Rn → Rn:

F (x) := COL(∇x1
J1(x1, σ(x)), . . . ,∇xN

JN (xN , σ(x))). (4)

With this regard, we also make the following assumption.

Standing Assumption II.3 (Strong monotonicity and Lipschitz
continuity). F is µ-strongly monotone, i.e., there exists µ > 0
such that

(F (x)− F (y))⊤(x− y) ≥ µ ∥x− y∥2 ,

for all x, y ∈ Rn. Moreover, given any xi, x
′
i ∈ Rni and

y, y′ ∈ Rn−ni , for all i ∈ I, we assume that

∥∇xiJi(xi, ϕi(xi)/N + y)−∇x′
i
Ji(x

′
i, ϕi(x

′
i)/N + y′)∥

≤β1∥COL(xi, y)−COL(x′i, y
′)∥

∥∇1Ji(xi, y)−∇1Ji(x
′
i, y

′)∥ ≤β1∥COL(xi, y)−COL(x′i, y
′)∥

∥∇2Ji(xi, y)−∇2Ji(x
′
i, y

′)∥ ≤β2∥COL(xi, y)−COL(x′i, y
′)∥

∥ϕi(xi)− ϕi(x
′
i)∥ ≤ β3 ∥xi − x′i∥ . □

While assumptions on strong monotonicity and Lipschitz
continuity of the game mapping are quite standard in the
literature [15], [25], [26], the second part of Standing Assump-
tion II.3 specializes the Lipschitz properties of the gradients
of the cost functions in both the local and aggregate variables,
as well as of each single aggregation rule ϕi(·).

Note that we assume partial information, i.e., each agent i is
only aware of its own local information xi, Ji, ϕi, Ai, and bi.
Moreover, each agent can exchange information with a subset
of I only. Specifically, we consider a network of agents whose
communication is performed according to a directed graph
G = (I, E), with E ⊂ I2 such that i can receive information
from agent j only if the edge (j, i) ∈ E . The set of in-neighbors
of i is represented by Ni := {j ∈ I | (j, i) ∈ E} (where also
i ∈ Ni), while N out

i := {j ∈ I | (i, j) ∈ E} denotes the set
of out-neighbors of the agent i. Graph G is associated with a
weighted adjacency matrix W ∈ RN×N whose entries satisfy
wij > 0 whenever (j, i) ∈ E and wij = 0 otherwise. The next
assumption characterizes the considered graphs.

Standing Assumption II.4 (Network). The graph G is strongly
connected, i.e., for every pair of nodes (i, j) ∈ I2 there exists

a path of directed edges that goes from i to j, and the matrix
W is doubly stochastic, namely it holds that:

W1N = 1N , 1⊤NW = 1⊤N . □

B. A key result on singularly perturbed systems
The convergence analysis of the iterative schemes introduced

in Section III and IV exploits a system-theoretic perspective
based on singular perturbation, that strongly relies on the
following crucial result proved in Appendix B.

Theorem II.5 (Global exponential stability for singularly
perturbed systems). Consider the system

xt+1 = xt + δf(xt, wt) (5a)

wt+1 = g(wt, xt, δ), (5b)

with xt ∈ D ⊆ Rn, wt ∈ Rm, f : D × Rm → Rn, g :
Rm × Rn × R → Rm, δ > 0. Let f and g be Lipschitz
continuous with respect to both xt and wt, with Lipschitz
constants Lf and Lg , respectively. Assume that there exists an
Lh-Lipschitz continuous function h : Rn → Rm such that, for
all x ∈ Rn,

h(x) = g(h(x), x, δ),

and further assume that there exists x⋆ ∈ Rn such that

0 = δf(x⋆, h(x⋆)).

Then, let
xt+1 = xt + δf(xt, h(xt)) (6)

be the reduced system and

ψt+1 = g(ψt + h(x), x, δ)− h(x) (7)

be the boundary layer system with ψt ∈ Rm.
Assume that there exists a continuous function U : Rm → R

and δ̄1 > 0 such that, for any δ ∈ (0, δ̄1) (cf. (5)), there exist
b1, b2, b3, b4 > 0 such that for all ψ,ψ1, ψ2 ∈ Rm, x ∈ Rn,

b1 ∥ψ∥2 ≤ U(ψ) ≤ b2 ∥ψ∥2 (8a)

U(g(ψ + h(x), x, δ)− h(x))− U(ψ) ≤ −b3 ∥ψ∥2 (8b)
|U(ψ1)− U(ψ2)| ≤ b4 ∥ψ1 − ψ2∥ ∥ψ1∥

+ b4 ∥ψ1 − ψ2∥ ∥ψ2∥ .
(8c)

Further, assume there exists a continuous function W : D →
R and δ̄2 > 0 such that, for any δ ∈ (0, δ̄2), there exist
c1, c2, c3, c4 > 0 such that for all x, x1, x2, x3 ∈ D

c1 ∥x− x⋆∥2 ≤W (x) ≤ c2 ∥x− x⋆∥2 (9a)

W (x+ δf(x, h(x)))−W (x) ≤ −δc3 ∥x− x⋆∥2 (9b)
|W (x1)−W (x2)| ≤ c4 ∥x1 − x2∥ ∥x1 − x⋆∥

+ c4 ∥x1 − x2∥ ∥x2 − x⋆∥ .
(9c)

Then, there exist δ̄ ∈ (0,min{δ̄1, δ̄2}), a1 > 0, and a2 > 0
such that, for all δ ∈ (0, δ̄), it holds∥∥∥∥[ xt − x⋆

wt − h(xt)

]∥∥∥∥ ≤ a1

∥∥∥∥[ x0 − x⋆

w0 − h(x0)

]∥∥∥∥ e−a2t,
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for all (x0, w0) ∈ D × Rm. □

Theorem II.5 establishes a stability result for the system
in (5), that can be thought of as an interconnection of a fast
and a slow subsystem (for sufficiently small δ > 0). This is
schematically illustrated in Fig. 1.

wt+1 = g(wt, xt, δ)

Fast System

xt+1 = xt + δf(xt, wt)

Slow System

xtwt

Fig. 1: Block diagram of the original interconnected system (5).

To analyze this interconnection we study separately the
simplified auxiliary systems (6)-(7). For all x ∈ Rn, h(x) is a
parametric equilibrium of the fast subsystem; we can then fix
the slow state xt = x into the fast dynamics (5b), to obtain the
so-called boundary layer system, as pictorially shown in Fig. 2.
This is the auxiliary system described by (7), whose state ψt

encodes the distance of the state wt of the fast subsystem
from the equilibrium h(x), once x is fixed. Existence of a
Lyapunov-like function with properties as in (8) ensures then
that for all x ∈ Rn, the boundary layer system is exponentially
stable.

ψt+1 = g(ψt + h(x), x, δ)− h(x)

xt+1 = xt = x

Boundary Layer System

x

ψt

Fig. 2: Block diagram of the boundary layer system (7).

Setting now wt = h(xt) for all t ≥ 0 in (5a), i.e., considering
the fast state at its parametric equilibrium, we obtain the so-
called reduced system, i.e., the auxiliary system (6). This is
schematically shown in Fig. 3. Existence of a Lyapunov-like
function with properties as in (9) ensures then that x⋆ is globally
exponentially stable for the reduced system. By properly
combining these two Lyapunov functions, Theorem II.5 ensures
that, for sufficiently small values of δ, the point (x⋆, h(x⋆))
is globally exponentially stable for the original interconnected
system (5). The detailed proof is provided in Appendix B.

xt+1 = xt + δf(xt, h(xt))

wt = h(xt)

Reduced System

h(xt)

xt

Fig. 3: Block diagram of the reduced system (6).

We will show next how our algorithms, namely Primal
TRADES and Primal-Dual TRADES, can be recast in the
form of the interconnected system (5) while satisfying all
assumptions of Theorem II.5, and hence prove their conver-
gence in Theorems III.3 and IV.3, respectively, provided in the
next sections. Compared with traditional approaches, taking
a singular perturbation view offers a novel proof line for
(generalized) equilibrium-seeking problems.

III. AGGREGATIVE GAMES OVER NETWORKS
WITHOUT COUPLING CONSTRAINTS

A. Primal TRADES
In this section, we introduce and analyze Primal TRacking-

based Aggregative Distributed Equilibrium Seeking (TRADES),
a fully-distributed iterative NE seeking algorithm for a special
case of the aggregative game described by (1), i.e., where the
local decision spaces are decoupled. Formally,

∀i ∈ I : min
xi∈Xi

Ji(xi, σ(x)), (10)

where Xi ⊆ Rni , the local feasible set known to agent i only,
satisfies the following conditions:

Assumption III.1. For all i ∈ I, the feasible set Xi is
nonempty, closed, and convex. □

Remark III.2. The general structure of the aggregative
variable σ(x) in (2) can accommodate “soft”, possibly non-
linear, coupling constraints; these can be incorporated in the
game (10) by penalizing their residual in the players’ cost
functions. □

Let xti ∈ Rni be the strategy chosen by each agent i at
iteration t ≥ 0. Taking its convex combination with a projected
pseudo-gradient step may be an effective way to steer each
agent’s strategy to the best response xi,br(σ−i(x

t
−i)). When

applied to problem (10), it reads as

xt+1
i = xti + δ

(
PXi

[
xti − γ∇xi

Ji(x
t
i, σ(x

t))
]
− xti

)
, (11)

where δ ∈ (0, 1) is a constant performing the combination
and γ > 0 plays the role of the gradient step-size. We
point out that the chain rule and the definition of σ(xt)
(cf. (2)) lead to ∇xiJi(x

t
i, σ(x

t)) = ∇1Ji(x
t
i, σ(x

t)) +
∇ϕi(x

t
i)

N ∇2Ji(x
t
i, σ(x

t)). In our distributed setting, however,
agent i cannot access the global aggregate variable σ(xt). To
compensate for this lack of information, we rely on the locally
available ϕi(xti) and the auxiliary variable zti ∈ Rd. Thus, for
all i ∈ I , let the operator F̃i : Rni × Rd → Rni be defined as

F̃i(xi, s) := ∇1Ji(xi, s) +
∇ϕi(xi)
N

∇2Ji(xi, s),

and, in accordance, we modify the update (11) as

xt+1
i =xti+δ

(
PXi

[
xti − γF̃i

(
xti, ϕi(x

t
i) + zti

)]
− xti

)
, (12)

which can be directly implemented without violating the
distributed nature of the algorithm. By comparing (11) and (12),
we note that the global term σ(xt) has been replaced by the
locally available proxy ϕi(xti) + zti . Therefore, if

zti → −ϕi(xti) + σ(xt), (13)
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Algorithm 1 Primal TRADES (Agent i)
Initialization: x0i ∈ Xi, z

0
i = 0.

for t = 1, 2, . . . do

xt+1
i = xti + δ

(
PXi

[
xti − γF̃i

(
xti, ϕi(x

t
i) + zti

)]
− xti

)
(15a)

zt+1
i =

∑
j∈Ni

wijz
t
j +

∑
j∈Ni

wijϕj(x
t
j)− ϕi(x

t
i). (15b)

end for

then the implementable law (12) coincides with the desired
one given in (11). Note that zti encodes the estimate of σ(xti)−
ϕi(x

t
i), i.e., the aggregate of all other agents’ strategies except

for the i-th one. For this reason, we update each auxiliary
variable zti according to the following causal version of the
perturbed average consensus scheme (see, e.g., [42], where a
similar scheme has been used to locally compensate the missing
knowledge of the global gradient of a distributed consensus
optimization problem):

zt+1
i =

∑
j∈Ni

wijz
t
j +

∑
j∈Ni

wijϕj(x
t
j)− ϕi(x

t
i). (14)

This is implementable in a fully distributed fashion since it
only requires communication with neighboring agents j ∈ Ni.
We report the whole algorithmic structure in Algorithm 1 and,
from now on, we will refer to it as Primal TRADES. We note
that Algorithm 1 requires the initialization z0i = 0 for all i ∈ I;
we will discuss in the sequel the interpretation of this particular
initialization. The local update (15) leads to the stacked vector
form of Primal TRADES, namely

xt+1 = xt + δ
(
PX

[
xt − γF̃

(
xt, ϕ(xt) + zt

) ]
− xt

)
(16a)

zt+1 = Wdz
t + (Wd − I)ϕ(xt), (16b)

with X :=
∏

i∈I Xi ⊆ Rn, Wd := W ⊗
Id ∈ RNd×Nd, zt := COL(z1,t, . . . , zN,t), ϕ(xt) :=
COL(ϕ1(x

t
1), . . . , ϕN (xtN )), and F̃ (xt, ϕ(xt) + zt) :=

COL(F̃1(x
t
1, ϕ1(x

t
1)+z

t
1), . . . , F̃N (xtN , ϕN (xtN )+ztN )). We re-

mark that, since F is µ-strongly monotone (cf. Assumption II.3)
and X nonempty, closed, and convex (cf. Assumption III.1),
there exists a unique Nash equilibrium x⋆ ∈ Rn for (10).
Moreover, for such an equilibrium it holds

x⋆ = PX [x⋆ − γF (x⋆)] ,

for any γ > 0, see [43, Ch. 12]. This result, in turn, guarantees
that x⋆ = x⋆ + δ(PX [x⋆ − γF (x⋆)]− x⋆) for any δ > 0. We
establish next the properties of Primal TRADES in computing
the NE x⋆ of problem (10).

Theorem III.3. Consider the dynamics in (16) and Assump-
tion III.1. There exist constants δ̄, γ̄, a1, a2 > 0 such that, for
any δ ∈ (0, δ̄), γ ∈ (0, γ̄) and (x0, z0) ∈ Rn+Nd such that
1⊤
N,dz

0 = 0, it holds∥∥xt − x⋆
∥∥ ≤ a1e

−a2t. □

The proof of Theorem III.3 relies on a singular perturbation
analysis of system (16), and will be given in the next subsection.

B. Proof of Theorem III.3

We build the framework to prove Theorem III.3 by analyzing
(16) under a singular perturbations lens. We therefore establish
the related proof in five steps:

1. Bringing (16) in the form of (5): we leverage the
initialization z0 so that 1⊤

N,dz
0 = 0 to introduce coordinates

z̄ ∈ Rd and z⊥ ∈ R(N−1)d defined as:[
z̄
z⊥

]
:=

[
1⊤
N,d

N
R⊤

d

]
z =⇒ z = 1N,dz̄ +Rdz⊥, (17)

where Rd ∈ RNd×(N−1)d with ∥Rd∥ = 1 is such that

RdR
⊤
d = I −

1N,d1
⊤
N,d

N
and R⊤

d 1N,d = 0. (18)

Then, by using the definition of z̄ given in (17), the associated
dynamics reads as

z̄t+1 =
1⊤
N,d

N
zt+1 (a)

=
1⊤
N,d

N
Wdz

t +
1⊤
N,d

N
(Wd − I)ϕ(xt)

(b)
=

1⊤
N,d

N
zt

(c)
=

1⊤
N,d

N

(
1N,dz̄

t +Rdz
t
⊥
) (d)
= z̄t, (19)

where in (a) we exploit the update (16), in (b) we use the facts
that, in view of Standing Assumption II.4, (i) 1⊤

N,dWd = 1⊤
N,d

and (ii) 1⊤
N,d(Wd − I) = 0, in (c) we rewrite zt according

to (17), and in (d) we use the fact that 1⊤
N,dRd = 0. Thus, (19)

leads to z̄t+1 ≡ z̄0 ≡ 0 for all t ≥ 0, where the last equality
follows by the initialization 1⊤

N,dz
0 = 0 and the definition of

z̄ (cf. (17)). We are thus entitled to ignore the null dynamics
of z̄t and, according to (17), we equivalently rewrite (16) as

xt+1 = xt+δ
(
PX [xt − γF̃ (xt, ϕ(xt) +Rdz

t
⊥)]− xt

)
(20a)

zt+1
⊥ = R⊤

d WdRdz
t
⊥ +R⊤

d (Wd − I)ϕ(xt). (20b)

For all t ≥ 0, the interconnected system (20) can thus be
obtained from (5) by setting

wt := zt⊥

f(xt, wt) := PX

[
xt − γF̃ (xt, ϕ(xt) +Rdw

t)
]
− xt

g(wt, xt) := R⊤
d WdRdw

t +R⊤
d (Wd − I)ϕ(xt).

(21)

In particular, we refer to the subsystem (20a) as the slow
system, while we refer to (20b) as the fast one.

2. Equilibrium function h : under the expression for RdR
⊤
d

in (18) and since W is doubly stochastic (cf. Standing
Assumption II.4) notice that for all xt = x ∈ Rn,

z⊥ = h(x) := −R⊤
d ϕ(x) (22)

constitutes an equilibrium of (20b). Since R⊤
d WdRd is Schur

in view of Standing Assumption II.4, we interpret (20b) as a
strictly stable linear system with nonlinear input R⊤

d (Wd −
I)ϕ(xt) parametrizing the equilibrium of the subsystem. The
role of γ is to slow down the variation of xt so that z⊥ always
remains close to the parametrized equilibrium h(xt).

3. Boundary layer system and satisfaction of (8): the
so-called boundary layer system associated to (20) can be
constructed by fixing xt = x for all t ≥ 0, for some arbitrary
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x ∈ Rn in (20b), and rewriting it according to the error
coordinates z̃t := zt⊥ − h(x). Using (18), we obtain that

z̃t+1 = R⊤
d WdRdz̃

t. (23)

Notice that the latter is in the form of (7) with ψ = z̃t, and
g(ψ+h(x), x)−h(x) = R⊤

d WdRdz̃
t. The next lemma provides

a Lyapunov function for (23).

Lemma III.4. Consider system (23). Then, there exists a
continuous function U : R(N−1)d → R satisfying (8) with
z̃ in place of ψ. □

4. Reduced system and satisfaction of (9): the so-called
reduced system can be obtained by plugging into (20a) the fast
state at its steady state equilibrium, i.e., we consider zt = h(xt)
for all t ≥ 0. We thus have

xt+1 = xt + δ
(
PX

[
xt − γF̃ (xt, ϕ(xt) +Rdh(x

t))
]
− xt

)
.

(24)
Due to (18) we have that F̃ (xt, ϕ(xt) + Rdh(x

t)) =
F̃ (xt,1N,dσ(x

t)) = F (xt), so (24) is equivalent to

xt+1 = xt + δ
(
PX

[
xt − γF (xt)

]
− xt

)
. (25)

The next lemma provides a Lyapunov function for (24).

Lemma III.5. Consider system (24). Let x⋆ ∈ Rn be such
that f(x⋆, h(x⋆)) = 0 with f defined as in (21). Then, there
exist a continuous function W : Rn → R and γ̄, δ̄2 > 0 such
that, for any γ ∈ (0, γ̄) and δ ∈ (0, δ̄2), W satisfies (9). □

5. Lipschitz continuity of f , g and h: as we will be invoking
Theorem II.5, we need to ensure that the Lipschitz continuity
assumptions required by the theorem are satisfied. In particular,
we require f and g in (21) to be Lipschitz continuous with
respect to both arguments and h in (22) to be Lipschitz
continuous with respect to x.

Lipschitz continuity of f follows by the fact that ∇Ji is
Lipschitz continuous due to Standing Assumption II.3. To show
Lipschitz continuity of g in (21) notice that for all w,w′ ∈
R(N−1)d and all x, x′ ∈ Rn,∥∥R⊤

d WdRd(w − w′) +R⊤
d (Wd − I)(ϕ(x)− ϕ(x′))

∥∥
≤
∥∥R⊤

d WdRd

∥∥ ∥w − w′∥+ β3
∥∥R⊤

d (Wd − I)
∥∥ ∥x− x′∥ ,

where the inequality is due to triangle inequality and the fact
that by Standing Assumption II.3, ϕ is Lipschitz continuous
with Lipschitz constant β3. To show Lipschitz continuity of h,
notice that for all x, x′ ∈ Rn,

∥h(x)− h(x′)∥ ≤ β3∥Rd∥ ∥x− x′∥ = β3 ∥x− x′∥ ,

where the inequality follows from (22) and Lipschitz continuity
of ϕ, while the equality from the fact that ∥Rd∥ = 1.

By combining Lemma III.4 and III.5 with the Lipschitz
conditions expressed above, Theorem II.5 can therefore be
applied. Thus, there exists δ̄ ∈ (0, δ̄2) so that (x⋆, h(x⋆)) is
an exponentially stable equilibrium for (20).

IV. GENERALIZED NASH EQUILIBRIUM PROBLEMS
IN AGGREGATIVE FORM

A. Primal-Dual TRADES

In this section, we introduce the Primal-Dual TRADES
algorithm, i.e., a distributed iterative methodology to find a
GNE in aggregative games with affine coupling constraints as
formalized in (1).

In addition to the assumptions made in Section II, we need
some further conditions for our mathematical developments.

Assumption IV.1 (Feasibility). The set C is nonempty. □

Note that the condition C ≠ ∅ is weaker than Slater’s
constraint qualification required by many results in the literature.
However, to establish linear convergence of our distributed
algorithm, we will enforce an additional assumption on the
matrix A (see Assumption IV.2). Consider the following
variational inequality, defined by the mapping F in (4) over
the domain C:

F (x⋆)⊤(x− x⋆) ≥ 0, for all x ∈ C. (26)

It is known that every point x⋆ ∈ C for which (26) holds is a
GNE of the game (1) and, specifically, a variational GNE (v-
GNE) (cf. [3, Th. 3.9]). The converse, however, does not hold in
general. However, since F is strongly monotone (cf. Standing
Assumption II.3) and C is nonempty (cf. Assumption IV.1),
closed and convex (since the constraint are in the form Ax ≤ b),
Prop. 1.4.2 and Th. 2.3.3 in [43] guarantee that a unique v-GNE
exists, and this satisfies (26).

In the following, we devise an iterative algorithm that
asymptotically returns the (unique) v-GNE of (1). Inspired
by [39], where an augmented primal-dual scheme was used
for continuous-time, centralized optimization, we require
the following additional condition on the matrix A which
characterizes the coupling constraints (cf. (1b)):

Assumption IV.2 (Full-row rank). There exist κ1, κ2 > 0 such
that κ1Im ≼ AA⊤ ≼ κ2Im. □

We note that Assumption IV.2 imposes, as a necessary
condition, the fact that m ≤ n, i.e., that the number of
constraints is at most equal to the total number of components
of the global strategy vector.

Following [39], for all i ∈ I we consider the augmented
Lagrangian function Li : Rn × Rm → R defined as

Li(x, λ) := Ji(xi, σ(x)) +

m∑
ℓ=1

Hℓ([Ax− b]ℓ, [λ]ℓ)︸ ︷︷ ︸
=:H(Ax−b,λ)

, (27)

where

Hℓ([Ax− b]ℓ, [λ]ℓ) :={
[Ax− b]ℓ[λ]ℓ +

ρ
2 ([Ax− b]ℓ)

2 if ρ[Ax− b]ℓ + [λ]ℓ ≥ 0

− 1
2ρ [λ]

2
ℓ if ρ[Ax− b]ℓ + [λ]ℓ < 0,

with λ ∈ Rm being the multiplier associated to the coupling
constraints, and ρ > 0 a constant. We therefore address the
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v-GNE seeking problem by obtaining a saddle point of (27)
through the discrete-time dynamics:

xt+1
i =xti−δ

(
∇xiJi(x

t
i, σ(x

t))+∇xiH(Axt−b, λt)
)

(28a)

λt+1=λt + δ∇λH(Axt − b, λt), (28b)

where xti and δ have the same meaning as in (11), λt ∈ Rm is
the multiplier at t ≥ 0, and the explicit form of the gradients
∇xi

H(Axt − b, λt) and ∇λH(Axt − b, λt) reads as

∇xiH(Axt − b, λt) =

m∑
ℓ=1

∇xiHℓ([Ax
t − b]ℓ, [λ

t]ℓ)

=

m∑
ℓ=1

max
{
ρ[Axt − b]ℓ + [λt]ℓ, 0

}
[Ai]

⊤
ℓ (29a)

∇λH(Axt − b, λt) =

m∑
ℓ=1

∇λHℓ([Ax
t − b]ℓ, [λ

t]ℓ)

=

m∑
ℓ=1

1

ρ
eℓ(max

{
ρ[Axt − b]ℓ + [λt]ℓ, 0

}
− [λt]ℓ), (29b)

where eℓ ∈ Rm is the ℓ-th vector of the canonical basis of Rm,
ℓ ∈ {1, . . . ,m}. The stacked-column form of (28) is

xt+1 = xt − δ
(
F (x) +∇xH(Axt − b, λt)

)
(30a)

λt+1 = λt + δ∇λH(Axt − b, λt), (30b)

where ∇xH(Axt − b, λt) := COL(∇x1
H(Axt −

b, λt), . . . ,∇xN
H(Axt − b, λt)). By computing the KKT

conditions of the VI (26) and using [39, Prop. 1], we obtain
that the v-GNE x⋆ and the corresponding (unique) optimal
multiplier λ⋆ ∈ Rm are such that

0 = F (x⋆) +∇xH(Ax⋆ − b, λ⋆) (31a)
0 = ∇λH(Ax⋆ − b, λ⋆). (31b)

The above result ensures that COL(x⋆, λ⋆) represents an
equilibrium point of (30) for any δ > 0.

However, since agent i does not have access neither to
σ(xt) nor to Axt − b, the scheme in (28) cannot be directly
implemented. Moreover, dynamics (28) requires a central
unit that can compute the global quantity Axt − b and
communicate the multiplier λt to all the agents. For this reason,
in Algorithm 2 we introduce for all i ∈ I (i) two additional
variables zi ∈ Rd and yi ∈ Rm to compensate the local
unavailability of σ(xt) and Axt − b, respectively, (ii) a local
copy λi ∈ Rm of the multiplier λ, and (iii) an additional
averaging step to enforce consensus among the multipliers λi
(cf. (33b)-(33d)). As already done in (14), we choose causal
perturbed consensus dynamics to update zi and yi. For all
i ∈ I, we then introduce operators Gx,i : Rm × Rm → Rni

and Gλ,i : Rm × Rm → Rm as

Gx,i(s1, s2) :=

m∑
ℓ=1

max{ρ[s1]ℓ + [s2]ℓ, 0}[Ai]
⊤
ℓ

Gλ,i(s1, s2) :=
1

ρ

m∑
ℓ=1

(max{ρ[s1]ℓ + [s2]ℓ, 0} − [s2]ℓ) eℓ.

(32)

Algorithm 2 Primal-Dual TRADES (Agent i)
Initialization: x0i ∈ Xi, λ

t
i ∈ Rm

+ , z
0
i = 0, y0i = 0.

for t = 0, 1, . . . do

xt+1
i = xti − δF̃i(x

t
i, ϕi(x

t
i) + zti)

− δGx,i(N(Aix
t
i − bi) + yti , λ

t
i) (33a)

λt+1
i =

∑
j∈Ni

wijλ
t
j + δGλ,i(N(Aix

t
i − bi) + yti , λ

t
i)

(33b)

zt+1
i =

∑
j∈Ni

wijz
t
j +

∑
j∈Ni

wijϕj(x
t
j)− ϕi(x

t
i) (33c)

yt+1
i =

∑
j∈Ni

wijy
t
j +

∑
j∈Ni

wijN(Ajx
t
j − bj)

−N(Aix
t
i − bi), (33d)

end for

In Algorithm 2, these operators encode the component of the
gradients in (29) available to agent i at iteration t, plus the
auxiliary variable yti that is used to track Axt − b (see (33a)
and (33b) in Algorithm 2). The steps of the proposed method
are hence summarized in Algorithm 2 from the perspective of
agent i, which is then referred to as Primal-Dual TRADES.
Note that all the quantities involved in the agent’s calculations
are purely local, thus making Algorithm 2 fully distributed.
Differently from customary primal-dual schemes, (33b) does
not need the projection over the positive orthant Rm

+ due to
the chosen augmented Lagrangian functions Li (27). We only
need to initialize λ0i ≥ 0 for all i ∈ I, and choose δ and ρ
appropriately so that we avoid situations where λti ≥ 0 implies
λt+1
i < 0. To see this notice first that if λti = 0, then it is easy

to check Gλ,i(N(Aix
t
i− bi)+yti , λti) ≥ 0 and, thus, λt+1

i ≥ 0.
The critical scenario for agent i occurs when all the multipliers
of its neighbors are zero, namely λtj = 0 for all j ∈ Ni, and
when max{ρ[N(Aix

t
i − bi) + yti ]ℓ + [λti]ℓ, 0} = 0 for at least

one ℓ ∈ {1, . . . ,m}. Indeed, specializing (33b) for this case
leads to the following update of that ℓ-th component of λti

[λt+1
i ]ℓ =

(
wii −

δ

ρ

)
[λti]ℓ. (34)

From (34), we conclude that [λt+1
i ]ℓ remains non-negative if

[λti]ℓ is non-negative, thus alleviating the need for a projection,
as long as δ and ρ satisfy wii > δ/ρ. This feature plays
a key role in proving exponential stability properties for
the continuous-time, centralized primal-dual scheme proposed
in [39]. As in the case without coupling constraints, the purpose
of the initialization step will become clear in the next subsection.
The steps of Algorithm 2 in (33) can be compactly written as:

xt+1 = xt + δfx(x
t, λt, zt, yt) (35a)

λt+1 = Wmλ
t + δGλ(N(Āxt − b̄) + yt, λt) (35b)

zt+1 = Wdz
t + (Wd − I)ϕ(xt) (35c)

yt+1 = Wmy
t + (Wm − I)N(Āxt − b̄). (35d)

where fx : Rn × RNm × RNd × RNm → Rn is defined as

fx(x, λ, z, y) := −F̃ (x, ϕ(x) + z)−Gx(N(Āx− b̄) + y, λ),
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and, similarly to (16), λ : COL(λ1, . . . , λN ), Wd :=
W ⊗ Id, Wm := W ⊗ Im, Gx(N(Āxt − b̄) + yt, λt) :=
COL(Gx,1(N(A1x

t
1 − b1) + yt1, λ

t
1), . . . , Gx,N (N(ANx

t
N −

bN ) + ytN , λ
t
N )), and Gλ(N(Āxt − b̄) + yt, λt) :=

COL(Gλ,1(N(A1x
t
1 − b1) + yt1, λ

t
1), . . . , Gλ,N (N(ANx

t
N −

bN )+ytN , λ
t
N )). Next, we establish the convergence properties

of Primal-Dual TRADES in computing the v-GNE of (1).

Theorem IV.3. Consider 35 and Assumptions IV.1, IV.2. Let
(x0, λ0, z0, y0) ∈ X×RNm

+ ×RNd×RNm satisfy 1⊤
N,dz

0 = 0

and 1⊤
N,my

0 = 0. Then, there exist δ̄, a1, a2 > 0 such that, for
any δ ∈ (0, δ̄), with wii >

δ
ρ for all i ∈ {1, . . . , N}, it holds∥∥xt − x⋆
∥∥ ≤ a1e

−a2t. □

Note that the additional condition wii > δ/ρ needs to be
satisfied by δ, given ρ, to ensure the dual variables remain
non-negative, as discussed below (34). As in the case of NE
seeking without coupling constraints, the proof of Theorem IV.3
relies on a singular perturbations analysis of system (35). We
provide this in the next subsection.

B. Proof of Theorem IV.3
As with the proof of Theorem III.3, we show that the setting

of Theorem IV.3 fits the framework of Theorem II.5, and
organize its proof in five steps.

1. Bringing (35) in the form of (5): we introduce the change
of coordinates[

z̄t

zt⊥

]
=

[
1⊤
N,d

N
R⊤

d

]
zt,

[
ȳt

yt⊥

]
=

[
1⊤
N,m

N
R⊤

m

]
yt

[
λ̄t

λt⊥

]
=

[
1⊤
N,m

N
R⊤

m

]
λt, (36)

where Rd ∈ RNd×(N−1)d, R⊤
d Rd = I , Rm ∈ RNm×(N−1)m,

R⊤
d Rd = I , ∥Rd∥ = 1, ∥Rm∥ = 1, and

RdR
⊤
d = I −

1N,d1
⊤
N,d

N
, RmR

⊤
m = I −

1N,m1⊤
N,m

N
. (37)

As in the proof of Theorem IV.3, we use the initialization
1⊤
N,dz

0 = 0 and 1⊤
N,my

0 = 0 to ensure that z̄t = 0 and ȳt = 0
for all t ≥ 0. In view of (36), we can therefore rewrite (35) by
ignoring the dynamics of z̄t and ȳt, thus obtaining the system

χt+1 = χt + δf(χt, wt) (38a)

wt+1 = Swt +K(δ)u(χt). (38b)

in which

χt :=

[
xt

λ̄t

]
, wt :=

λt⊥zt⊥
yt⊥

 (39a)

f(χt, wt)

:=

[
fx(x

t,1N,mλ̄
t +Rmλ

t
⊥, Rdz

t
⊥, Rmy

t
⊥)

1⊤
N,m

N Gλ(N(Āxt − b̄) +Rmy
t
⊥,1N,mλ̄

t +Rmλ
t
⊥)

]
(39b)

S :=

R⊤
mWmRm 0 0

0 R⊤
d WdRd 0

0 0 R⊤
mWmRm

 (39c)

K(δ) :=

δR⊤
m 0 0
0 R⊤

d (Wd − I) 0
0 0 R⊤

m(Wm − I)

 (39d)

u(χt) :=

Gλ(N(Āxt − b̄) +Rmy
t
⊥,1N,mλ̄

t +Rmλ
t
⊥)

ϕ(xt)
N(Āxt − b̄)

 .
(39e)

We view (38) as a singularly perturbed system, namely the
interconnection between the slow dynamics (38a) and the fast
one (38b). Indeed, system (38) can be obtained from (5) by
considering χt as the state of (5a) and setting

g(χt, wt, δ) := Swt +K(δ)u(χt). (40)

2. Equilibrium function h: under the double stochasticity
condition of W , due to Standing Assumption II.4, and using
(37), for all χt = χ,

h(χ) :=

 0
−R⊤

d ϕ
([
In 0

]
χ
)

−R⊤
mN

(
Ā
[
In 0

]
χ− b̄

)
 (41)

constitutes an equilibrium of (38b) (parametrized by χ).
3. Boundary layer system and satisfaction of (8): the

so-called boundary layer system associated to (38) can be
constructed by fixing χt = χ = COL(x, λ̄) for some arbitrary
(x, λ̄) ∈ Rn × Rm, and rewriting it according to the error
coordinates w̃ := COL(λ̃⊥, z̃⊥, ỹ⊥) := w − h(χ). Using (37),
we then obtain that

w̃t+1 = Sw̃t + δũ(χ, w̃t), (42)

where

ũ(χ, w̃t)

:=

R⊤
mGλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄+Rmλ̃

t
⊥

)
0
0

.
The next lemma provides a Lyapunov function for (42).

Lemma IV.4. Consider system (42). Then, there exists a
continuous function U : R(N−1)(2m+d) → R and δ̄1 > 0
such that, for any δ ∈ (0, δ̄1), U satisfies (8) with w̃ in place
of ψ. □

4. Reduced system and satisfaction of (9): the so-called
reduced system can be obtained by considering the fast
dynamics in (38a) at steady state, i.e., wt = h(χt) for all
t ≥ 0. We thus have

χt+1 = χt + δf(χt, h(χt)). (43)

Let us expand (43). Using (37), we obtain

xt+1 = xt − δF̃
(
xt,1N,dσ(x

t)
)

− δGx

(
1N,m(Axt − b),1N,mλ̄

t
)

(44a)

λ̄t+1 = λ̄t + δ
1⊤
N,m

N
Gλ

(
1N,m(Axt − b),1N,mλ̄

t
)
. (44b)

Notice that

F̃ (x,1N,dσ(x)) = F (x)
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Gx

(
1N,m(Axt − b),1N,mλ̄

t
)
= ∇xH(Axt − b, λ̄t),

and also

1⊤
N,m

N
Gλ

(
1N,m(Axt − b),1N,mλ̄

t
)
= ∇λH(Axt − b, λ̄t).

Therefore, (43) is identical to the original update (30). Given
the unique v-GNE x⋆ of (1) (see Assumptions IV.1, IV.2) and
the associated multiplier λ⋆ ∈ Rm, the next lemma provides a
Lyapunov function for (43), hence for (30).

Lemma IV.5. Consider system (43) and Assumptions IV.1, IV.2.
Then, there exist a continuous function W : Rn+m → R, δ̄ > 0
such that, for any δ ∈ (0, δ̄), W satisfies (9) with χ in place
of x. □

5. Lipschitz continuity of f , g and h: as we will be invoking
Theorem II.5, we need to ensure that the required Lipschitz
properties are satisfied. In particular, we need to show that f , g
in (39b) and (40), respectively, and h in (41) are Lipschitz with
respect to their arguments. This is guaranteed by the Lipschitz
continuity of the aggregation rules and the gradients of the cost
functions (cf. Standing Assumption II.3), and the Lipschitz
continuity of Gx and Gλ (that appear in f and g), which is
ensured as shown in (64) within the proof of LemmaIV.4.

By combining Lemmas IV.4 and IV.5 with the Lipschitz
continuity properties expressed above, we can apply Theo-
rem II.5. Then, there exists δ̄ ∈ (0,min(δ̄1, δ̄2)) so that, for any
δ ∈ (0, δ̄), COL(x⋆, λ⋆, h(x⋆, λ⋆)) is an exponentially stable
equilibrium point for (38).

V. NUMERICAL EXAMPLES

We demonstrate the efficacy of Primal TRADES and Primal-
Dual TRADES and compare them with the most closely related
distributed equilibrium-seeking algorithms from the literature.
First, we consider the case with local constraints only, and
then we focus also on problems with coupling constraints. In
both cases, we performed Monte Carlo simulations consisting
of 25 trials. In each trial, we randomly generate the problem
parameters, the graph of the network, and the initial conditions
of the algorithms’ variables.

A. Example without coupling constraints

In this subsection, we consider an instance of problem (10)
and perform numerical simulations in which we compare Primal
TRADES with Algorithm 2 proposed in [33] and Algorithm 4
proposed in [38]. We consider the multi-agent demand response
problem considered in [33]. Consider N loads whose electricity
consumption xi := COL(xi,1, . . . , xi,T ) ∈ RT with T ∈ N has
to be chosen to solve

∀i ∈ I : min
xi∈Xi

ρi ∥xi − ûi∥2 + (λσ(x) + p0)
⊤xi,

where ûi ∈ RT denotes some nominal energy profile, ρi > 0 is
a constant weighting parameter, and the term λσ(x) + p0 with
λ ∈ R, p0 ∈ RT models the unit price which is taken to be
an affine increasing function of the aggregate (average) energy

demand σ(x) = (1/N)
∑

i∈I xi. As for the local feasible set
Xi ⊆ RT , for all i ∈ I, we pick

Xi :=

{
xi∈RT | si,τ+1(xi)∈Si and xi,τ ∈Ui ∀τ ∈ {1, . . . , T},

T∑
τ=1

xi,τ =

T∑
τ=1

ûi,τ

}
,

where Ui ⊆ R, Si ⊆ R, and si,τ (xi) is the state of the i-th load
at time τ ; this, given the parameters ai, bi ∈ R, is computed
according to the linear dynamics

si,τ = aτ−1
i si,1 +

τ−1∑
k=1

ak−1bixi,τ−k,

where si,1 ∈ Si is the initial condition of the state of the i-th
load. To instantiate the problem, we set T = 24 and randomly
generate values for ûi, ρi, λ, p0, ai, bi, si,1 and initial strategies
xi,1 from uniform distributions. As for the sets Ui and Si, we
pick the intervals [0, 1] and [0, 10], respectively. We consider a
network with N = 10 players communicating according to an
undirected, connected Erdős-Rényi graph with parameter 0.3.

This setting satisfies our standing assumptions. We compare
our scheme, namely, Primal TRADES with Algorithm 2
in [33] and Algorithm 4 in [38]. We empirically tune the
former with v1 = v2 = 20 communication rounds per
iterate and update the auxiliary variable zt according to
zt+1 = (1 − λ)zt + λAv1,v2 with λ = 0.01 (the quantity
Av1,v2 is a proxy for the unavailable aggregative variable
σ(x), see [33] for more details). We empirically tuned the
method by [38] choosing α = 0.1, β = 1, and τi = 0.1
for all i ∈ I. As for the parameters of our scheme, we set
δ = 0.5 and γ = 0.001. Fig. 4 shows the evolution of the
normalized distance ∥xt − x⋆∥ / ∥x⋆∥ from the NE x⋆ as the
communication rounds (corresponding to iterations) progress.
Our algorithm exhibits faster convergence and achieves higher
accuracy in the calculation of the equilibrium x⋆ with respect
to the method in [33], while it turns out to be slower than
the algorithm in [38]. This was anticipated as (i) the method
in [33] is not guaranteed to converge to the exact NE (see
Table I) and (ii) the method in [38] is based on proximal-based
updates which are known to exhibit faster behavior compared to
gradient-based updates, but are computationally more intensive
due to the proximal operator involved. In Table III, we provide
a numerical comparison of the considered methods in terms
of the mean and standard deviation based on Monte Carlo
simulations of the time needed to perform a single iterate. As
expected, Primal TRADES turns out to be much lighter than
the other algorithms from a computational point of view. The
simulations have been executed on Matlab, using FMINCON()
to solve the optimization steps involved in the methods by [33]
and [38].

B. Example with coupling constraints
Here, we compare our Primal-Dual TRADES algorithm with

the distributed methods proposed in [36], [37] and [38]. For a
fair comparison, we test the scheme by [36] with a constant
step-size even if convergence was theoretically proven only with
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Fig. 4: Mean and 1-standard deviation band (based on Monte
Carlo simulations) of the normalized distance of the iterates
from the NE achieved by Primal TRADES (Algorithm 1), the
algorithm by [33], and the algorithm by [38] on a case study
introduced in [33].

Time of iterate Alg. 1 Alg. 2 in [33] Alg. 4 in [38]
Mean (s) 8×10−4 6.38×10−2 7.67×10−2

Std. Dev. (s) 2×10−4 9.6×10−3 1.18×10−2

TABLE III: Execution time of a single iterate with Primal
TRADES (Algorithm 1) and the considered algorithms in [33]
and [38]. Mean and 1-standard deviation are based on Monte
Carlo simulations of the case study in [33].

a diminishing one (see Table II); note that slower convergence
is expected by using a diminishing step-size. We focus on a
case study inspired by [16] – where it was addressed within a
cooperative scenario – and adapt it as an instance of (1). In
particular, we consider the cost function

Ji(xi, σ(x)) =
1

2
∥xi − pi∥2 +

w

2
∥xi − σ(x)∥ ,

where w > 0 and pi ∈ Rni for all i ∈ I, while σ(x) =
1
N

∑
i∈I xi. We consider a communication graph with ring

topology. As for the coupling constraints, in each trial of the
Monte Carlo simulations, we randomly generate each Ai and
bi by imposing the full row rank property for the former (cf.
Assumption IV.2) and extracting the latter from the interval
[0, 100] with a uniform probability; we set N = 20, ni = 2.
Moreover, in each trial, we uniformly randomly extract each pi
and w from [0, 100]2 and [0, 1], respectively. We empirically
tune the algorithm in [36] with αi = βi = 0.5 for all i ∈ I,
and γt = 0.1 for all t ≥ 0. As for the parameters of the
method in [37], we empirically choose c = 1, k = 0.1,
τ = 0.2, α = 0.2, and v = 0.1. The algorithm in [38] has
been empirically tuned setting α = 0.3, β = 0.1, τi = 0.3
and δi = 0.3 for all i ∈ I. Finally, as for the parameters
of our algorithm, we empirically tune them as δ = 0.05
and ρ = 0.1. In Fig. 5, we compare the performance of the
algorithms in [36], [37], and [38] with Algorithm 2 in terms
of the normalized distance ∥xt − x⋆∥ / ∥x⋆∥ from the GNE
x⋆. In this case, the proposed scheme outperforms the others
in terms of accuracy and convergence speed.

0 50 100 150 200 250 300 350
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Fig. 5: Mean and 1-standard deviation band (based on Monte
Carlo simulations) of the normalized distance of the iterates
from the GNE achieved by Primal-Dual TRADES (Algo-
rithm 2), and the algorithms by [36], [37], and [38].

.

VI. CONCLUSION AND OUTLOOK

We propose two novel fully-distributed algorithms for (gener-
alized) equilibrium seeking in aggregative games over networks.
The first algorithm is designed to address the case where only
local constraints are present. The second method does not
involve local constraints, however, it allows handling coupling
constraints, thus encompassing generalized Nash equilibrium
problems. Both schemes are studied by means of singular
perturbations analysis in which slow and fast dynamics are
identified and separately investigated to demonstrate the linear
convergence of the whole interconnection to the (generalized)
Nash equilibrium. Current work concentrates on extending our
analysis line to allow for local constraint sets, either in a hard
manner or by means of dualizing these and satisfying them
asymptotically. An additional aspect worth of investigation is
the possibility of time-varying communication patterns among
the agents. Finally, we perform detailed numerical simulations
showing the effectiveness of the proposed methods and that
they outperform state-of-the-art distributed methods.

APPENDIX

A. Q-Linear rate
Here, we report the definition of Q-linear convergence [44,

App. A.2]. For the sake of readability, in the rest of the
document, we omit the prefix Q.

Definition A.1. Let {xt} be a sequence in Rn that converges
to x⋆ ∈ Rn. We say that the convergence is Q-linear if there
is a constant r ∈ (0, 1) such that∥∥xt+1 − x⋆

∥∥
∥xt − x⋆∥ ≤ r,

for all t sufficiently large. □

B. Proof of Theorem II.5
Let w̃t := wt − h(xt) and accordingly rewrite (5) as

xt+1 = xt + δf(xt, w̃t + h(xt)) (45a)

w̃t+1 = g(w̃t+h(xt), xt, δ)−h(xt)+∆h(xt+1, xt), (45b)
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where ∆h(xt+1, xt) := −h(xt+1) + h(xt). Pick W as in (9).
By evaluating ∆W (xt) := W (xt+1) − W (xt) along the
trajectories of (45a), we obtain

∆W (xt) =W (xt + δf(xt, w̃t + h(xt)))−W (xt)

(a)
= W (xt + δf(xt, h(xt)))−W (xt)

+W (xt + δf(xt, w̃t + h(xt)))

−W (xt + δf(xt, h(xt)))

(b)

≤ −δc3
∥∥xt − x⋆

∥∥2 +W (xt + δf(xt, w̃t + h(xt)))

−W (xt + δf(xt, h(xt)))

(c)

≤ −δc3
∥∥xt − x⋆

∥∥2 + 2δc4Lf

∥∥w̃t
∥∥∥∥xt − x⋆

∥∥
+ δ2c4Lf

∥∥w̃t
∥∥∥∥f(xt, w̃t + h(xt))

∥∥
+ δ2c4Lf

∥∥w̃t
∥∥∥∥f(xt, h(xt))∥∥ , (46)

where in (a) we add and subtract the term W (xt +
δf(xt, h(xt))), in (b) we exploit (9b) to bound the difference
of the first two terms, in (c) we use (9c), the Lipschitz
continuity of f , and the triangle inequality. By recalling that
f(x⋆, h(x⋆)) = 0 we can thus write

∥f(xt,w̃t + h(xt))∥ =
∥∥f(xt, w̃t + h(xt))− f(x⋆, h(x⋆))

∥∥
(a)

≤ Lf

∥∥xt − x⋆
∥∥+ Lf

∥∥w̃t + h(xt)− h(x⋆)
∥∥

(b)

≤ Lf (1 + Lh)
∥∥xt − x⋆

∥∥+ Lf

∥∥w̃t
∥∥ , (47)

where in (a) we use the Lipschitz continuity of f and h, and
in (b) we use the Lipschitz continuity of h together with the
triangle inequality. With similar arguments, we have∥∥f(xt, h(xt))∥∥ ≤ Lf (1 + Lh)

∥∥xt − x⋆
∥∥ . (48)

Using inequalities (47) and (48) we then bound (46) as

∆W (xt) ≤ −δc3
∥∥xt − x⋆

∥∥2 + 2δc4Lf

∥∥w̃t
∥∥ ∥∥xt − x⋆

∥∥
+ δ2c4L

2
f

∥∥w̃t
∥∥2

+ 2δ2c4L
2
f (1 + Lh)

∥∥w̃t
∥∥∥∥xt − x⋆

∥∥
≤ −δc3

∥∥xt − x⋆
∥∥2 + δ2k3

∥∥w̃t
∥∥2

+ (δk1 + δ2k2)
∥∥w̃t

∥∥∥∥xt − x⋆
∥∥ , (49)

where we introduce the constants

k1 := 2c4Lf , k2 := 2c4L
2
f (1 + Lh), k3 := c4L

2
f .

We now pick U as in (8). By evaluating ∆U(w̃t) :=
U(w̃t+1)− U(w̃t) along the trajectories of (45b), we obtain

∆U(w̃)

= U(g(w̃t + h(xt), xt, δ)− h(xt) + ∆h(xt+1, xt))− U(w̃t)

(a)

≤ U(g(w̃t + h(xt), xt, δ)− h(xt))− U(w̃t)

− U(g(w̃t + h(xt), xt, δ)− h(xt))

+ U(g(w̃t + h(xt), xt, δ)− h(xt) + ∆h(xt+1, xt))

(b)

≤ −b3
∥∥w̃t

∥∥2 − U(g(w̃t + h(xt), xt, δ)− h(xt))

+ U(g(w̃t + h(xt), xt, δ)− h(xt) + ∆h(xt+1, xt))

(c)

≤ −b3
∥∥w̃t

∥∥2

+ b4
∥∥∆h(xt+1, xt)

∥∥
×
∥∥g(w̃t + h(xt), xt, δ)− h(xt) + ∆h(xt+1, xt)

∥∥
+ b4

∥∥∆h(xt+1, xt)
∥∥ ∥∥g(w̃t + h(xt), xt, δ)− h(xt)

∥∥
(d)

≤ −b3
∥∥w̃t

∥∥2 + b4
∥∥∆h(xt+1, xt)

∥∥2
+ 2b4

∥∥∆h(xt+1, xt)
∥∥∥∥g(w̃t+h(xt), xt, δ)−h(xt)

∥∥,
(50)

where in (a) we add and subtract U(g(w̃t + h(xt), xt, δ) −
h(xt)), in (b) we exploit (8b) to bound the first two terms, in
(c) we use (8c) to bound the the difference of the last two terms,
and (d) uses the triangle inequality. By using the definition of
∆h(xt+1, xt) and the Lipschitz continuity of h, we write∥∥∆h(xt+1, xt)

∥∥ ≤ Lh

∥∥xt+1 − xt
∥∥

(a)

≤ δLh

∥∥f(xt, w̃t + h(xt))
∥∥

(b)

≤ δLh

∥∥f(xt, w̃t + h(xt))− f(x⋆, h(x⋆))
∥∥

(c)

≤ δLhLf (1+Lh)
∥∥xt−x⋆∥∥+δLhLf

∥∥w̃t
∥∥ ,

(51)

where in (a) we use the update (45a), in (b) we add the term
f(x⋆, h(x⋆)) since this is zero, and in (c) we use the triangle
inequality and the Lipschitz continuity of f and h. Moreover,
since g(h(xt), xt, δ) = h(xt), we obtain∥∥g(w̃t + h(xt), xt, δ)− h(xt)

∥∥
=
∥∥g(w̃t + h(xt), xt, δ)−g(h(xt), xt, δ)

∥∥≤Lg

∥∥w̃t
∥∥, (52)

where the inequality is due to the Lipschitz continuity of g.
Using inequalities (51) and (52), we then bound (50) as

∆U(w̃)

≤ −b3
∥∥w̃t

∥∥2 + 2δb4LhLgLf (1 + Lh)
∥∥xt − x⋆

∥∥∥∥w̃t
∥∥

+ 2δb4LhLgLf

∥∥w̃t
∥∥2 + δ2b4L

2
hL

2
f (1 + Lh)

2
∥∥xt − x⋆

∥∥2
+ 2δ2b4L

2
hL

2
f (1 + Lh)

∥∥xt − x⋆
∥∥∥∥w̃t

∥∥+ δ2b4L
2
hL

2
f

∥∥w̃t
∥∥2

≤ (−b3 + δk6 + δ2k7)
∥∥w̃t

∥∥2 + δ2k8
∥∥xt − x⋆

∥∥2
+ (δk4 + δ2k5)

∥∥xt − x⋆
∥∥∥∥w̃t

∥∥ , (53)

where we introduce the constants

k4 := 2b4LhLgLf (1 + Lh), k5 := 2b4L
2
hL

2
f (1 + Lh),

k6 := 2b4LhLgLf , k7 := b4L
2
hL

2
f ,

k8 := b4L
2
hL

2
f (1 + Lh)

2.

We pick the following Lyapunov candidate V : D × Rm → R:

V (xt, w̃t) =W (xt) + U(w̃t).

By evaluating ∆V (xt, w̃t) := V (xt+1, w̃t+1) − V (xt, w̃t) =
∆W (xt) +∆U(w̃t) along the trajectories of (45), we can use
the results (49) and (53) to write

∆V (xt, w̃t) ≤ −
[
∥xt − x⋆∥

∥w̃t∥

]⊤
Q(δ)

[
∥xt − x⋆∥

∥w̃t∥

]
, (54)

where we define the matrix Q(δ) = Q(δ)⊤ ∈ R2 as

Q(δ) :=

[
δc3 − δ2k8 q21(δ)
q21(δ) b3 − δk6 − δ2(k3 + k7)

]
,
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with q21(δ) := − 1
2 (δ(k1 + k4) + δ2(k2 + k5)). By relying on

the Sylvester criterion [41], we know that Q ≻ 0 if and only if

c3b3 > p(δ) (55)

where the polynomial p(δ) is defined as

p(δ) := q21(δ)
2 + δ2c3k6 + δ2(δc3(k3 + k7) + b3k8)

− δ3k6k8 − δ4k8(k3 + k7). (56)

We note that p is a continuous function of δ and limδ→0 p(δ) =
0. Hence, there exists some δ̄ ∈ (0,min{δ̄1, δ̄2}) – recall that
δ̄1 and δ̄2 exist as U and W are taken to satisfy (8) and (9) –
so that (55) is satisfied for any δ ∈ (0, δ̄). Under such a choice
of δ, and denoting by q > 0 the smallest eigenvalue of Q(δ),
we can bound (54) as

∆V (xt, w̃t) ≤ −q
∥∥∥∥[∥xt − x⋆∥

∥w̃t∥

]∥∥∥∥2 ,
which allows us to conclude, in view of [45, Theorem 13.2],
that (x⋆, 0) is an exponentially stable equilibrium point for
system (45). The theorem’s conclusion follows then by consid-
ering the definition of exponentially stable equilibrium point
and by reverting to the original coordinates (xt, wt).

C. Proofs of technical lemmas of Section III-B
Proof of Lemma III.4: system (23) is a linear autonomous

system whose state matrix R⊤
d WdRd ∈ R(N−1)d×(N−1)d is

Schur. Hence, there exists P ∈ R(N−1)d×(N−1)d, P = P⊤ ≻
0 for the candidate Lyapunov function U(z̃t) = (z̃t)⊤P z̃t,
solving the Lyapunov equation

(R⊤
d WdRd)

⊤PR⊤
d WdRd − P = −Q. (57)

for any Q ∈ R(N−1)d×(N−1)d, Q = Q⊤ ≻ 0. Condition (8a)
follows then from the fact that U is quadratic with P ≻ 0 so
b1 and b2 can be chosen to be its minimum and maximum
eigenvalue, respectively. The left-hand side of (8b) becomes
(z̃t)⊤((R⊤

d WdRd)
⊤PR⊤

d WdRd−P )z̃t = −(z̃t)⊤Qz̃t, where
the equality is due to (57). Hence, (8b) is satisfied by taking
b3 to be the smallest eigenvalue of Q. To see (8c) notice that∥∥U(z̃t1)− U(z̃t2)

∥∥ =
∥∥(z̃t1)⊤P z̃t1 − (z̃t2)

⊤P z̃t2
∥∥

(a)

≤
∥∥(z̃t1)⊤P z̃t1 − (z̃t1)

⊤P z̃t2
∥∥+ ∥∥(z̃t2)⊤P z̃t1 − (z̃t2)

⊤P z̃t2
∥∥

(b)

≤ ∥P∥
∥∥z̃t1 − z̃t2

∥∥∥∥z̃t1∥∥+ ∥P∥
∥∥z̃t1 − z̃t2

∥∥∥∥z̃t2∥∥ , (58)

where (a) follows from adding and subtracting (z̃t1)
⊤P z̃t2

and using the triangle inequality, while (b) from the Cauchy-
Schwarz inequality. The bound (8c) follows from (58) by setting
b4 as the largest eigenvalue of P . ■

We provide here the following technical lemma which is
used in the proof of Lemma III.5.

Lemma C.2 (Contraction of strongly monotone operator).
Let F : Rn → Rn be µ-strongly monotone and L-Lipschitz
continuous. If γ ∈ (0, 2µ/L2), then for all x, x′ ∈ Rn it holds

∥x− γF (x)− x′ + γF (x′)∥ ≤ (1− µ̄) ∥x− x′∥ ,

where µ̄ := 1−
√
1− γ(2µ− γL2) ∈ (0, 1].

Proof. We have that

∥x− γF (x)− x′ + γF (x′)∥2

= ∥x− x′∥2 + γ2 ∥F (x)− F (x′)∥2

− 2γ(x− x′)⊤(F (x)− F (x′))

(a)

≤ ∥x− x′∥2 − γ(2µ− γL2) ∥x− x′∥2 , (59)

where in (a) we use the strong monotonicity and the Lipschitz
continuity of F . By construction, µ̄ ∈ (0, 1] is equivalent to
γ(2µ−γL2) > 0 and γ(2µ−γL2) ≤ 1. The former holds since
γ ∈ (0, 2µ/L2). To see the latter, notice that, by definition of
µ-strong monotonicity and L-Lipschitz continuity, we have

µ ∥x− x′∥2 ≤ (F (x)− F (x′))⊤(x− x′)

≤ ∥F (x)− F (x′)∥ ∥x− x′∥ ≤ L ∥x− x′∥2 ,
for all x, x′, hence µ ≤ L. Thus, for any γ, it holds that
1− 2µγ + γ2L2 ≥ 1− 2γL+ γ2L2 = (1− γL)2 ≥ 0. ■

Proof of Lemma III.5: pick W : Rn → R defined as

W (xt) =
1

2

∥∥xt − x⋆
∥∥2 .

Since W is a quadratic function, conditions (9a) and (9c) are
satisfied. To show (9b) we evaluate ∆W (xt) := W (xt+1)−
W (xt) along (25). We then have

∆W (xt)

=
1

2

∥∥(1− δ)xt+δ
(
PX

[
xt − γF (xt)

])
−x⋆

∥∥2− 1

2

∥∥xt−x⋆∥∥2
(a)

≤ (1− δ)2

2

∥∥xt − x⋆
∥∥2 − 1

2

∥∥xt − x⋆
∥∥2

+ (δ−δ2)
∥∥xt−x⋆∥∥∥∥PX

[
xt−γF (xt)

]
−PX [x⋆−γF (x⋆)]

∥∥
+
δ2

2

∥∥PX

[
xt − γF (xt)

]
− PX [x⋆ − γF (x⋆)]

∥∥2
(b)

≤ (1− δ)2

2

∥∥xt − x⋆
∥∥2 − 1

2

∥∥xt − x⋆
∥∥2

+ (δ − δ2)
∥∥xt − x⋆

∥∥∥∥xt − γF (xt)− x⋆ + γF (x⋆)
∥∥

+
δ2

2

∥∥xt − γF (xt)− x⋆ + γF (x⋆)
∥∥2 , (60)

where in (a) we introduce δ(x⋆ − PX [x⋆ − γF (x⋆)]) within
the first norm, as this is zero due to the definition of x⋆,
expand the square, and use the Cauchy-Schwarz inequality.
Inequality (b) follows by the fact that for all a, b, we have that
∥PX [a]− PX [b]∥ ≤ ∥a− b∥, since the projection operator is
nonexpansive. Since F is µ-strongly monotone and β1 Lipschitz
continuous (cf. Standing Assumption II.3), set γ̄ = 2µ/(β1)

2

and choose γ ∈ (0, γ̄). Applying Lemma C.2 yields∥∥xt − γF (xt)− x⋆ + γF (x⋆)
∥∥ ≤ (1− µ̄)

∥∥xt − x⋆
∥∥ , (61)

with µ̄ = 1−
√
1− γ(2µ− γ(β1)2) ∈ (0, 1]. Thus, by using

the inequality in (61), we can bound (60) as follows

∆W (xt) ≤ (1− δ)2

2

∥∥xt − x⋆
∥∥2 − 1

2

∥∥xt − x⋆
∥∥2

+ (δ − δ2)(1− µ̄)
∥∥xt − x⋆

∥∥2
+ δ2(1− µ̄)2/2

∥∥xt − x⋆
∥∥2
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(a)
= −δµ̄ (1− δµ̄/2)

∥∥xt − x⋆
∥∥2 . (62)

where (a) is obtained by rearranging the above terms. Thus,
for any δ ∈ (0, δ̄2) with δ̄2 := 2/µ̄, (1 − δµ̄/2) > 0 in (62),
thus establishing condition (9b) and concluding the proof.

D. Proofs of technical lemmas of Section IV-B
Proof of Lemma IV.4: since R⊤

m1N,m = 0, we can write

R⊤
mGλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄+Rmλ̃

t
⊥

)
= R⊤

m

(
Gλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄+Rmλ̃

t
⊥

)
− 1N,m∇λH(Ax− b, λ̄)

)
= R⊤

m

(
Gλ

(
1N,m(Ax− b) +Rmỹ

t
⊥,1N,mλ̄+Rmλ̃

t
⊥

)
−Gλ(1N,m(Ax− b),1N,mλ̄)

)
, (63)

where in the last equality we used 1N,m∇λH(Ax− b, λ̄) =
Gλ(1N,m(Ax− b),1N,mλ̄). Following [39, Lemma 3], notice
that, for all r1, r2 ∈ R, there exists ϵ(r1, r2) ∈ [0, 1] so that1

max{r1, 0} −max{r2, 0} = ϵ(r1, r2)(r1 − r2). (64)

Let us introduce

qti :=

m∑
ℓ=1

[Rmỹ
t
⊥]ℓ+(i−1)meℓ, pti :=

m∑
ℓ=1

[Rmλ̃
t
⊥]ℓ+(i−1)meℓ,

(65)

and use them to define
rt1,i := ρ(Ax− b+ qti) + λ̄+ pti

r2,i := ρ(Ax− b) + λ̄.
(66)

By the definition of ũ(χ, w̃t) we have that its norm ∥ũ(χ, w̃t)∥
is equal to the norm of the quantity in (63). Let nw := (N −
1)(2m + d). As such, for all χ ∈ Rn+m and w̃t ∈ Rnw , we
use the definition of Gλ in (32), rt1,i and r2,i in (66), and
apply (64) for each component of ũ(χ, w̃t) obtaining∥∥ũ(χ, w̃t)

∥∥
≤
∥∥∥∥R⊤

m

1

ρ
COL

( m∑
ℓ=1

ϵ([rt1,i]ℓ, [r2,i]ℓ)
(
[rt1,i − λ̄− pti]ℓ

− [r2,i − λ̄]ℓ
)
eℓ

)N

i=1

∥∥∥∥
(a)

≤
∥∥∥∥R⊤

m

1

ρ
COL

(
m∑
ℓ=1

(
[rt1,i − λ̄− pti]ℓ − [r2,i − λ̄]ℓ

)
eℓ

)N

i=1

∥∥∥∥
(b)
=

∥∥∥∥∥∥R⊤
m

1

ρ
COL

(
m∑
ℓ=1

ρ[qti ]ℓeℓ

)N

i=1

∥∥∥∥∥∥
(c)
=
∥∥R⊤

mRmỹ
t
⊥
∥∥ (d)

≤
∥∥w̃t

∥∥ , (67)

where in (a) we use the fact that ϵ([rt1,i]ℓ, [r2,i]ℓ) ∈ [0, 1]
for all ℓ ∈ {1, . . . ,m} and i ∈ I, (b) uses the definitions

1If r1 ̸= r2, pick ϵ = max{r1,0}−max{r2,0}
r1−r2

, otherwise set ϵ = 0.

in (66) to simplify the terms, (c) follows from (65), and (d)
uses R⊤

mRm = I and ∥ỹt⊥∥ ≤ ∥w̃t∥ that holds since ỹt⊥ is a
component of w̃t. Now, let U : Rnw → R be

U(w̃) = (w̃)⊤Uw̃,
where U ∈ Rnw×nw with U = U⊤ ≻ 0, such that

S⊤US − U = −I. (68)

We remark that such a matrix U always exists because, in light
of Standing Assumption II.4, both R⊤

d WdRd and R⊤
mWmRm

are Schur matrices and, thus, S is Schur as well. Under this
choice of U , conditions (8a) and (8c) are satisfied. To show
(8b) we evaluate ∆U(w̃t) := U(w̃t+1) − U(w̃t) along the
trajectories of (42), obtaining

∆U(w̃t) = (Sw̃t + δũ(χ, w̃t))⊤U(Sw̃t + δũ(χ, w̃t))

− (w̃t)⊤Uw̃t

= −
∥∥w̃t

∥∥2 + 2δ(w̃t)⊤S⊤U ũ(χ, w̃t)

+ δ2ũ(χ, w̃t)⊤U ũ(χ, w̃t)

≤ −(1− δµ1 − δ2µ2)
∥∥w̃t

∥∥2 , (69)

where the second equality is due to (68), and the inequality
follows from (67) and the Cauchy-Schwarz inequality , with
the constants µ1 := 2 ∥S∥ ∥U∥ and µ2 := ∥U∥. Thus, there
always exists δ̄1 > 0 small enough so that (1−δµ1−δ2µ2) > 0
for any δ ∈ (0, δ̄1), concluding the proof.

Proof of Lemma IV.5: the proof is inspired by [39, Theorem 2,
Lemma 3, Lemma 4], adapted to our framework. Let F :
Rn+m → Rn+m and H : Rn+m → Rn+m be defined as

F(χt) :=

[
F
([
I 0

]
χt
)

0

]
, (70a)

H(χt) :=

[
∇xH

(
A
[
I 0

]
χt − b,

[
0 I

]
χt
)

−∇λH
(
A
[
I 0

]
χt − b,

[
0 I

]
χt
)] . (70b)

Applying (64) to each of the components of H(χt)−H(χ⋆),
for all χt ∈ Rn+m we obtain

H(χt)−H(χ⋆)

=

[
ρA⊤E(χt, χ⋆)A A⊤E(χt, χ⋆)
−E(χt, χ⋆)A − 1

ρ (E(χt, χ⋆)− I)

]
(χt−χ⋆), (71)

where E(χt, χ⋆) := diag(ϵ1(χt, χ⋆), . . . , ϵm(χt, χ⋆)) and
ϵℓ(χ

t, χ⋆) ∈ [0, 1] so that

max{ρ[Axt−b]ℓ+[λ̄t]ℓ, 0}−max{ρ[Ax⋆−b]ℓ+[λ⋆]ℓ, 0}
= ϵℓ(χ

t, χ⋆)(ρ[Axt − b−Ax⋆ − b]ℓ + [λ̄t]ℓ − [λ⋆]ℓ),

for all ℓ ∈ {1, . . . ,m} and χt := COL(xt, λ̄t) ∈ Rn+m.
Moreover, for all xt ∈ Rn, we have

F (xt)− F (x⋆) =

∫ 1

0

∇F ((1− ν)x⋆ + νxt)(xt − x⋆)dν

(a)
=

[∫ 1

0

∇F ((1− ν)x⋆ + νxt)dν

]
(xt − x⋆)

(b)
= B(xt, x⋆)(xt − x⋆). (72)

where in (a) we have extracted the term (xt − x⋆) from
the integral and in (b) we have introduced B(xt, x⋆) :=
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∫ 1

0
∇F ((1− ν)x⋆ + νxt)dν. Since F is µ-strongly monotone

and β1-Lipschitz continuous (cf. Standing Assumption II.3),
we can uniformly bound the integrand term of (72) as

µI ≼ ∇F ((1− ν)x⋆ + νxt) ≼ β1I,

which leads to

µI ≼
∫ 1

0

µIdν ≼ B(xt, x⋆) ≼
∫ 1

0

β1Idν ≼ β1I. (73)

Combining (39b), (70), (71), and (72), we can write

f(χt, h(χt))− f(χ⋆, h(χ⋆))

= −F(χt) + F(χ⋆)− (H(χt)−H(χ⋆))

= D(χt, χ⋆)(χt − χ⋆), (74)

where D(χt, χ⋆) ∈ R(n+m)×(n+m) is given by

D(χt, χ⋆)

:=

[−B(χt, χ⋆)− ρA⊤E(χt, χ⋆)A −A⊤E(χt, χ⋆)
E(χt, χ⋆)A 1

ρ (E(χt, χ⋆)− I)

]
.

We then have that for all χt ∈ Rn+m,∥∥D(χt, χ⋆)(χt − χ⋆)
∥∥2
M

≤ µ1

∥∥χt − χ⋆
∥∥2
M
, (75)

where µ1 :=
(
max

{
β1 + ρ ∥A∥2 , 1ρ

})2
and the inequality

follows by inspection of D(χt, χ⋆)(χt − χ⋆) and using
∥E(χt, χ⋆)∥ ≤ 1. Now, let W : Rn+m → R be defined as

W (χ) = (χ− χ⋆)⊤M(χ− χ⋆), (76)

where M ∈ R(n+m)×(n+m) is defined as

M :=

[
cI A⊤

A cI

]
. (77)

Note that M ≻ 0 for any c >
√
κ2 and, thus, W satisfies (9a)

and (9c). To show (9b), we evaluate ∆W (χt) :=W (χt+1)−
W (χt) along the trajectories of (43), obtaining

∆W (χt)

=
∥∥χt + δf(χt, h(χt))− χ⋆

∥∥2
M

−
∥∥χt − χ⋆

∥∥2
M

(a)
=
∥∥χt + δf(χt, h(χt))− χ⋆ − δf(χ⋆, h(χ⋆))

∥∥2
M

−
∥∥χt − χ⋆

∥∥2
M

(b)
=
∥∥χt − χ⋆ + δD(χt, χ⋆)(χt − χ⋆)

∥∥2
M

−
∥∥χt − χ⋆

∥∥2
M

(c)
= δ(χt − χ⋆)⊤(D(χt, χ⋆)⊤M +MD(χt, χ⋆))(χt − χ⋆)

+ δ2
∥∥D(χt, χ⋆)(χt − χ⋆)

∥∥2
M
, (78)

where (a) uses the fact that f(χ⋆, h(χ⋆)) = 0 (cf. (31)), (b)
rewrites the quantities using (74), and (c) expands ∥·∥2M . As
in [39, Lemma 4], since it holds (73), there exists c̄ > 0 such
that, for any c > c̄, it holds

D(χt, χ⋆)⊤M +MD(χt, χ⋆) ≤ −τM, (79)

where τ := κ1

2c . Therefore, by using (79) and (75), we bound
the right-hand side of (78) as

∆W (χt) ≤ −δ (τ − δµ1)
∥∥χt − χ⋆

∥∥2
M
.

Setting δ̄ := τ
µ1

, (78) ensures that for any δ ∈ (0, δ̄), W
satisfies (9b), and the proof follows.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analysed – theoretically and numerically
– three approximate dynamic programming algorithms to
find approximately optimal delivery slot prices in the rev-
enue management problem in attended home delivery. From
a control-theretical perspective, we identified limitations in
the affine value function approximation algorithm and the
non-linear stochastic dual dynamic programming algorithm.
Through our numerical analysis, we showed how gradient-
bounded dynamic programming can overcome these limi-
tations. In our case study, we compared the performance
of all three algorithms, i.e. profit-generation capabilities and
computational time, in a number of scenarios. Overall, our
numerical analysis shows that the gradient-bounded dynamic
programming algorithm exhibits superior performance, since
the affine value function approximation algorithm cannot
reach its profit-generation capabilities and since the non-linear
stochastic dual dynamic programming algorithm cannot reach
its computational speed and computational stability properties.

Possible directions for future work include investigating the
numerical performance of these algorithms for other network
revenue management problems and extending the promising
gradient-bounded dynamic programming approach to other
customer decision models than multinomial logit.
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Padova, Italy, in 2007. He is a Professor with
the Department of Electrical, Electronic, and
Information Engineering G. Marconi, Alma Mater
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