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Skin blemishes can be caused by multiple events or diseases and, in some cases, it is difficult to 
distinguish where they come from. Therefore, there may be cases with a dangerous origin that 
go unnoticed or the opposite case (which can lead to overcrowding of health services). To avoid 
this, the use of artificial intelligence-based classifiers using images taken with mobile devices is 
proposed; this would help in the initial screening process and provide some information to the 
patient prior to their final diagnosis. To this end, this work proposes an optimization mechanism 
based on two phases in which a global search for the best classifiers (from among more than 
150 combinations) is carried out, and, in the second phase, the best candidates are subjected to 
a phase of evaluation of the robustness of the system by applying the cross-validation technique. 
The results obtained reach 99.95% accuracy for the best case and 99.75% AUC. Comparing 
the developed classifier with previous works, an improvement in terms of classification rate is 
appreciated, as well as in the reduction of the classifier complexity, which allows our classifier to 
be integrated in a specific purpose system with few computational resources.

1. Introduction

Various studies point to an increase in global temperature and therefore in the incidence of sun rays on the skin [22]. This fact, 
in addition to other multiple diseases, causes the proliferation of spots on the skin, which, in most cases, is not easy to distinguish 
the cause of its occurrence. Because of that, it can lead to situations such as not giving these spots any importance (assuming that 
they are simple moles or age spots), or going to the health emergency services for any spot.

Regarding this last situation, the World Health Organization (WHO) estimates that by 2030 there will be a global shortage of 
around 14 million health professionals [29]. This shortage of health workers can lead to overburdened health systems, resulting in 
increased waiting times for care, a reduction in the quality of health services, and ultimately the collapse of the health system [13].
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Table 1

Dataset distribution.

Class ID Abbreviation Number of images %

Melanocytic nevi 0 nv 6,620 66.9

Melanoma 1 mel 1,087 11.0

Benign keratosis-like lesions 2 bkl 1,086 11.0

Basal cell carcinoma 3 bcc 509 5.1

Actinic keratoses 4 akiec 327 3.3

Vascular lesions 5 vasc 140 1.5

Dermatofibroma 6 df 115 1.2

TOTAL 9,884 100

And, on the other hand, the misuse of healthcare is a problem that affects many health systems around the world. The request for 
emergency healthcare for banal cases is one of the main problems associated with it: many people go to emergency rooms for minor 
problems that could be treated in primary care or even self-care at home. This not only saturates emergency departments, but also 
contributes to increased waiting times and reduced quality of care provided to patients who really need urgent care [1,16].

In the case of skin diseases, both cases are worrying: a patient does not give a blemish the importance it deserves and that a 
patient cannot get prompt attention for a serious case. Therefore, it is important to promote the use of semi-automated screening 
systems to help reduce the workload of medical professionals and emergency departments.

At this point, the application of Artificial Intelligence (AI) techniques is of great importance to design classifier systems capable of 
extracting features from images and differentiating between those that show some kind of disease and those that represent a healthy 
patient [12,4,17,3].

According to previous statistical studies on cancer diagnosis, such as the one conducted by Mark Priebe and Markin [20], in 
general, in medical image-guided diagnosis, the average percentage of discrepancies in diagnostic reports is 12%; therefore, any 
assisted diagnosis system that exceeds 88% accuracy would theoretically have a higher accuracy rate than the pathologist. However, 
the main objective of these systems is not to replace the pathologist but to serve as a tool to help reduce the pathologist’s workload, 
always taking into account a final intervention by the pathologist to validate the results.

Therefore, after explaining this problem, the aim of this work is to design and evaluate a tool to classify skin blemishes using 
images taken with a mobile device. For this purpose, a dataset will be used that distinguishes between 7 types of skin blemishes 
(from harmless moles to melanoma), and AI techniques will be applied to obtain the best possible classifier.

The remainder of the manuscript is structured as follows: The methods used to develop and test the diagnosis aid system are 
presented in Section 2. The results obtained after testing the classifier and the discussion comparing the results obtained with 
previous works are detailed in Section 3. Finally, in Section 4, the final conclusions of this work are detailed.

2. Materials and methods

This section will present the dataset used to train the classifier, the various classifiers trained for this purpose, the process followed 
to evaluate them individually, and the optimization process followed to obtain the best classifier.

2.1. Dataset

The database known as Skin Cancer MNIST: HAM10000 has been used for this work [5]. This is a set of skin images that focuses 
mainly on the creation of neural networks for the detection and classification of skin lesions. These images have been collected by the 
University Hospital of the Medical University of Vienna and the University of Queensland in Australia. Each image in this database 
is a high-resolution photograph of a skin lesion accompanied by information about where the lesion is located, the patient’s age and 
gender, and clinical diagnosis. To certify and confirm the diagnosis of the images, more than 50% have undergone histopathology 
tests. For the remainder, follow-up examination, analysis by an expert panel, or confirmation by confocal microscopy have been 
used.

This database has a total of almost 10,000 images of skin lesions of 7 different types. The distribution of images for each type is 
shown in Table 1.

In Fig. 1, a sample image from each class is presented. As can be observed, it is not easy to distinguish between some classes.

This dataset has been used in many research studies with the aim of creating a machine learning algorithm with sufficient 
capability for the detection and classification of these skin lesions. Therefore, previous works that have used this same dataset will 
be used to compare the results finally obtained in this work.

As can be seen, the classes provided by this dataset are unbalanced. If the classifier is trained normally, very good overall results 
may be obtained, with very bad results for the less predominant classes. In the next subsection, the solution provided in this work to 
solve this problem will be detailed.

2.2. Classifiers

This subsection will detail the classical metrics for evaluating a classifier system, followed by the optimization process performed 
2

to obtain a good classifier for the dataset detailed before.
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Fig. 1. Samples images from the dataset.

2.2.1. Evaluation metrics

To evaluate the effectiveness of the classification results of a classifier, the most common metrics are used: accuracy (most-used 
metric), sensitivity (also known as recall), precision, and F1score [26]. To this end, the classification results obtained for each class are 
tagged as True Positive (TP), True Negative (TN), False Positive (FP) or False Negative (FN). According to them, the high-level metrics 
are presented in the following equations:

Accuracy =
∑

𝑐

𝑇 𝑃𝑐 + 𝑇𝑁𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝑇𝑁𝑐 + 𝐹𝑁𝑐

, 𝑐 ∈ classes (1)

Precision =
∑

𝑐

𝑇 𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐

, 𝑐 ∈ classes (2)

Sensitivity =
∑

𝑐

𝑇 𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐

, 𝑐 ∈ classes (3)

Specificity =
∑

𝑐

𝑇𝑁𝑐

𝑇𝑁𝑐 + 𝐹𝑃𝑐

, 𝑐 ∈ classes (4)

𝐹1score = 2 ∗
precision ∗ sensitivity
precision + sensitivity

. (5)

About those metrics:

• Accuracy: all samples classified correctly compared to all samples (see Equation (1))

• Precision: proportion of values classified as TP in all cases that have been classified as it (see Equation (2))

• Sensitivity (or Recall): proportion of values classified as TP that are correctly classified (see Equation (3))

• Specificity: proportion of values classified as TN that are correctly classified (see Equation (4)).

• F1score: it considers two of the main metrics (precision and sensitivity), calculating the harmonic mean of both parameters (see 
Equation (5))

The above metrics are common to all machine / deep learning systems; but there are other commonly used metrics like the 
ROC curve (Receiver Operating Characteristic) [15], which is of particular interest in diagnostic systems, because it is the visual 
representation of the True Positives Rate (TPR) versus the False Positives Rate (FPR) as the discrimination threshold is varied. 
Usually, when the ROC curve is used, the area under the curve (AUC) is used as a value of the system’s goodness-of-fit.

Therefore, the classifier systems developed in this work will be evaluated according to all the metrics detailed in this subsection. 
Moreover, the results obtained for the classification system will be compared with the results obtained in previous works.

2.2.2. Optimization process

In order to obtain the best classifier for the system, an optimization process based on two steps is presented: In the first step, a 
global search is performed including multiple trainings with different variations of the hyperparameters for each classifier; and in 
the second step, the robustness of the best models is tested applying cross-validation technique. After this process, the best classifier 
is compared with previous works. The full process diagram can be seen in Fig. 2.

2.2.2.1. Grid search. The first step before starting the training process is to divide the dataset randomly in two subsets: train and 
3

test. The training subset represents 80% of the original data set, and the testing subset contains the remaining 20%.
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Fig. 2. Graphical Abstract.

Table 2

Hyperparameters’ values.

Parameter Values

Batch size 8, 16, 24, 32

Learning rate 0.001, 0.0001, 0.00001

After this division, a global search is performed, which means that we are going to train several combinations of architectures and 
hyperparameters in order to find the best combinations. The main criterion for selecting the best candidates after the global search 
process is the Accuracy value of the Test subset.

In addition, there is a big issue regarding the dataset unbalance. To avoid this problem, there are usually two mechanisms to 
solve it: “data augmentation” and “weighted classes” [28]. In the case of “data augmentation”, new artificial images are generated 
from the existing ones for the classes with fewer data by performing visual transformations (rotations, zoom, etc.). However, when 
there is a very large imbalance, this causes that the amount of artificial data can exceed the amount of real data (and that can be a 
bias for the classifier). For this reason, the “weighted classes” technique has been used: in this technique, a numerical weight value 
is given to each class during the training process. Thus, if one class is unbalanced and has fewer data than another, the training can 
be balanced by providing a weight to that class that is inversely proportional to the percentage of data it has.

It is known that deep networks need huge amounts of data, and several augmentation methods have been applied in the literature 
to increase the reliability and robustness of the methods [11]. Therefore, the proposed approach can be tested with the increased 
number of images as a future work.

The hyperparameters taken into account in this study are batch size and learning rate. Table 2 details the values for each hyperpa-

rameter used in each architecture.

Regarding network architectures, 4 types of pre-trained models have been tested: VGG16 [25], ResNet [14], MobileNet [24] and 
EfficientNet [27]. In addition, 10 customized architectures have been defined. These custom architectures are detailed in Table 3.

As can be observed in Table 3, all custom architectures are composed of combinations of convolution layers (apply 3x3 convolutions 
to the images) and max-polling layers (reduce images’ sizes), ended with a flatten layer (transform from 2D data to 1D data) and a 
dense layer (output layer).

In addition, in architectures with more than one convolutional layer, batch-normalization layers (standardize the inputs to a layer) 
and additional dense layers are introduced before the output layer. Finally, every custom architecture has two versions (a and b), with 
version a not including dropout layers (randomly removes a different percentage of connections between layers of neurons at each 
training epoch), and version b including them.

In total, 168 training sessions are held. And, from the results obtained, the four classifiers with the best results are extracted. 
4

These four final classifiers will be subjected to the second phase of the optimization process, which will be described below.
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Table 3

Custom Architectures detailed layer by layer.

ID Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10

1a

CO

MP

FL

DS(7)

1b

CO

MP

FL

DP(0.2)

DS(7)

2a

CO

BN

MP

CO

BN

MP

FL

DS(4096) DS(7)

2b

CO

BN

MP

CO

BN

MP

FL

DS(4096)

DP(0.2)
DS(7)

3a

CO

BN

MP

CO

BN

MP

CO

BN

MP

FL

DS(256) DS(4096) DS(7)

3b

CO

BN

MP

CO

BN

MP

CO

BN

MP

FL

DS(256)

DP(0.2)

DS(4096)

DP(0.3)
DS(7)

4a

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

FL

DS(256) DS(4096) DS(7)

4b

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

FL

DS(256)

DP(0.2)

DS(4096)

DP(0.3)
DS(7)

5a

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

FL

DS(256) DS(4096) DS(7)

5b

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

CO

BN

MP

FL

DS(256)

DP(0.2)

DS(4096)

DP(0.3)
DS(7)

CO: 2D Convolution DS(num): Dense Layer

MP: Max-Polling num: number of neurons

BN: Batch-Normalization DP(per): Dropout Layer

FL: Flatten per: percentage

2.2.2.2. Cross-validation. Secondly, classifiers with the best results from the previous phase are evaluated with additional robustness 
tests.

One of the most common mechanisms for this purpose is cross-validation, which consists of repeating the training with different 
divisions of the training and test subsets, to determine how the model will behave with an unknown test dataset not used before [2]. 
This method is widely used to evaluate the results and to guarantee the independence of the results with respect to the division of 
the data used in the training and test sets.

Among the various implementations of this technique, this work will apply the K-fold cross-validation variant, in which the dataset 
is divided into K groups, where one of them is used for testing and the next K-1 as training. This process is performed a total of K 
times, mixing the groups in each interaction so that the same groups are not used. This process is detailed in Fig. 3. For this work, 
the dataset has been divided in 5 folds, so we are working with a 5-fold cross-validation.

After applying this technique, five accuracy results would be obtained for each candidate (one per split). With these results, the 
average and standard deviation would be obtained for each classifier, metrics that will help determine the best classifier obtained in 
this work.

And finally, the results of all the metrics described in the previous subsection will be shown for this classifier. These would be the 
5

metrics used for the comparison with the previous works.



Heliyon 10 (2024) e28058J.A. Rangel-Ramos, F. Luna-Perejón, A. Civit et al.

Fig. 3. K-fold cross validation representation.

Table 4

Grid search results.

Accuracy Accuracy

Architecture Batch Learning rate Train Test Architecture Batch Learning rate Train Test

1a 8 0.001 0.9126 0.6798 1b 8 0.001 0.7721 0.7036

8 0.0001 0.98 0.65 8 0.0001 0.9607 0.6707

16 0.001 0.7316 0.653 16 0.001 0.7958 0.6596

24 0.00001 0.9263 0.7248 24 0.00001 0.7789 0.6930

32 0.0001 0.9311 0.7051 32 0.0001 0.8090 0.6606

2a 8 0.001 0.9719 0.7527 2b 8 0.001 0.9479 0.7350

8 0.0001 0.9903 0.7527 8 0.0001 0.9833 0.7491

16 0.001 0.9941 0.7405 16 0.001 0.9791 0.7178

24 0.00001 0.9986 0.7314 24 0.00001 0.9977 0.7552

32 0.0001 0.9774 0.7243 32 0.0001 0.9842 0.7162

3a 8 0.001 0.98 0.7638 3b 8 0.001 0.9435 0.7572

8 0.0001 0.9865 0.7602 8 0.0001 0.9851 0.7587

16 0.001 0.9817 0.7805 16 0.001 0.9851 0.7506

24 0.00001 0.9949 0.7162 24 0.00001 0.9825 0.7430

32 0.0001 0.9966 0.7825 32 0.0001 0.9918 0.7891

4a 8 0.001 0.9870 0.7481 4b 8 0.001 0.6698 0.6697

8 0.0001 0.9819 0.7663 8 0.0001 0.9736 0.7289

16 0.001 0.9887 0.6889 16 0.001 0.976 0.7279

24 0.00001 0.9936 0.7486 24 0.00001 0.9874 0.7542

32 0.0001 0.9922 0.6581 32 0.0001 0.9743 0.7587

5a 8 0.001 0.7587 0.6616 5b 8 0.001 0.7111 0.6697

8 0.0001 0.9738 0.7339 8 0.0001 0.9751 0.7365

16 0.001 0.9795 0.7309 16 0.001 0.9664 0.7557

24 0.00001 0.9863 0.7198 24 0.00001 0.9825 0.7436

32 0.0001 0.9211 0.741 32 0.0001 0.9469 0.7309

VGG16 8 0.0001 1.0 0.7425 ResNet 8 0.0001 0.9919 0.7521

16 0.001 0.6798 0.6525 16 0.001 0.9989 0.7218

24 0.00001 1.0 0.7754 24 0.00001 0.7142 0.7142

32 0.0001 0.9999 0.7641 32 0.0001 0.9954 0.7016

MobileNet 8 0.0001 0.9822 0.7208 EfficientNet 8 0.0001 0.9879 0.7041

16 0.001 0.9944 0.737 16 0.001 0.9896 0.7031

24 0.00001 0.9999 0.7511 24 0.00001 0.9994 0.7122

32 0.0001 0.9999 0.7441 32 0.0001 0.9699 0.6990

3. Results and discussion

This section presents the results obtained from each of the phases of the optimization process described above. Finally, these 
results will be compared with those obtained in previous works, including a discussion of them.

First, the accuracy results for both training and the test are detailed in Table 4 for a 100-epoch training. In this table, not all the 
6

168 results are detailed, only a subset of 66 training (5 for each custom architecture and 4 for each pre-trained model).
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Table 5

Cross-validation accuracy results in % with average value (Avr.) and stan-

dard deviation (SD).

Fold1 Fold2 Fold3 Fold4 Fold5 Avr. SD

C1 77.85 98.73 99.09 99.34 99.95 94.99 9.59

C2 75.86 91.40 76.77 86.50 91.40 84.39 7.64

C3 74.29 90.84 98.58 91.90 98.28 90.78 9.88

C4 78.34 90.34 88.27 98.23 96.31 90.30 7.84

Table 6

Metrics results for each class.

Class Acc Pre Sen Spe F1score

nv 99.94 99.92 100 99.84 99.96

mel 100 100 100 100 100

bkl 99.94 100 99.54 100 99.77

bcc 100 100 100 100 100

akiec 100 100 100 100 100

vasc 100 100 100 100 100

df 100 100 100 100 100

Although the results obtained do not exceed 79% for the test subset, it is important to remember that training was carried out 
with only 100 epochs due to the large amount of time devoted to this phase. Therefore, after visualizing all the results, the best result 
has an accuracy of 78.91%. And, therefore, the best performing networks are those that have an accuracy as close as possible to this 
value.

Taking into account the test accuracy value, the four classifiers that obtain the best score (and considered the four selected 
candidates) are:

• C1: pre-trained VGG16 with batch size 24 and learning rate 0.00001, obtaining 77.54% accuracy.

• C2: custom architecture 3a with batch size 16 and learning rate 0.001, obtaining 78.05% accuracy.

• C3: custom architecture 3a with batch size 32 and learning rate 0.0001, obtaining 78.25% accuracy.

• C4: custom architecture 3b with batch size 32 and learning rate 0.0001, obtaining 78.91% accuracy.

These selected models are indicated in Table 4 in red.

These four classifiers will now be subjected to the second phase of the optimization process. Here, a 5-fold cross-validation process 
will be applied, performing five training runs for each of the classifiers and now allowing for a higher number of epochs. The results 
obtained are presented in Table 5.

Table 5 shows that the results of the first fold are the most similar to those obtained during the grid search phase, and this is due 
to the fact that this division is precisely the one carried out for this process.

Moreover, as can be seen, the division that was initially used seems to be the most detrimental in all the training sessions, and 
that is why the best classifier obtained in phase 1 is not equivalent to the one obtained now.

If the results obtained are analyzed in detail, the classifier with the best accuracy results is C1 (pre-trained VGG16), which obtains 
an average accuracy of 95%. These results are almost 5% better than those obtained with the second-best classifier. Although the 
standard deviation results of this classifier are higher than those of two of the other three classifiers analyzed, it is not a substantial 
difference and is mainly caused by fold 1 (since, removing it, the average accuracy would be 99.28% with a standard deviation of 
0.51).

After this detailed explanation of the choice of the best classifier, it can be concluded that C1 will finally be selected. Then, using 
the best model among those trained with cross-validation, the results of all metrics for each class independently are presented in 
Table 6.

The results shown in the table above indicate that 5 of the 7 classes have a perfect classification. For the remaining 2, the first 
class (nv) shows a decrease in specificity, as a result of having false positives, but a percentage of 100% in sensitivity, so it has no false 
negatives. The opposite is true for the bkl class: no false positives (100% specificity) but false negatives (99.54% sensitivity).

These findings are also reflected in the confusion matrix (see Fig. 4). Furthermore, the result obtained for the unified AUC is 
99.75% (see Fig. 5).

As a final point, it is important to mention that intensities in the images are usually inhomogeneous and affect the performance 
of the automated image analysis methods. Also, the images are noisy. Although several denoising and normalization algorithms have 
been applied with different types of images to obtain high performance [10], they may cause an increase in computational costs. In 
the proposed approach, the efficiency has been provided without any denoising. Also, except the batch normalization, there is no 
intensity normalization step in the proposed method.

Finally, the classifier designed and evaluated in this work will be compared with the results of previous work. For this purpose, a 
search was carried out with the works that used the same dataset as ours and the five best papers (taking into account their accuracy) 
were extracted. These works are those published by Rezvantalab et al. [23], Emara et al. [8], Lan et al. [18], and Datta et al. [7].

In the study proposed by Rezvantalab et al. [23], different pre-trained CNN models are tested: Inception-v3, DenseNet and 
7

AlexNet; obtaining a global value of 98.8% accuracy for the best case.
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Fig. 4. Confusion matrix.

Fig. 5. ROC curve and AUC.

The second study is the one proposed by Emara et al. [8]. The authors made a modified version of the Inception-v4 architecture 
to better handle the problem of data imbalance. The authors made a division of 90-10 for the train and test subsets, achieving an 
accuracy of 94.7% for the test subset and an 86% for the test subset.

The third study [7], presents a Soft-Attention technique to improve accuracy by paying more attention to certain image features 
during the classification process. To apply this new technique, the authors use an additional layer to generate an attention map 
showing the most relevant areas of the image during classification, which are used to adjust the weights of each layer. This technique 
has achieved an accuracy of 93.7%.

Finally, the fourth study considered is the one proposed by Lan et al. [18]. This work presents a capsule network (inspired by 
the structure of the human visual system) to improve the detection performance of these diseases. The authors include an activation 
correction layer, Fixcaps. This layer fixes the activation problems that may occur in the previous layers. With this study, a 96.49% 
accuracy is achieved.

The general summary of these works ordered by year (together with the results of our system) is shown in Table 7.

If we compare our classifier with previous work in this table, we can see that we have an improvement over previous work in 
both accuracy and AUC. In addition, it is worth noting that the pre-trained VGG16 model has significantly lower computational cost 
8

than the models used in previous works. This comparison will be made in detail:
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Table 7

Previous works comparison.

Complexity

Work Classifier Accuracy AUC CL PL DL

[23] DenseNet201 98.8% 200 5 1

[8] Inception-v4 86-94.7% 83.8% 172 19 2

[7] Inception-ResNet-v2 93.70% 98.4% 235 7 2

[18] custom Capsule Network 96.49% 37 136 21

This Work (2023) VGG16 99.95% 99.75% 13 5 3

This Work (2023) custom CNN (C4) 98.23% 97.19% 3 3 3

CL: Convolutional Layers. PL: Polling Layers. DL: Dense Layers.

• Work [23]: This work obtains high AUC results (98.8%), but does not present the accuracy value (although it is intuited that it 
should exceed 99% due to the AUC value). In this case, the AUC result obtained by our classifier is higher (97.75%). Moreover, 
if we compare the complexity of the CNN used by both works, we can observe that this work uses 15 times more convolutional 
layers than ours.

• Work [8]: In this second case, the accuracy results shown are 94.7% for the training set and 86% for the test set. As our results 
are for the test set, the comparison must be made with the 86% value. In that case, our work obtains much better results in both 
accuracy (86 versus 99.95) and AUC (83.8 versus 99.75). Moreover, looking at the complexity of the CNN, this work is 13 times 
more convolutional layers.

• Work [7]: For this third case, we have the most complex network of all those compared, with more than 230 convolutional 
layers (which is 18 times the number of layers used by us). However, this complexity of the network does not translate into a 
substantial improvement in the results, as its accuracy value is 93.70% (compared to the 99.95% obtained by us). Similarly, the 
AUC value is lower than ours (98.4 versus 99.75).

• Work [18]: Finally, for this work, it is important to highlight the creation of a partially personalized neural network, which 
helps to significantly simplify the number of convolutional layers, but due to its feature extraction mechanism, significantly 
increases the number of polling layers (average and max polling) and dense layers. Still, it has almost three times the number of 
convolutions used in our classifier. The results of this work are presented only with accuracy, obtaining almost 96.5%, which is 
lower than the 99.75% obtained by our classifier.

In summary, if we compare these previous works with the best results obtained by our classifier, we outperform the classification 
rate in all cases, also using a less computationally complex CNN.

However, the results obtained by the best classifier that is not a pre-trained model are also included in the table as the last row. 
In that case, the accuracy and AUC results are reduced, but still acceptable and better than most of the previous work. Furthermore, 
with the custom network we further reduce the complexity of the system, which is an aspect to consider if you want to integrate this 
classifier into a specific purpose system (such as an embedded system).

It is therefore clear that in recent years research has been carried out on the classification of skin spots, obtaining in all cases more 
than acceptable results, but the systems developed do not take into account the computational cost associated with the classifiers 
used. This is important for future developments in which it is intended to integrate the classifier into an embedded system with 
limited computational resources. This aspect has been taken into account in our work, analyzing the results not only with complex 
pre-trained networks but also with less complex custom networks. In all cases, the results obtained in our work resemble or exceed 
previous work.

4. Conclusions

This work detailed the need for the use of an initial screening system to classify skin blemishes.

The use of a classifier based on the application of AI techniques on images taken with a mobile device has been proposed.

As a result, an optimization process based on two phases has been presented to obtain a classifier with acceptable results, using 
a public dataset of skin images, with a first phase of grid search with more than 150 combinations of convolutional neural networks 
and a second phase of robustness study using the cross-validation technique.

The results obtained with the final classifier reach a maximum accuracy of 99.49% and 99.75% AUC.

These results have been compared with works from recent years using the same dataset. This comparison reveals that the classifier 
obtained in this work improves the classification results of previous works and, in addition, substantially reduces the complexity of 
previous systems.

Given these conclusions, we can focus on the contribution of this work. In this regard, it is worth highlighting the importance 
of reducing the complexity of the classifier system without affecting the accuracy of the classification. This fact opens an important 
path to being able to integrate these classifiers into an embedded device, allowing in the future to design portable instruments that 
perform the classification task in real time.

As future work, comparative evaluations with the performances of capsule network-based methods can be performed because a 
capsule network can preserve spatial relationships of learned features, and have been proposed recently for image classifications [9]. 
Other future work may be integrating these classification systems into slow-cost embedded systems and study its importance, as has 
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been proposed in previous works [6,21,19].
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