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A B S T R A C T

Prostate cancer is the second most frequent cancer in men worldwide after lung cancer. Its diagnosis is based
on the identification of the Gleason score that evaluates the abnormality of cells in glands through the analysis
of the different Gleason patterns within tissue samples. The recent advancements in computational pathology,
a domain aiming at developing algorithms to automatically analyze digitized histopathology images, lead to
a large variety and availability of datasets and algorithms for Gleason grading and scoring. However, there
is no clear consensus on which methods are best suited for each problem in relation to the characteristics of
data and labels. This paper provides a systematic comparison on nine datasets with state-of-the-art training
approaches for deep neural networks (including fully-supervised learning, weakly-supervised learning, semi-
supervised learning, Additive-MIL, Attention-Based MIL, Dual-Stream MIL, TransMIL and CLAM) applied to
Gleason grading and scoring tasks. The nine datasets are collected from pathology institutes and openly
accessible repositories.

The results show that the best methods for Gleason grading and Gleason scoring tasks are fully supervised
learning and CLAM, respectively, guiding researchers to the best practice to adopt depending on the task to
solve and the labels that are available.
1. Introduction

Histopathology has experienced a digital transformation over the
past ten years, slowly moving away from the traditional workflow
with microscopes and adopting a computerized approach. Informa-
tion and communication technologies (ICT) have changed the way
pathology is developing (Van der Laak et al., 2021). Advancements
in slide image acquisition technology, software applications and high-
speed networks allow integrating digital pathology into traditional
workflow pipelines (Pallua et al., 2020). Digital pathology involves
the acquisition, management, exchange and interpretation of pathology
information, including images and pathology data in a digital envi-
ronment (Niazi et al., 2019; Pallua et al., 2020). Digital slides are
created during tissue sample acquisition, using devices called whole
slide scanners, in order to obtain high-resolution digital images that
can be digitally analyzed by medical experts or software tools.

∗ Corresponding author at: Robotics and Technology of Computers Lab., ETSII-EPS, Universidad de Sevilla, Sevilla 41012, Spain.
E-mail address: jpdominguez@us.es (J.P. Dominguez-Morales).

1 The first three authors have contributed equally to this paper.

Digitized slides enable the application of automatic algorithms and
Artificial Intelligence (AI), as support tools for diagnosis, paving the
road to computational pathology (Abels et al., 2019). In this regard,
Computer-Aided Diagnosis (CAD) emerges with the purpose of assist-
ing physicians in the interpretation of medical images, providing a
second opinion to support the diagnosis process. The development of
computational pathology CAD systems has become an important and
challenging research topic, as it can lead to reduced diagnosis times
and complement experts’ decisions (Doi, 2007), opening unprecedented
opportunities in healthcare and related markets.

AI, and, in particular, Deep Learning (DL) algorithms, have grown
in popularity within the field of biomedical image analysis (Altaf et al.,
2019; Razzak et al., 2018; Santos et al., 2019). These algorithms are
able to learn relevant patterns from input images, using this informa-
tion to perform a computer-based diagnosis. CNNs, which are currently
vailable online 4 May 2024
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among the most popular neural networks in DL, are widely used for
image analysis in several fields (Li et al., 2020), including biomedical
image analysis (Anwar et al., 2018).

WSIs are high-resolution images, usually scanned with a spatial res-
olution in the order of μm per pixel or less (Sellaro et al., 2013). Modern
scanners usually acquire the image with a spatial resolution of 0.23–
0.25 μm, corresponding to an optical resolution (i.e., the magnification
factor (×) of the lens used in the whole slide scanner (Sellaro et al.,
2013)) of 40×. High-resolution leads to large images in terms of pixels,
usually up to 200’000 × 200’000. Modern hardware barely manages to
eal with this size of input data, forcing the splitting of the WSIs into
mall subimages, called patches.

CNNs require a large amount of labeled data during the network
raining in order to achieve robust results and to generalize on new un-
een data (Madabhushi and Lee, 2016). In particular, fully-supervised
lgorithms, which show the highest performance in several tasks, such
s classification, require pixel-level (or patch-level) annotations. The
eed of locally-labeled data is often a challenge in the field of computa-
ional pathology, since examining and annotating regions of interest in
large number of very large images is a time-consuming and expensive

ask for pathologists (Krupinski et al., 2013). As a consequence of the
nnotation process, which involves the participation of experienced
athologists, few datasets with patch-level annotations are publicly
vailable. Although locally-labeled data are not always meaningful
nd needed, their lack can be partially alleviated using global image-
evel annotations. Global (or image-level) annotations include labels
nvolving the whole image without identifying the regions of interest
ithin it (Deng et al., 2020). Global annotations are much easier to

ollect, although they provide less information than patch-level labels.
Another aspect to deal with when working in histology is the het-

rogeneity of the data. The tissue samples obtained from a biopsy are
rocessed in a laboratory using certain stains to enhance the contrast
f biological structures. One of the most common staining methods
sed in diagnostic medicine is hematoxylin and eosin (H&E) stain Chan
2014). The lack of standardization of the staining procedure leads to
olor variations even from the same source (Marini et al., 2021a). On
he other hand, the scanning device used to digitize samples also has a
irect impact on the image color and texture, which often implies that
hese color differences become more evident when the images originate
rom different hospitals. Consequently, algorithms trained on a dataset
rom one source usually show a decrease in accuracy when tested on
ata from other sources (Ström et al., 2019; Tellez et al., 2019; Otálora
t al., 2019). The high heterogeneity of clinical data, together with the
act that there are only a few publicly available datasets, hinders the
eneralization of DL models, and thus the development of universal
AD systems for specific cancers remains an unsolved challenge.

Prostate cancer is the second most frequently diagnosed cancer
mong men, with more than 1.2 million cases worldwide, and the
ifth leading cause of cancer death, with around 350’000 deaths in
018 (Rawla, 2019). A biopsy is the most reliable test to confirm the
resence of prostate cancer (Borley and Feneley, 2009). The samples
btained from a biopsy are processed and viewed under a microscope
r scanned resulting in digital images. These are usually gigapixel-
esolution WSIs or tissue microarray (TMA) cores, depending on how
hey were acquired. WSIs are obtained after scanning the glass slide
ontaining the whole biopsy sample, generating a large digital im-
ge (Farahani et al., 2015). TMA cores are tissue cylinders of 0.6–
.00 mm diameter extracted from the biopsy sample (Eskaros et al.,
017).

The aggressiveness of prostate cancer is evaluated through a scoring
ystem called the Gleason Grading System (GGS) (Matoso and Epstein,
016). This system allows pathologists to assign a score to a tissue
ample based on its microscopic appearance and the patterns of the
ancer cells. The GGS determines the cellular differentiation degree of
rostate tumors considering 5 Gleason Pattern (GP) (1 to 5) (Amin and
2

ickoo, 2016). Pathologists examine the image and assign a lower or
higher pattern depending on the tissue appearance. GP 1 is assigned
to areas of the tissue containing cells that resemble normal prostate
cells, while in GP 5, cancer cells greatly differ from normal prostate
cells. The higher the pattern, the higher the aggressiveness of the cancer
and the lower the differentiation between cancer cells. Fig. 1 shows a
few examples obtained from H&E-stained tissue images that include
benign cases and the three most commonly used GPs: 3, 4 and 5.
The two most predominant GPs in an image are summed up to assign
the corresponding Gleason score (GS), which ranges from 2 to 10.
However, GS 2 to 5 are almost never present, since, in these cases,
biopsies are usually not taken until the tumor has advanced (Chen
and Zhou, 2016). Therefore, a GS of 6 (3+3) is usually the lowest
score, scores of 7 (3+4/4+3) and 8 (4+4) correspond to a mid-grade
cancer, and a score of 9–10 (4+5/5+4/5+5) corresponds to a high-
grade cancer. Lower-grade cancers grow more slowly and there is a
lower risk of spreading compared to high-grade cancers. The GS allows
pathologists to determine the tumor status and aggressiveness and pre-
dict the biological behavior of the tumor to plan treatments. The most
appropriate therapy for the patient is determined based on this score.
Although the GGS is currently the most widely used grading system
for prostate cancer, many studies have found a high inter-observer
variability among pathologists when diagnosing prostate cancer based
on this system (Lessells et al., 1997; McLean et al., 1997), reporting
more than 30% in terms of differences in the GS (Arvaniti et al., 2018;
Salmo, 2015).

With the recent advancements in DL techniques for histopathology
image classification, several methods have been developed to exploit
the characteristics of the data, such as fully-supervised (Arvaniti et al.,
2018; Ström et al., 2019; Nagpal et al., 2019; Campanella et al., 2019;
Duran-Lopez et al., 2020), weakly-supervised (Campanella et al., 2019;
van der Laak et al., 2019; del Toro et al., 2017; Arvaniti and Claassen,
2018; Otálora et al., 2020a, 2021; Ilse et al., 2018; Lu et al., 2021;
Chikontwe et al., 2020; Li et al., 2021b; Yao et al., 2020) and semi-
supervised methods (Bulten et al., 2020; Marini et al., 2021c; Otálora
et al., 2020b; Shaw et al., 2020; Pulido et al., 2020; Tolkach et al.,
2020; Schmidt et al., 2022; Lai et al., 2021). Several datasets have been
released, such as the Prostate cANcer graDe Assessment (PANDA) Chal-
lenge dataset, The Cancer Genome Atlas-PRostate ADenocarcinoma
(TCGA-PRAD), the Gleason 2019 Challenge from MICCAI, SICAPV2
and Diagset. In particular, the PANDA dataset (Bulten et al., 2022),
which was released during a competition hosted in MICCAI 2020, still
represents the largest publicly available dataset with local annotations
in the computational pathology domain, with over 10’000 WSIs that
are pixel-wise annotated.

This paper presents a systematic comparison of different state-
of-the-art training approaches for Gleason grading (patch-level) and
Gleason scoring (WSI-level and TMA core-level). These methods are
fully-supervised learning, weakly-supervised learning, semi-supervised
learning and MIL. A total of 9 heterogeneous datasets from various
sources were used for training, validating and testing the models,
including around 13’000 WSIs and 1’100 TMA cores, in order to eval-
uate the performance and the generalization capability for each of the
methods considered.

1.1. Related work

Several approaches were developed for training deep CNNs for the
classification of prostate Gleason grading and scoring, including full
supervision, weak supervision, semi-supervision and MIL.

1.1.1. Fully-supervised learning
Fully-supervised learning approaches include methods developed

to train machine learning models using patch-level (or local) annota-
tions (Arvaniti et al., 2018; Ström et al., 2019; Nagpal et al., 2019;
Campanella et al., 2019; Duran-Lopez et al., 2020). Patch-level annota-

tions include information about pixel-wise regions of the image. These
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Fig. 1. Examples of benign cases and Gleason patterns 3–5 from different tissue images.

correspond to regions of interest that medical experts have manually
annotated and associated with a specific label, based on the identified
finding. Arvaniti et al. (2018) showed that fully-supervised algorithms
lead to Gleason scoring results on TMA cores that are at the same
level as inter-pathologist agreement. Accurate patch-level classification
not only allows for high performance on Gleason grading, but also for
the development of multi-task models in order to precisely identify
malignant regions within the image (Li et al., 2018). However, these
types of annotations are hard to collect, as the labeling process is time-
consuming and expensive for experts. For this reason, only a few of
the publicly-available datasets include patch-level annotations. On the
other hand, since these annotations are obtained directly from well-
defined regions of interest with no noise, the amount needed to reach
3

high performance is lower than that required by other state-of-the-
art methods (Arvaniti et al., 2018; Otálora et al., 2021; Campanella
et al., 2019). Particularly in Otálora et al. (2021), an incremental fully-
supervised algorithm was used to evaluate the performance of the
model depending on the amount of patch-level annotations used.

1.1.2. Weakly-supervised learning
Weakly-supervised learning approaches include methods developed

to train machine learning models using image-level (or global) anno-
tations, when patch-level annotations are not available (Campanella
et al., 2019; Otálora et al., 2020a; van der Laak et al., 2019). Image-
level annotations include information about the whole image, usually
focusing on a dangerous disease, such as cancer. The exploitation
of these labels is not trivial, since image-level annotations lead to
incorrectly-labeled data: usually the findings related to conditions in-
volve small tissue regions and the labels do not include any detail
about the regions of interest where the findings are identified. This
fact has a dramatic drawback: large datasets are required. For example,
Campanella et al. (2019) showed that almost perfect performance
in binary tasks (cancer vs non-cancer) can be reached using over
10’000 WSIs. A line of research on this topic includes approaches to
train CNNs at the patch-level, through the labeling of patches with
the image-level annotations referring to the image where the patches
come from, as shown in del Toro et al. (2017), Arvaniti and Claassen
(2018), Otálora et al. (2020a, 2021). Since image-level annotations
include incorrectly-labeled data, the combination of image-level and
patch-level annotations may help to increase the performance of the
models (Arvaniti and Claassen, 2018; Otálora et al., 2021). However,
since CNNs are usually developed to work at the patch-level, it is not
completely clear how to aggregate the predictions made on the single
patches to have a global prediction. Currently, the weakly-supervised
algorithms that show the highest performance in computational pathol-
ogy tasks are based on the MIL framework (Campanella et al., 2019; Ilse
et al., 2018; Lu et al., 2021; Chikontwe et al., 2020; Li et al., 2021b; Ilse
et al., 2020; Yao et al., 2020; Marini et al., 2021b; Li et al., 2021a; Shao
et al., 2021). MIL allows modeling data as a bag of instances, aggre-
gated to have a global prediction. This formulation fits well with how
WSIs are usually currently treated in computational pathology experi-
ments, where WSIs (bags) are split in patches (instances). The instance
aggregation can be made on the instance embeddings (embedding-
based) (Lu et al., 2021; Chikontwe et al., 2020; Li et al., 2021b; Ilse
et al., 2018), or on the instance predictions (instance-based) (Cam-
panella et al., 2019; Schmidt et al., 2022; Marini et al., 2022a; Javed
et al., 2022). Embedding-based approaches, through the creation of an
embedding representing the WSI, reach higher performance on the task
involving predictions at the image-level, although they do not produce
predictions on the single instances. On the other hand, instance-based
approaches enable predictions on the single instances and at the image-
level (Javed et al., 2022). Despite the fact that several aggregation
solutions have been developed (such as max pooling and average
pooling) (Wang et al., 2019), the state-of-the-art algorithm used to
aggregate the instances is currently based on attention networks, as
shown in Ilse et al. (2018), Yao et al. (2020), Wang et al. (2019),
Hashimoto et al. (2020). Attention-based Multiple Instance Learning
(AB-MIL) (Ilse et al., 2018) is a MIL framework aimed to weigh the
single instances in order to obtain a global prediction. The framework
includes a pooling aggregator, called attention network, that weighs the
contribution of every instance (patch) within a bag (WSI), aiming to
be permutation-invariant. Their success relies on the fact that they are
learnable functions, opposed to other solutions, such as max pooling,
which are less flexible to input data, and on the fact that they guarantee
interpretability (it is possible to use the attention values to generate
heatmaps, highlighting where models are focusing) on the model out-
comes. AB-MIL is designed to work on binary classification problems;
therefore, a single attention channel is used in the attention pooling
layer. Additive-MIL (Javed et al., 2022) is a MIL framework aiming to
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solve the problems related to AB-MIL, especially in multiclass scenarios.
In AB-MIL models, high attention weights, linked to a patch, do not nec-
essarily imply that the patch is responsible for the global image-level
prediction. This characteristic raises a problem in multiclass problems,
where attention scores do not provide information about the class-
wise importance of a patch, since the network does not differentiate
between positive and negative contributions of patches to image-level
predictions. To solve this limitation, Additive-MIL includes an attention
pooling layer with an attention channel for every output class. This
contribution guarantees more interpretability in multiclass networks,
providing a heatmap for every class. Clustering-constrained Attention
Multiple Instance Learning (CLAM) (Lu et al., 2021) is a MIL framework
exploiting an attention-based network to aggregate single WSI patches.
The attention mechanism aims to highlight relevant sub-regions of WSIs
to improve the global image prediction. Furthermore, CLAM adopts a
cluster mechanism at instance-level to aggregate and refine represen-
tative regions, aiming to enrich the WSI-representation. Dual-Stream
MIL (Li et al., 2021a) is a MIL framework aiming to both produce
patch-level and image-level predictions and to enrich the WSI-level
representation of a self-supervised learning algorithm. The instance-
level predictions are optimized using a max-pooling mechanism on
the single instance predictions. An attention mechanism is used to
aggregate the single instances to have an image-level embedding, which
is used to classify the WSI. Furthermore, the DS-MIL framework exploits
a contrastive self-supervision learning algorithm to improve the WSI
representation used to classify images, and it combines data collected
from multiple magnification levels, in order to enrich the image-level
representation. TransMIL (Shao et al., 2021) is a MIL framework aiming
to exploit spatial and morphological information included within WSIs.
The framework aims to overcome the attention network mechanism,
which does not take into account the spatial relationship among input
instances, exploiting the Transformer architectures (Vaswani et al.,
2017). Transformer architecture models data as a sequence of tokens
(patches) aiming to highlight relationships among single instances.

1.1.3. Semi-supervised learning
Semi-supervised approaches include methods developed to train

machine learning models using automatically labeled data (Bulten
et al., 2020; Marini et al., 2021c; Otálora et al., 2020b; Shaw et al.,
2020; Pulido et al., 2020). The approaches are based on the develop-
ment of an automatic algorithm that annotates unlabeled data, reducing
the effort needed by medical experts for the annotations (Schmidt et al.,
2022; Marini et al., 2021c; Tolkach et al., 2020). The collection of
unlabeled data in medical domains is a relatively cheap task, since
no medical experts are required to make annotations, and due to the
increasing number of publicly released datasets (Marini et al., 2021c;
Peikari et al., 2018; Foucart et al., 2019). Although the combination
of patch-level annotated data and automatically-labeled data have
been shown to improve the generalization performance of machine
learning algorithms, automatically-annotated data are noisy, due to
possible errors or biases within the algorithm (Zhang et al., 2021).
Semi-supervised approaches usually involve two roles: the annotator
and the model that exploits the automatically-labeled data. These roles
may be interpreted by the same model or by several models. In the
former case, the same model is trained with annotated data, annotates
unlabeled data, and then exploits them to be fine-tuned (Tolkach et al.,
2020; Schmidt et al., 2022; Lai et al., 2021). In the latter and more
conventional case, two or more models are involved. An example of
semi-supervised paradigm including two models is the Teacher/Student
method (Zhou et al., 2020; Marini et al., 2021c; Bulten et al., 2020).
In this paradigm, the teacher annotates unlabeled data, which are
subsequently used to train the student. The teacher may be a larger
model than the student (Marini et al., 2021c) (in terms of parameters)
or it can be built with the same architecture of the student (Ke et al.,
2019). Finally, it is possible to have a chain of models (Shaw et al.,
2020), where each of them is trained with an increasing amount of
automatically-labeled data and then annotates new unlabeled data for
4

the next one in the chain.
1.1.4. Self-supervised learning
Self-supervised learning framework aims to learn a relevant data

representation from unlabeled data, that can be re-used, after a fine-
tuning, to perform downstream (specialized) tasks. The framework
objective is to limit the need for experts to annotate large datasets,
exploiting the increasing availability of data (Liu et al., 2021; Chen
et al., 2020; He et al., 2020). Self-supervision is reaching increasing
success in domains such as computational pathology, where manual
annotations are expensive to collect. Typically, CNN backbones are pre-
trained on ImageNet (Deng et al., 2009) data. However, the dataset
includes natural images; thus, pre-trained weights learnt features that
might not be suited to be used on solving computational pathology
tasks. Even if the learnt representation is strong, the CNN must be fine-
tuned afterwards, to perform peculiar tasks, since it cannot solve any
task, such as classification or segmentation. Among self-supervised al-
gorithms, contrastive learning algorithms are currently the most widely
adopted solutions, such as MoCo (He et al., 2020) and simCLR (Chen
et al., 2020), in contrast with generative algorithms. These algorithms
show similar characteristics, since they were both developed to learn
a representation of data clustering from similar samples: both algo-
rithms minimize the distance between the feature vectors representing
similar samples and maximize the distance between the feature vec-
tors representing dissimilar samples. Couples of similar and dissimilar
examples are generated using data augmentation: a sample is similar
to its augmented version and dissimilar to other samples in a batch.
The samples are also named queries. In the computational pathology
domain, the adoption and development of self-supervised algorithms
is constantly gaining ground (Dehaene et al., 2020; Ciga et al., 2022;
Srinidhi et al., 2022; Wang et al., 2022). Dehaene et al. (2020) showed
that the pre-training of a CNN with a contrastive learning algorithm
helps to learn stronger features, which can be re-used for training
a MIL CNN, comparing the performance with other MIL CNN pre-
trained on ImageNet. Ciga et al. (2022) exploited 57 datasets to build
a more effective histopathology representation. The CNN, after a fine-
tuning, showed more accurate performance and feature robustness,
compared with ImageNet weights or random weights, to classify WSIs.
Furthermore, the paper shows that the representation is effective, since
it allows to cluster patches according to tissue morphologies. Srinidhi
et al. (2022) presented a self-supervised algorithm combined with a
semi-supervised algorithm: firstly, the model was trained to learn a ro-
bust data representation (exploiting the multi-scale structure of WSIs as
downstream tasks); then, it was fine-tuned on a limited amount of data
in order to learn how to transfer the self-supervised representation to
peculiar tasks; finally, the downstream task performance was improved
by combining a small amount of labeled data (used for downstream
task training) and a large amount of unlabeled data, pseudo-labeled
by the model. The algorithm was tested on the classification of tumor
metastasis, on the classification of tissue type and on the regression of
tumor cellularity quantification, showing an increase in performance.
Wang et al. (2022) presented CTransPath, which is a hybrid model that
combines a Convolutional Neural Network (CNN) with a multi-scale
Swin Transformer architecture. This model was pretrained on unlabeled
histopathological images and was evaluated on various downstream
tasks, including patch retrieval, patch classification, weakly-supervised
whole-slide image classification, mitosis detection, and colorectal ade-
nocarcinoma gland segmentation. The results showed state-of-the-art
performance, while also outperforming other self-supervised methods
in terms of robustness and transferability.

1.2. Main contributions

The main contributions of this work include the following:

• A systematic comparison of state-of-the-art training approaches
on Gleason grading and Gleason scoring tasks (including fully-
supervised learning, weakly-supervised learning, semi-supervised
learning, Additive-MIL, AB-MIL, DS-MIL, TransMIL, CLAM and

self-supervised learning).
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Table 1
Summary of the datasets used in this work. The number of patients in Gleason Challenge
and Diagset datasets are not specified in their corresponding publications.

Dataset Number of
patients

Number of
images

Pixel-wise
annotations

Image-level
annotations

TMAZ 886 886 cores Yes Yes
Gleason Challenge – 237 cores Yes Yes
SICAPv2 95 119 WSIs Yes Yes
Valme 199 938 WSIs Yes Yes
PANDA Challenge 2’113 10’516 WSIs Yesa Yes
Diagset – 375 WSIs Yes No
Subset of TCGA-PRAD 300 300 WSIs No Yes
Clinic 43 221 WSIs No Yes
Puerta del Mar 18 144 WSIs No Yes

a Pixel-level annotations were not performed by expert pathologists but by following
a semi-automatic procedure.

• Training state-of-the-art models on highly heterogeneous data
sources related to Gleason grading and scoring, providing a
benchmark for heterogeneous data training. The combination of a
total of nine different datasets (six of which are publicly available)
was used for training, validating and testing the trained models.
This allowed evaluating the performance and the generalization
of the methods over many datasets.

• Testing state-of-the-art models using as external test-set the largest
publicly-available dataset currently available (PANDA Challenge
dataset), providing a reference for the evaluation of models in the
literature.

• Fully-supervised learning shows the highest performance in patch-
level classification tasks.

• MIL methods obtain the highest performance in image-level clas-
sification tasks, particularly CLAM.

The rest of the paper is structured as follows: Section 2 presents the
ifferent materials and methods used in this work, including detailed
nformation regarding the datasets (Section 2.1), the way in which
atches were extracted from the images, preprocessed and augmented
Section 2.2), the different training approaches evaluated (Section 2.3),
he deep learning framework and hyperparameters used (Section 2.4),
nd the metrics used to evaluate the performance of the models (Sec-
ion 2.5). In Section 3, the results of the trained models are reported,
ividing between patch-level results (Section 3.1) and image-level re-
ults (Section 3.2). The performance results obtained for each of the
valuated models are discussed in Section 4, where they are com-
ared in detail. Finally, the conclusions of the paper are presented in
ection 5.

. Materials and methods

.1. Datasets

Nine datasets from different sources were used to train, validate
nd test the CNN models. These are the Tissue MicroArray dataset
urich (TMAZ), the Gleason 2019 Challenge from MICCAI, SICAPv2,
iagset, a subset of TCGA-PRAD, PANDA Challenge, Valme, Clinic and
uerta del Mar datasets. All these datasets are publicly available, except
alme, Clinic and Puerta del Mar, which are not public yet, but they
re expected to be in the near future. Table 1 summarizes the number
f images (WSIs or TMA cores) and patients used from each dataset and
hether each of them includes pixel-wise and image-level annotations

eported by expert pathologists. Table 2 shows a detailed distribution
f the image-level annotations for those datasets that include them.

• TMAZ (Arvaniti et al., 2018) is a public dataset that includes
886 prostate TMA cores from the University Hospital of Zurich
corresponding to 886 different patients. These cores were scanned
with the NanoZoomer-XR Digital slide scanner (Hamamatsu) at
5

magnification 40× (0.23 μm per pixel). Each image is 3’100 pix-
els. TMAZ combines both image-level and pixel-wise annotations
from different pathologists.

• Gleason 2019 Challenge from MICCAI (Nir et al., 2018) consists
of a set of TMA cores annotated in detail by several expert
pathologists. It includes 237 cores of 5’120 pixels digitized at
magnification 40× (0.25 μm per pixel) using a SCN400 Slide
Scanner (Leica Microsystems, Wetzlar, Germany). Both pixel-wise
and image-level annotations are provided for malignant images.

• SICAPv2 (Silva-Rodríguez et al., 2020) consists of 119 WSIs from
95 different patients. The images were obtained at magnification
40× (0.25 μm per pixel) with a Ventana iScan Coreo scanner
from Roche. SICAPv2 does not include benign WSIs. For malig-
nant cases, both global GS and patch-level GP annotations are
provided.

• Diagset (Koziarski et al., 2021) includes 375 WSIs digitized us-
ing a Hamamatsu C12000-22 (0.25 μm per pixel). This dataset
provides both normal and malignant cases, reporting only pixel-
wise annotations given by a group of pathologists. No image-level
annotations are available.

• Valme includes 938 WSIs from 199 different patients obtained
from Virgen de Valme University Hospital in Seville (Spain).
These were digitized at magnification 40× (0.25 μm per pixel)
with a VENTANA iScan HT scanner from Roche Diagnostics.
Valme contains normal and malignant WSIs with image-level
annotations. A total of 70 out of the 938 WSIs were pixel-wise
annotated by a pathologist.

• TCGA-PRAD (Zuley et al., 2016; Clark et al., 2013) is a repository
with 500 WSIs obtained from different centers. The dataset in-
cludes adenocarcinomas, cystic, mucinous and serous tumors and
ductal and lobular neoplasms. These WSIs were scanned at mag-
nification 40× (no information regarding the scanners employed
to digitize the images is reported). Together with the WSIs, the
pathologist reports with the diagnosis information are provided.
However, since neither slide-level nor patch-level annotations are
included, a subset of 300 WSIs from 300 different patients was
selected and manually labeled at the image level based on the
full medical diagnosis reported.

• Clinic is composed of 221 WSIs from 43 different patients scanned
at Clinic Hospital from Barcelona (Spain) using a VENTANA iScan
HT scanner (Roche Diagnostics) at magnification 40× (0.25 μm
per pixel). Only image-level annotations are provided without any
pixel-wise report. It contains both normal and malignant WSIs.

• Puerta del Mar contains 144 WSIs from 18 different patients ob-
tained from Puerta del Mar University Hospital in Cádiz (Spain).
These images were scanned at magnification 40× (0.2431 μm
per pixel) using a MIRAX SCAN from Zeiss. Only malignant and
normal image-level annotations are reported, without specifying
the corresponding GS for each malignant WSI. In addition, this
dataset does not include pixel-wise annotations. For normal cases,
79 WSIs were provided: 33 of them were obtained from needle
core biopsy and the remaining 46 images are whole mount (from
the entire specimen after surgery). On the other hand, 65 WSIs
were labeled as malignant, 26 of which were obtained from
needle core biopsy and 39 are whole mount.

• PANDA Challenge (Bulten et al., 2022) consists of 10’516 digi-
tized WSIs from 2’113 patients with their corresponding ground
truth of primary and secondary GPs originating from two dif-
ferent sources (Radboud University Medical Center and Karolin-
ska Institutet). This makes PANDA the largest publicly-available
WSI dataset at the moment. The authors used different scan-
ners with slightly different maximum microscope resolutions and
worked with different pathologists for the labeling process. WSIs
of the biopsies were obtained using four different scanner models:
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Table 2
Dataset distribution of the image-level annotated TMA cores and WSIs used.

Dataset Benign GS6 GS7=3+4 GS7=4+3 GS8 GS9-10

TMAZ 115 cores 272 cores 89 cores 52 cores 218 cores 140 cores
Gleason Challenge 17 cores 63 cores 31 cores 21 cores 100 cores 5 cores
SICAPv2 – 14 WSIs 22 WSIs 23 WSIs 18 WSIs 42 WSIs
Subset of TCGA-PRAD – 38 WSIs 58 WSIs 54 WSIs 62 WSIs 88 WSIs
Valme 281 WSIs 285 WSIs 139 WSIs 119 WSIs 56 WSIs 58 WSIs
PANDA Challenge 2’873 WSIs 2’616 WSIs 1’340 WSIs 1’227 WSIs 1’245 WSIs 1’215 WSIs
Clinic 142 WSIs 42 WSIs 13 WSIs 8 WSIs 7 WSIs 9 WSIs
Puerta del Mar 79 WSIs 65 malignant WSIs with no GS information

Total 132 cores
3’375 WSIs

335 cores
2’995 WSIs

120 cores
1’572 WSIs

73 cores
1’431 WSIs

318 cores
1’388 WSIs

145 cores
1’412 WSIs

+ 65 malignant WSIs with no GS information
3DHISTECH Pannoramic Flash II 250 (0.24 μm per pixel at mag-
nification 40×), Leica Aperio AT2 (0.50 μm per pixel at magnifica-
tion 20×, and 0.25 μm at magnification 40×), Hamamatsu C9600-
12 (0.45 μm per pixel at magnification 20×) and Hamamatsu
C13220-01 (0.46 μm per pixel at magnification 20×). Among
all the WSIs that the dataset contains, a subset of 5’060 (those
obtained from Radboud University Medical Center) were also
pixel-wise annotated. However, these annotations were not per-
formed by expert pathologists but by following a semi-automatic
procedure (Bulten et al., 2022). Therefore, pixel-wise annotations
from this dataset were not used in this work.

2.2. Image preprocessing

As was introduced in Section 1, current hardware cannot work
with gigapixel-size images as input to CNNs due to limited memory.
A widely-known approach to overcome this issue is to tile the images
into smaller subimages called patches, which can be handled by the
CNN. All the images from the different datasets that were presented in
Section 2.1 were preprocessed following the same pipeline: firstly, the
background regions from the image are obtained and removed; then,
the image is tiled into a set of patches; and, finally, the patches are
extracted and selected, using Multi_Scale_tools library (Marini et al.,
2022b).

In this work, all the patches were extracted at 40× magnification
and with 750 × 750 pixel size, except for some datasets, such as
PANDA and TCGA, in which part of the samples were scanned at
20× magnification. For these cases, patches were extracted at 20×
magnification and with 375 × 375 pixel size. 40× magnification was
selected based on the fact that some datasets, such as TMAZ, only
provided this magnification level for the samples. On the other hand,
the aforementioned patch size was selected considering that previous
studies also used the same size (Arvaniti et al., 2018; Arvaniti and
Claassen, 2018; Marini et al., 2021c). The extracted patches were then
downsampled (resized) to 224 × 224 pixels, since it is the required
input size used for the two different pre-trained backbones that were
used in this work (DenseNet121 and Resnext50_32x4d, as detailed in
Section 2.4).

As was previously mentioned, before extracting and selecting the
patches from the datasets, the background was first removed, since it
does not provide any useful information for the GP and GSs classifica-
tion tasks. This process was performed in two different ways, depending
on the nature of the dataset and the images that compose it:

• For TMA cores (TMAZ and Gleason challenge datasets), the back-
ground of each core was extracted following the masks provided
by the expert pathologists’ annotations. 750 × 750 pixel-size
patches were densely extracted (without overlapping) from the
cores if they contained at least 60% tissue, and then downsampled
to 224 × 224 pixels. For the TMA cores that contain pixel-wise
annotations made by pathologists (cores from TMAZ and Gleason
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challenge), 30 patches with possible overlapping were randomly
extracted from each, taking into account that patches had to
overlap at least by 70% with the annotation. The label of each
patch was directly assigned based on the label of the annotated
region from which it was extracted.

• For WSIs (Valme, Clinic, Puerta del Mar, Gleason Challenge,
TCGA-PRAD, PANDA Challenge and Diagset datasets), the back-
ground was removed using masks that were generated by means
of the HistoQC2 software tool (Janowczyk et al., 2019), which
is an open-source quality control application for the automated
assessment of digital pathology slides. The masks were generated
in a way to exclude not only the background of the slide, but
also unwanted areas that do not correspond to tissue, such as
pen marks and other external agents. After applying the mask
to the original WSIs, 750 × 750 pixel-size patches were densely
extracted (without overlapping) from them and downsampled to
224 × 224 pixels. The amount of patches extracted per WSI is
not a fixed number, and depends on the amount of tissue that the
slide contains. For the WSIs that contain pixel-wise annotations
made by pathologists (slides from Valme, Gleason challenge and
Diagset), patches were densely-extracted only from the annotated
regions (with at least 90% overlap with the annotation). The label
of these patches was directly assigned based on the label that the
pathologist associated with the region from which the patch was
extracted. On the other hand, for WSIs with no specific anno-
tations where only the global Gleason grading was present (the
two most frequent GPs in the slide), the patches were densely-
extracted from the whole slide and labeled with the primary GP
of the WSI. These image-level labels are not ground truth, since
not all the tissue within the slide corresponds to the primary GP,
and most of it could even correspond to benign tissue. In order
to reduce noise, a subset of the patches was selected for each
WSI using the Blue Ratio (BR) method described in Chang et al.
(2012). BR assigns a value to each patch depending on the amount
of blue that is present on the patch. Therefore, patches with a
denser nuclei concentration will have a higher BR value. Among
all the patches extracted from a single WSI, only the first 20% top-
ranked samples ordered by decreasing BR value were selected, up
to a total of 500 patches per slide.

2.2.1. Data partitions
The aforementioned pipeline was followed to extract patch-level

and image-level annotated patches from the WSIs and TMA cores from
the datasets presented in Section 2.1 in order to train, validate and test
the proposed methods (see Section 2.3).

Table 3 presents the distribution of the patches with patch-level
annotations extracted from Valme, TMAZ, SICAPv2, Gleason challenge
and Diagset datasets. The number of patches per class (benign, GP3,
GP4 and GP5) and per training subset (train, validation and test) is
reported, which results in a total of 96’370 patches. The class-wise

2 https://github.com/choosehappy/HistoQC Retrieved May 11, 2024.

https://github.com/choosehappy/HistoQC
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Table 3
Distribution of the patches extracted from pixel-wise annotations from Valme, TMAZ,
Gleason challenge, SICAPv2 and Diagset datasets. The partitioning was performed by
patient, meaning that patches obtained from slides from the same patient were only
present in a single partition.

Class Train Validation Test Total

Benign 20’486 4’737 12’848 38’071
GP3 14’034 2’995 9’401 26’430
GP4 10’937 2’228 10’731 23’896
GP5 5’471 766 1’736 7’973

Total 50’928 10’726 34’716 96’370

Table 4
Dataset distribution of the patches with patch-level annotations used for each of the
datasets.

Dataset Benign GP 3 GP 4 GP 5

TMAZ 3’487 8’946 7’424 3’610
Gleason challenge 1’080 2’431 3’649 100
SICAPv2 11’069 10’784 2’979 2’767
Valme 13’652 3’026 5’510 800
Diagset 8’783 1’243 4’334 696

Total 38’071 26’430 23’896 7’973

representation for each of the datasets is presented in Table 4. Gleason
challenge and Diagset datasets were only represented in the test subset.
The division of the patches in the three training subsets was done
considering that patches from the same patient were only present in a
single subset. Thus, no patient was represented in more than one subset
at the same time.

Regarding the image-level annotations of TMA cores and WSIs,
Table 5 presents the distribution of the images in the 6 different classes
(benign, GS6, GS7=3+4, GS7=4+3, GS8, GS9-10) and the three train-
ing subsets. These images correspond to Valme, Clinic, TCGA-PRAD,
TMAZ, SICAPv2, PANDA Challenge and Gleason challenge datasets.
Both TCGA-PRAD and Gleason challenge were only represented in the
test subset. From the 12’817 images (including TMA cores and WSIs)
that were used, a total of 2’515’327 patches were extracted from image-
level annotations, whose distribution is presented in Table 6. As was
done for the patch-level annotations, patches were divided into the
train, validation and test subsets following a distribution where the
patches from the same patient were only represented in a single subset.

The external test set was created to be highly heterogeneous, includ-
ing half of the biggest dataset available, PANDA (those WSIs sourced
from Radboud University Medical Center), the whole TCGA-PRAD sub-
set, and several other datasets (Diagset and Gleason challenge). The
latter three aforementioned datasets were not used for training nor
evaluating any of the training methods considered. In the case of
PANDA, since we did not have information regarding the WSIs that cor-
respond to each patient, image-level annotated patches obtained from
images sourced from Karolinska Institutet were used in the training set,
while those from Radboud University Medical Center were only present
in the test set, with none of them being considered for the validation
set.

2.2.2. Data augmentation
Three different types of operations were applied to augment the

training datasets and, thus, to increase the variability of the data and
avoid overfitting. These three operations are rotations, flips and color
augmentation. Only three rotations are considered in this augmenta-
tion: 90, 180 and 270 degrees. These rotations were selected based
on the fact that they allow avoiding the need of filling the empty
space in the corners that appears when not rotating images by steps of
90 degrees. Regarding flips, both horizontal and/or vertical flips were
applied to the input image. The color augmentation was performed
by defining a range of values for each of the parameters in the HSV
7

representation (hue, saturation and value). The hue shift limit was set
Table 5
Distribution of the images (WSIs and TMA cores) with image-level annotations from
Valme, TMAZ, Gleason challenge, SICAPv2, TCGA-PRAD, Clinic and PANDA challenge
datasets. The partitioning was performed by patient, meaning that images from the
same patient were only present in a single partition.

Class Train Validation Test Total

Benign 2’222 131 1’075 3’428
GS6 2’200 116 1’014 3’330
GS7=3+4 765 25 902 1’692
GS7=4+3 381 22 1’101 1’504
GS8 652 28 1’025 1’705
GS9–10 400 23 1’135 1’558

Total 6’220 345 6’252 12’817

Table 6
Distribution of the patches extracted from image-level annotations (WSIs and TMA
cores) from Valme, TMAZ, Gleason challenge, SICAPv2, TCGA-PRAD, Clinic and PANDA
challenge datasets. The partitioning was performed by patient, meaning that patches
obtained from slides from the same patient were only present in a single partition.

Class Train Validation Test Total

Benign 484’336 35’945 148’070 668’381
GP3 610’631 27’710 345’728 984’069
GP4 259’805 9’789 490’432 760’026
GP5 22’806 2’529 77’516 102’851

Total 1’377’608 75’973 1’061’746 2’515’327

between −15 and 8, the saturation shift limit was set between −20 and
10, and the value shift limit was set between −8 and 8. Each of the
hree aforementioned operations used to augment the variability of the
raining dataset was applied to every patch with a probability of 0.5.
he open-source Albumentations library (Buslaev et al., 2020) was used
o perform all these operations automatically every time a patch was
oaded into memory.

.3. Training approaches

.3.1. Fully-supervised learning
In fully-supervised learning, training is performed with datasets

here each sample has a label associated (patch-level annotations).
n this regard, each patch that is used to train the CNN model comes
rom specific regions within the image that pathologists have manually
nnotated and associated with one of the four classes considered in this
tudy: benign, GP3, GP4 or GP5.

Therefore, for this learning approach, Valme, SICAPv2 and TMAZ
atasets were used, since these contain patch-level annotations among
he ones that were considered in this work (Table 1). A total of
0’928 patches from these datasets were considered for the training
ubset, and 10’726 for the validation subset from the same datasets.
ther datasets, such as Diagset and Gleason challenge, also contain
atch-level annotations. These were not used in the training and the
alidation partitions, but on the test partition together with the test
ets from Valme, SICAPv2 and TMAZ in order to test the generalization
apability of this learning approach. A diagram of the workflow for the
ully-supervised learning approach is presented in Fig. 2.

.3.2. Weakly-supervised learning and hybrid approaches based on weak
nd strong supervision

Three different variants of weakly-supervised learning algorithms
ere proposed. In the first variant, the network is trained using datasets
ith image-level annotations, labeling each patch with the global label

orresponding to the image from where the patches were extracted. In
he second variant, the network is trained using datasets with image-
evel annotations (as described for the previous variant) and then
ine-tuned with datasets that contain patch-level annotations (those
hat were used for the fully-supervised learning, where each sample has
specific label associated). In the third variant, the patches obtained
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Fig. 2. Diagram of the fully-supervised learning approach. Patches are densely-extracted from local annotations, and then used to train the CNN.
Fig. 3. Diagram of the 3 different weakly-supervised learning approach variants. Patches are densely-extracted from images with global annotations after selecting the top ranked
patches based on descending BR. Patch-level annotated patches are obtained from images with local annotations. Variant 1 is trained only with the former. For variant 2, the
network is trained with image-level annotated patches and then fine-tuned with patch-level-annotated patches. In variant 3, a combination of image-level and patch-level annotations
is used to train the model.
from image-level annotations and patch-level annotations are combined
to train the network. The overall workflow of the three different
variants is summarized in the block diagram presented in Fig. 3.

Variant 1: Weak supervision. The first variant consisted of training the
CNN with image-level annotated data (unsupervised learning). To this
end, the densely-extracted patches from the images in the train and
validation partitions from Valme, TMAZ, SICAPv2, PANDA challenge
and Clinic datasets were used for training and validating the network.
A total of 6’220 images (WSIs and TMA cores) were used to train the
network, which correspond to 1’377’608 patches. For validating the
network, 75’973 patches from 345 images were used.
8

Variant 2: Transfer learning. This variant consists of two different steps
in the learning process: the model is first trained with patches obtained
from image-level annotations, as in the previous variant. After training
the network in an unsupervised manner, the second step consisted in
fine-tuning the aforementioned network. To this end, the weights of the
model were transferred and then fine-tuned with patches obtained from
images with patch-level annotations (the same ones that were used
in the fully-supervised learning approach, i.e., patches from Valme,
SICAPv2 and TMAZ datasets) in order to improve its performance.
In this way, the CNN builds on top of the generalization capability
achieved with the first step, and the pixel-wise accuracy is improved
with the patch-level annotated data used in the second step.
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Fig. 4. Diagram of the workflow considered for the semi-supervised learning approach. Patch-level annotations are used to train the teacher model. Then, the trained teacher is
used to label patches extracted from unlabeled images. These pseudo-labeled patches, together with the patch-level annotated patches used in the first step, are used to train the
student model.
Fig. 5. Diagram of instance-based MIL learning approaches. Patches are densely-extracted from images with global annotations after selecting the top ranked patches based
on descending BR. The CNN performs predictions at the patch level, which are aggregated by the implemented aggregation model, reporting both image-level and patch-level
predictions.
Variant 3: Combination of image-level and patch-level. annotations
The third variant of the weakly-supervised learning method that was

considered in this work consists of a single step, where both image-
level and patch-level annotated patches (the same patches that were
used in the previous variant) were combined and used for training
and validating the network. Therefore, a total of 1’428’536 patches for
training the model, and 86’699 for validating it were used.

The idea behind this approach was to reduce the training time
compared to the two-steps variant (unsupervised learning plus fine-
tuning), while also benefiting from the broader generalization provided
by training with both image-level and patch-level annotated samples.

2.3.3. Semi-supervised learning
The semi-supervised learning approach presented involves two mod-

els: a teacher model and a student model (Marini et al., 2021c). The
teacher model is trained with patch-level annotated data from SICAPv2
and TMAZ (same partitions as used in the fully-supervised learning
approach). The teacher is a CNN with a large number of parameters
(more than the student) to capture and learn robust features from the
input data. The role of the teacher is to annotate unlabeled patches,
collected from Valme, Clinic, TCGA-PRAD, Diagset and Puerta del Mar
datasets, generating the so-called pseudo labels. The student model
is trained with the pseudo-labeled data and with a small portion of
patch-level annotated data (the same samples used to train the teacher
model). Fig. 4 presents a block diagram with the workflow followed for
the teacher/student learning approach.
9

2.3.4. Multiple-instance learning
The paper presents seven different MIL CNNs, trained to output

the Primary and the Secondary GPs included in the images. These
are Additive-MIL, AB-MIL, TransMIL, DS-MIL and CLAM. For Additive-
MIL and AB-MIL, both instance-based and embedding-based approaches
were considered, with the rest of the methods being embedding-based.
The instance-based CNN aggregates the predictions on the single in-
stances (patches) to have an image-level prediction (see Fig. 5); while
the embedding-based CNN aggregates the embeddings of the single
instances to have an image embedding that is used to obtain an image-
level prediction (see Fig. 6). In both frameworks, the aggregation of
predictions and embeddings is conducted by exploiting a specific pool-
ing layer (Ilse et al., 2018; Javed et al., 2022; Lu et al., 2021; Li et al.,
2021a; Shao et al., 2021), which depends on the MIL implementation.
This pooling network is a learnable function, which guarantees more
flexibility compared to other pooling layers (such as max pooling or
average pooling). The choice of using both frameworks allows showing
their advantages and disadvantages: while embedding-based MIL is
supposed to reach higher performance on image-level classification,
avoiding any possibility to have predictions at the patch-level, instance-
based framework guarantees predictions on the single patches, usually
reaching lower performance at image-level.

2.3.5. Self-supervised learning
This paper presents two setups for the CNN starting weights, using

ImageNet pre-trained weights and self-supervision solutions. CNNs are
not usually trained from scratch, due to the limited number of data and
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Fig. 6. Diagram of embedding-based MIL learning approaches. Patches are densely-extracted from images with global annotations after selecting the top ranked patches based on
descending BR. The CNN generates embeddings, which are aggregated by the implemented aggregation model, reporting image-level predictions.
to their large number of parameters to tune: CNN are commonly pre-
trained on large datasets and then trained on particular data to solve
a task. The first setup (i.e., ImageNet weights) is a common trend in
deep learning algorithms: even if the original dataset includes natural
images, the features learnt from these data include patterns such as
curves or lines that can match some patterns in histopathology data.
However, the features learnt on ImageNet may not catch all peculiar
features of histopathology data. The second setup presented in the
paper aims to overcome this problem: the CNN is pre-trained using
simCLR (Chen et al., 2020), which is a self-supervised algorithm aiming
to learn similarity and dissimilarity between input data (in this case
between patches).

2.4. Deep learning framework

PyTorch (Paszke et al., 2019) was used to train and evaluate all
the different models and to perform all the experiments presented.
The CNN models that were used for the fully-supervised learning,
the three variants of the weakly-supervised learning and the student
from the semi-supervised learning rely on DenseNet121 (Huang et al.,
2017). On the other hand, a Resnext50_32x4d (Xie et al., 2017) model
implemented by Yalniz et al. (2019) was used for the teacher. Both
architectures were modified using a classifier with only four output
nodes in the last layer, which correspond to the number of GPs, and
thus, to the number of output classes to be classified.

Adam was used as optimizer, with a learning rate of 10-3, and a
decay weight of 0. Since classes were not represented equally in terms
of the number of patches per class (see Section 2.2.1), scikit-learn’s
compute_class_weight function was used. This allows estimating the
weight of each class in unbalanced datasets in order to weight the
loss function during training, avoiding the overfitting of the model on
the most represented class. The batch size used when training each of
the models was set to 32, and the number of epochs was set to 15,
since it was observed that the loss function was not improving after
the first 10–12 epochs. These values were used for all the proposed
learning approaches except for the transfer learning (second step of
the weakly-supervised variant 2), in which only 5 epochs were used to
fine-tune the weakly-supervised models (which were previously trained
for 15 epochs) with patch-level annotated data. The loss function was
evaluated on the validation partition at the end of each epoch, and the
weights of the model were only saved if its value was lower than the
one achieved in the previous epoch.

2.5. Evaluation metrics

In order to evaluate the performance of the models, the quadratic
weighted Cohen’s Kappa Score (𝜅) (Cohen, 1960) was used. This metric
measures the agreement or disagreement between the ground truth and
10
the predicted value, where 𝜅 = 1 means perfect agreement between
both, while 𝜅 = 0 means that the degree of agreement is the same
as would be expected by chance. In this case, the quadratic weighted
version of this coefficient was used, since it penalizes predicted values
far from their actual class to a greater extent (i.e., in the Gleason
grading task, predicting a benign patch as GP3 would penalize less than
predicting it as GP4 or GP5).

Since the proposed models (except for MIL) perform the GP clas-
sification on input patches, a majority voting mechanism was used
to aggregate the patch-level predictions into a GS value. With the
predictions performed over all the patches in a single WSI, this method
selects the primary and the secondary GPs based on the two most
frequent GPs in the image. This method is limited for images where
the first and the secondary GPs are the same. A common approach
to handle this limitation is considering the image to have the same
primary and secondary GPs if it has at least twice the amount of patches
predicted with the most predominant GP as with the second one.

3. Results

The model performance is evaluated in 𝜅-score, reporting the aver-
age and standard deviation of the performance for each of the learning
approaches presented in Section 2.3. For each variant, ten models
were trained, providing more realistic results and helping to provide
more realistic estimates. Therefore, a total of 130 models were trained
and evaluated: 10 fully-supervised, 10 weakly-supervised (variant 1),
10 fine-tuned weakly-supervised with transfer learning (variant 2),
10 weakly-supervised combining image-level and patch-level annota-
tions (variant 3), 10 teachers, 10 students (the teacher that achieved
the best performance was used in the training of the students), 10
instance-based Additive-MIL, 10 embedding-based Additive-MIL, 10
instance-based AB-MIL, 10 embedding-based AB-MIL, 10 DS-MIL, 10
TransMIL and 10 CLAM models.

Moreover, in order to measure the impact of different weight initial-
ization approaches, five alternatives were considered: using pre-trained
weights from ImageNet and fine-tuning all the layers, using pre-trained
weights from ImageNet and fine-tuning only the classification lay-
ers (freezing the weights of all layers but the last ones), using self-
supervised weights and fine-tuning all the layers, using self-supervised
weights and fine-tuning only the classification layers, and using random
weights and fine-tuning all the layers. Ten models were trained for each
training approach and each of these weight initialization alternatives
(except for the different MIL methods, in which only frozen layers with
random, ImageNet and self-supervised weights were considered due to
the complexity of the models). Therefore, considering all these different
experiments, a total of 510 models were trained.

The results for each of the training approaches are divided into
patch-level (Gleason grading) and image-level (Gleason scoring) results,
which are presented in Sections 3.1 and 3.2.
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Table 7
Results obtained for each training approach at the patch-level (Gleason grading). The performance, evaluated in 𝜅, is the average over ten different trained models. The best results
or each training approach are highlighted in bold.
Training approach Weight init. Dataset

Valme TMAZ SICAPv2 Diagset Gleason challenge Combined

Full supervision

ImageNet 0,7345 ± 0,0324 0,5677 ± 0,0268 0,7491 ± 0,0301 0,6238 ± 0,0351 0,5410 ± 0,0685 0,6432 ± 0,0415
Self-supervision 0,7251 ± 0,0336 0,5841 ± 0,0220 0,7352 ± 0,0302 0,6007 ± 0,0531 0,5873 ± 0,0272 0,6465 ± 0,0349
Random 0,6138 ± 0,0335 0,3555 ± 0,0515 0,6487 ± 0,0322 0,2304 ± 0,0767 0,2666 ± 0,0474 0,4230 ± 0,0509
ImageNet frozen 0,5025 ± 0,0187 0,1745 ± 0,0115 0,4791 ± 0,0661 0,1056 ± 0,0902 0,2464 ± 0,0272 0,3016 ± 0,0524
Self-sup. frozen 0,3179 ± 0,0202 0,3216 ± 0,0159 0,5170 ± 0,0129 0,5267 ± 0,0099 0,4460 ± 0,0138 0,4258 ± 0,0149

Weak supervision

ImageNet 0,1926 ± 0,0847 0,4966 ± 0,0697 0,2742 ± 0,0683 0,4758 ± 0,0881 0,2931 ± 0,0979 0,3465 ± 0,0825
Self-supervision 0,2969 ± 0,0890 0,5457 ± 0,0502 0,2297 ± 0,1152 0,5512 ± 0,0627 0,4704 ± 0,0273 0,4188 ± 0,0754
Random 0,1462 ± 0,0709 0,2052 ± 0,0538 −0,1145 ± 0,1288 0,2356 ± 0,0816 0,2320 ± 0,0409 0,1409 ± 0,0810
ImageNet frozen 0,1661 ± 0,0205 0,4741 ± 0,0196 0,2035 ± 0,0187 0,2569 ± 0,0368 0,2215 ± 0,0534 0,2644 ± 0,0327
Self-sup. frozen 0,1834 ± 0,0316 0,3229 ± 0,0139 0,0617 ± 0,0528 0,3642 ± 0,0177 0,3933 ± 0,0226 0,2651 ± 0,0310

Weak supervision + fine-tuning

ImageNet 0,7038 ± 0,0414 0,5901 ± 0,0188 0,7569 ± 0,0334 0,6057 ± 0,0799 0,5202 ± 0,0269 0,6353 ± 0,0454
Self-supervision 0,7018 ± 0,0437 0,6013 ± 0,0209 0,7563 ± 0,0240 0,5974 ± 0,0977 0,5826 ± 0,0588 0,6479 ± 0,0565
Random 0,4613 ± 0,0409 0,3113 ± 0,0245 0,4793 ± 0,0722 0,2315 ± 0,0449 0,1394 ± 0,1027 0,3246 ± 0,0633
ImageNet frozen 0,6037 ± 0,0120 0,4980 ± 0,0056 0,6774 ± 0,0139 0,5271 ± 0,0190 0,3186 ± 0,0262 0,5250 ± 0,0168
Self-sup. frozen 0,4171 ± 0,0229 0,3612 ± 0,0291 0,5504 ± 0,0143 0,5626 ± 0,0079 0,4889 ± 0,0166 0,4761 ± 0,0196

Image- + patch-level annot.

ImageNet 0,4477 ± 0,0961 0,5596 ± 0,0463 0,6737 ± 0,0614 0,5054 ± 0,0551 0,2417 ± 0,0703 0,4856 ± 0,0680
Self-supervision 0,5241 ± 0,0690 0,5321 ± 0,0361 0,7295 ± 0,0393 0,5304 ± 0,0531 0,2625 ± 0,0804 0,5157 ± 0,0581
Random 0,2483 ± 0,0338 0,1297 ± 0,0826 0,1310 ± 0,1092 0,1709 ± 0,0431 0,2162 ± 0,0302 0,1792 ± 0,0673
ImageNet frozen 0,3271 ± 0,0150 0,4378 ± 0,0199 0,4801 ± 0,0232 0,2854 ± 0,0296 0,1945 ± 0,0277 0,3450 ± 0,0237
Self-sup. frozen 0,3173 ± 0,0200 0,4440 ± 0,0213 0,4757 ± 0,0272 0,2933 ± 0,0225 0,2018 ± 0,0240 0,3464 ± 0,0231

Semi-supervision

ImageNet 0,6326 ± 0,0735 0,4614 ± 0,0449 0,7143 ± 0,0501 0,3968 ± 0,0808 0,4468 ± 0,0486 0,5304 ± 0,0613
Self-supervision 0,6384 ± 0,0520 0,4760 ± 0,0232 0,7400 ± 0,0643 0,3645 ± 0,1441 0,4471 ± 0,0534 0,5332 ± 0,0787
Random 0,4164 ± 0,0238 0,1574 ± 0,0299 0,4835 ± 0,0505 0,1044 ± 0,0389 0,0470 ± 0,0261 0,2417 ± 0,0352
ImageNet frozen 0,5875 ± 0,0296 0,4549 ± 0,0151 0,6712 ± 0,0299 0,0833 ± 0,0405 0,1392 ± 0,0317 0,3872 ± 0,0305
Self-sup. frozen 0,5865 ± 0,0260 0,4584 ± 0,0195 0,6870 ± 0,0166 0,0779 ± 0,0307 0,1286 ± 0,0254 0,3877 ± 0,0242

Instance-based Additive-MIL
Random frozen 0,0087 ± 0,0103 0,0127 ± 0,0168 −0,0082 ± 0,0368 0,0081 ± 0,0173 −0,0058 ± 0,0323 0,0031 ± 0,0248
ImageNet frozen 0,0868 ± 0,0336 0,4428 ± 0,0123 0,2679 ± 0,0251 0,3105 ± 0,0283 0,4862 ± 0,0072 0,3188 ± 0,0235
Self-sup. frozen 0,0364 ± 0,0166 0,4234 ± 0,0153 0,2602 ± 0,0148 0,4175 ± 0,0410 0,4510 ± 0,0137 0,3177 ± 0,0228
w

3.1. Patch-level results

Fully-supervised learning reaches the highest performance on the
Gleason grading task. Gleason grading is evaluated considering the
patch-level classification performance on the test set including a total
of 34’716 patches from Valme, TMAZ, SICAPv2, Gleason challenge and
Diagset datasets.

Table 7 presents the average and the standard deviation of the 𝜅 of
the models for each dataset and weight initialization. In this table, the
results for each of the datasets is specified individually, together with a
last column showing the combined results, i.e., the 𝜅 score achieved on
average by the ten models of each training approach. The combined 𝜅
was obtained by calculating the average of the 𝜅 scores achieved on the
five datasets, while the combined standard deviation was obtained by
calculating the root mean square of the standard deviations achieved
on each of the datasets. As can be observed, most of the different MIL
approaches except for instance-based Additive-MIL are not present in
the aforementioned table, since, as was explained in Section 1, those
training approaches cannot yield a patch-level classification.

Among the 280 models represented in the tables, the confusion ma-
trix and the ROC curves of the one that achieved the best performance
(which was trained with the fully-supervised approach and pre-trained
with self-supervision) are shown in Fig. 7. In Fig. 7(a), the confusion
matrix is presented, which reports the difference in the predictions
performed by the pathologists and by the model per class, achieving
a combined 𝜅 of 0.7185. On the other hand, Fig. 7(b) shows the ROC
curves for each of the classes together with their Area Under Curve
(AUC) value, which illustrate the diagnostic ability of each class when
its discrimination threshold is varied.

3.2. Image-level results

Clustering-constrained Attention Multiple Instance Learning (CLAM)
reaches the highest performance on the Gleason scoring task. Gleason
11
scoring is evaluated considering the image-level classification on the
test, including a total of 6’252 images (cores and WSIs).

Table 8 reports the average and the standard deviation of the 𝜅 of
the models for each dataset and weight initialization. In this table, the
results for each of the datasets is specified individually, together with a
last column showing the combined results, i.e., the 𝜅 score achieved on
average by the ten models of each training approach. The combined 𝜅

as obtained by calculating the average of the 𝜅 scores achieved on the
five datasets, while the combined standard deviation was obtained by
calculating the root mean square of the standard deviations achieved
on each of the datasets. Fig. 8 shows the confusion matrix of the model
that achieved the best performance at the image-level among the 460
models that were evaluated. It corresponds to a model that was trained
with the CLAM approach and self-supervised weights, which achieved
a combined 𝜅 of 0.6493.

4. Discussion

Gleason grading and Gleason scoring are still an open challenge in
computational pathology, and, in particular, in prostate cancer clas-
sification, due to the need of large annotated datasets and of data
heterogeneity. This aspect hinders the generalization of deep learning
models (the state-of-the-art algorithm in the computational pathology
domain) when training, moving away from the idea of having uni-
versal CAD systems for specific malignancies. The amount of public
datasets including prostate WSIs is yearly increasing, but most of them
are only globally-annotated, without any local annotation. Obtaining
local (or patch-level) annotations is not easy, since it requires expert
pathologists to analyze and locally annotate digitized images, which
is time consuming and outside of the scope of their routine work.
In this work, we collected several publicly-available prostate cancer
histology datasets (TMAZ, SICAPv2, TCGA-PRAD, Gleason challenge,
Diagset and PANDA challenge) in combination with three private (but

expected to be publicly released in the near future) datasets (Valme,
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Fig. 7. Confusion matrix (left) and ROC curves (right) obtained for the CNN model achieving the best patch-level results (Gleason grading). The results correspond to a fully-
supervised model that was pre-trained with self-supervision. The confusion matrix is normalized, and represents all the patches with patch-level annotations in the test set, achieving
a combined 𝜅 = 0, 7185.
Table 8
Results obtained for each training approach at the image level (Gleason scoring). The performance, evaluated in 𝜅, is the average over ten different trained models. The best
results for each training approach are highlighted in bold.

Training Weight init. Dataset

approach Valme TMAZ SICAPv2 Gleason challenge TCGA Clinic PANDA Combined

Full supervision

ImageNet 0,4864 ± 0,0485 0,5377 ± 0,0585 0,1758 ± 0,0301 0,5168 ± 0,0497 0,2519 ± 0,0427 0,1743 ± 0,1495 0,1480 ± 0,0564 0,3273 ± 0,0753
Self-supervision 0,5143 ± 0,0712 0,6345 ± 0,0567 0,1574 ± 0,0306 0,5853 ± 0,0667 0,3066 ± 0,0321 0,2232 ± 0,1393 0,1617 ± 0,0546 0,3690 ± 0,0693
Random 0,2134 ± 0,0397 0,2757 ± 0,0350 0,0432 ± 0,0289 0,1429 ± 0,0290 −0,0069 ± 0,0463 0,4269 ± 0,0500 0,0117 ± 0,0108 0,1581 ± 0,0363
ImageNet frozen 0,2110 ± 0,0345 0,2800 ± 0,0321 0,0457 ± 0,0297 0,1391 ± 0,0429 −0,0041 ± 0,0486 0,4499 ± 0,0390 0,1446 ± 0,0664 0,1809 ± 0,0414
Self-sup. frozen 0,4257 ± 0,0152 0,5408 ± 0,0322 0,0950 ± 0,0182 0,4736 ± 0,0147 0,4516 ± 0,0217 −0,1923 ± 0,1337 0,1603 ± 0,0521 0,2792 ± 0,0575

Weak
supervision

ImageNet 0,4813 ± 0,0707 0,5856 ± 0,1052 0,4259 ± 0,0142 0,4413 ± 0,0920 0,2874 ± 0,0869 0,0018 ± 0,0217 0,3425 ± 0,1335 0,3665 ± 0,1017
Self-supervision 0,5165 ± 0,0712 0,5678 ± 0,0957 0,4063 ± 0,1220 0,5263 ± 0,0814 0,3680 ± 0,0786 0,1019 ± 0,1458 0,3342 ± 0,1047 0,4030 ± 0,1061
Random 0,2534 ± 0,0475 0,2794 ± 0,1052 0,0168 + 0,1778 0,0692 ± 0,0652 0,1488 ± 0,0599 0,0181 ± 0,0544 0,0492 ± 0,0508 0,1193 ± 0,0913
ImageNet frozen 0,4197 ± 0,0148 0,6391 ± 0,0401 0,4296 ± 0,1508 0,4703 ± 0,0930 0,2100 ± 0,0466 −0,0126 ± 0,0186 0,1455 ± 0,1203 0,3288 ± 0,0847
Self-sup. frozen 0,3070 ± 0,0317 0,4058 ± 0,0230 0,5408 ± 0,0632 0,2848 ± 0,0537 0,2865 ± 0,0352 −0,0769 ± 0,0957 0,3550 ± 0,0635 0,3004 ± 0,0571

Weak
supervision +
fine-tuning

ImageNet 0,4869 ± 0,0427 0,6361 ± 0,0586 0,1661 ± 0,0631 0,5843 ± 0,0474 0,2617 ± 0,0302 0,0499 ± 0,0557 0,1855 ± 0,0725 0,3386 ± 0,0555
Self-supervision 0,5347 ± 0,0401 0,6662 ± 0,0581 0,1641 ± 0,0356 0,6289 ± 0,0388 0,3564 ± 0,0469 0,3436 ± 0,1153 0,2154 ± 0,0845 0,4156 ± 0,0694
Random 0,2523 ± 0,0354 0,4093 ± 0,0329 0,1098 ± 0,0620 0,0664 ± 0,0649 0,1427 ± 0,0607 0,3909 ± 0,1416 0,0497 ± 0,0499 0,2030 ± 0,0723
ImageNet frozen 0,4115 ± 0,0151 0,5948 ± 0,0979 0,1056 ± 0,1720 0,3125 ± 0,0464 0,2089 ± 0,0476 0,2715 ± 0,0679 0,1455 ± 0,1203 0,2929 ± 0,0948
Self-sup. frozen 0,4287 ± 0,0298 0,5845 ± 0,0283 0,1089 ± 0,0100 0,5293 ± 0,0208 0,4421 ± 0,0179 −0,1132 ± 0,0632 0,3209 ± 0,0178 0,3287 ± 0,0313

Image- +
patch-level
annot.

ImageNet 0,4954 ± 0,0325 0,6542 ± 0,1048 0,3433 ± 0,1518 0,5088 ± 0,111 0,3840 ± 0,0834 0,3421 ± 0,1026 0,2592 ± 0,0847 0,4267 ± 0,0998
Self-supervision 0,5297 ± 0,0195 0,6215 ± 0,0725 0,4529 ± 0,1595 0,4525 ± 0,0618 0,3771 ± 0,0849 0,3431 ± 0,1014 0,3550 ± 0,0634 0,4474 ± 0,0937
Random 0,3313 ± 0,0814 0,1028 ± 0,0925 0,1324 ± 0,0710 0,0943 ± 0,1308 0,0778 ± 0,0471 0,1509 ± 0,0849 0,2652 ± 0,0702 0,1650 ± 0,0859
ImageNet frozen 0,5231 ± 0,0271 0,5025 ± 0,0482 0,2927 ± 0,1047 0,5268 ± 0,0328 0,1910 ± 0,0213 0,0462 ± 0,0765 0,4507 ± 0,0198 0,3618 ± 0,0558
Self-sup. frozen 0,4963 ± 0,0373 0,5397 ± 0,0615 0,2984 ± 0,0739 0,5628 ± 0,0406 0,1962 ± 0,0316 0,0225 ± 0,0144 0,4410 ± 0,0180 0,3653 ± 0,0444

Semi-
supervision

ImageNet 0,3824 ± 0,0698 0,5998 ± 0,0667 0,1838 ± 0,0537 0,5361 ± 0,1010 0,3522 ± 0,0441 0,0545 ± 0,0698 0,3065 ± 0,0903 0,3451 ± 0,0673
Self-supervision 0,4577 ± 0,0451 0,6689 ± 0,0380 0,1467 ± 0,0425 0,5939 ± 0,0676 0,3340 ± 0,0623 −0,1239 ± 0,1157 0,3236 ± 0,0875 0,3430 ± 0,0710
Random 0,2345 ± 0,0405 0,2384 ± 0,0589 0,1269 ± 0,0882 0,0351 ± 0,0419 −0,0244 ± 0,0360 −0,0625 ± 0,0855 0,1057 ± 0,0454 0,0934 ± 0,0601
ImageNet frozen 0,4777 ± 0,0235 0,6437 ± 0,0226 0,3267 ± 0,0789 0,3906 ± 0,0978 0,2031 ± 0,0472 0,0044 ± 0,0531 0,2845 ± 0,0590 0,3329 ± 0,0602
Self-sup. frozen 0,4800 ± 0,0365 0,6662 ± 0,0204 0,3159 ± 0,0860 0,3546 ± 0,0574 0,1450 ± 0,0504 0,0097 ± 0,0565 0,3051 ± 0,0668 0,3252 ± 0,0569

Instance-based
Additive-MIL

Random frozen 0,1768 ± 0,0634 0,0277 ± 0,0199 0,3243 ± 0,1850 0,0850 ± 0,0668 0,0522 ± 0,0283 0,0598 ± 0,0435 0,1800 ± 0,0928 0,1294 ± 0,0882
ImageNet frozen 0,6281 ± 0,0161 0,6001 ± 0,0380 0,7307 ± 0,0434 0,6576 ± 0,0199 0,5806 ± 0,0203 0,4941 ± 0,1810 0,4208 ± 0,0378 0,5874 ± 0,0742
Self-sup. frozen 0,5839 ± 0,0303 0,6174 ± 0,0325 0,6893 ± 0,0774 0,6516 ± 0,0304 0,5770 ± 0,0244 0,3437 ± 0,1196 0,5292 ± 0,0118 0,5703 ± 0,0584

Embedding-
based
Additive-MIL

Random frozen 0,1086 ± 0,0493 0,0170 ± 0,0125 0,1324 ± 0,1420 0,0610 ± 0,0469 0,0558 ± 0,0662 0,0426 ± 0,0194 0,0973 ± 0,0875 0,0735 ± 0,0731
ImageNet frozen 0,6342 ± 0,0168 0,6481 ± 0,0447 0,7406 ± 0,0426 0,6361 ± 0,0364 0,5762 ± 0,0190 0,5752 ± 0,0362 0,4123 ± 0,0248 0,6033 ± 0,0332
Self-sup. frozen 0,5985 ± 0,0148 0,5827 ± 0,0179 0,7154 ± 0,0464 0,6326 ± 0,0296 0,5869 ± 0,0299 0,4400 ± 0,0950 0,5393 ± 0,0192 0,5850 ± 0,0445

Instance-based
AB-MIL

Random frozen 0,0859 ± 0,0600 0,0086 ± 0,0075 0,2237 ± 0,1328 0,0754 ± 0,0535 0,0551 ± 0,0320 0,0659 ± 0,0428 0,0985 ± 0,0833 0,0876 ± 0,0696
ImageNet frozen 0,6134 ± 0,0276 0,5921 ± 0,0554 0,6402 ± 0,1083 0,6112 ± 0,0307 0,5902 ± 0,0171 0,5414 ± 0,0364 0,5297 ± 0,0309 0,5883 ± 0,0522
Self-sup. frozen 0,5929 ± 0,0236 0,6085 ± 0,0151 0,5998 + 0,0208 0,6889 ± 0,0256 0,5184 ± 0,0222 0,3349 ± 0,1075 0,6080 ± 0,0158 0,5645 ± 0,0450

Embedding-
based
AB-MIL

Random frozen 0,1541 ± 0,0569 0,0056 ± 0,0137 0,3247 ± 0,1274 0,1269 ± 0,0617 0,0406 ± 0,0369 0,1034 ± 0,0471 0,1823 ± 0,0961 0,1339 ± 0,0720
ImageNet frozen 0,6090 ± 0,0233 0,6305 ± 0,0328 0,6836 ± 0,0955 0,5724 ± 0,0429 0,5910 ± 0,0163 0,5592 ± 0,0254 0,5622 ± 0,0360 0,6011 ± 0,0460
Self-sup. frozen 0,5831 ± 0,0248 0,6309 ± 0,0155 0,6286 ± 0,0396 0,6949 ± 0,0162 0,5464 ± 0,0255 0,3569 ± 0,1046 0,6087 ± 0,0172 0,5785 ± 0,0456

DS-MIL
Random frozen 0,1476 ± 0,0856 0,0244 ± 0,0254 0,3491 ± 0,1816 0,1521 ± 0,0718 0,0437 ± 0,0518 0,1268 ± 0,0863 0,1408 ± 0,0963 0,1406 ± 0,0967
ImageNet frozen 0,4990 ± 0,0617 0,5197 ± 0,0675 0,5787 ± 0,1699 0,6389 ± 0,0374 0,5431 ± 0,0430 0,5848 ± 0,0510 0,5451 ± 0,0279 0,5585 ± 0,0792
Self-sup. frozen 0,5921 ± 0,0581 0,6295 ± 0,0200 0,7037 ± 0,0746 0,6471 ± 0,0164 0,5475 ± 0,0537 0,2530 ± 0,1303 0,6163 ± 0,0255 0,5699 ± 0,0656

TransMIL
Random frozen 0,1195 ± 0,0689 0,0406 ± 0,0531 0,2361 ± 0,1482 0,0945 ± 0,0472 −0,0135 ± 0,0578 0,2302 ± 0,1605 0,1514 ± 0,0388 0,1227 ± 0,0944
ImageNet frozen 0,6308 ± 0,0150 0,6119 ± 0,0321 0,7132 ± 0,0820 0,6250 ± 0,0270 0,5687 ± 0,0351 0,5304 ± 0,0860 0,5491 ± 0,0364 0,6042 ± 0,0516
Self-sup. frozen 0,6100 ± 0,0231 0,5915 ± 0,0207 0,6765 ± 0,1056 0,6479 ± 0,0256 0,5530 ± 0,0263 0,4291 ± 0,0837 0,6238 ± 0,0143 0,5903 ± 0,0543

CLAM
Random frozen 0,1470 ± 0,0607 0,0664 ± 0,0924 0,2694 ± 0,1818 0,1064 ± 0,0680 0,0785 ± 0,0488 0,0887 ± 0,0435 0,1364 ± 0,1138 0,1275 ± 0,0979
ImageNet frozen 0,5514 ± 0,0515 0,5912 ± 0,0758 0,7156 ± 0,1166 0,6402 ± 0,0374 0,5686 ± 0,0321 0,6307 ± 0,0604 0,5614 ± 0,0295 0,6084 ± 0,0643
Self-sup. frozen 0,5495 ± 0,0264 0,6204 ± 0,0214 0,7204 ± 0,0828 0,7004 ± 0,0219 0,5725 ± 0,0231 0,3224 ± 0,1043 0,6316 ± 0,0104 0,5882 ± 0,0535
12



Medical Image Analysis 95 (2024) 103191J.P. Dominguez-Morales et al.
Fig. 8. Normalized confusion matrix obtained for the CNN model achieving the best
image-level results (Gleason scoring). The results correspond to a CLAM model trained
with self-supervised weights. The confusion matrix represents all the cores and WSIs
in the test set, achieving a combined 𝜅 = 0, 6493.

Clinic and Puerta del Mar). With this amount of both image-level and
patch-level annotated data, different training methods were applied
and evaluated with the main purpose of analyzing their performance
on Gleason grading (patch-level) and Gleason scoring (image-level) and
their generalization over a large test set obtained from many different
sources.

Fully-supervised learning directly depends on pixel-wise annota-
tions for training CNNs. As was previously mentioned, it is difficult to
collect large heterogeneous datasets from different sources with local
annotations. Thus, achieving high performance with this method is not
easy, since the training cannot benefit from larger amounts of data
with image-level annotations, as the rest of the methods do. On the
other hand, in fully-supervised learning, training is less time-consuming
and needs an inferior amount of resources due to this aspect. When
analyzing the patch-level results (see Tables 7), it can be observed
that this method achieves the highest performance on average across
all the datasets in the test set, outperforming the rest of the training
approaches. Moreover, as another positive note to these results, they
were obtained with models that were only trained with patch-level
annotated data (a total of 50’928 patches, as presented in Table 3),
which is less than 4% of the data used to train the next simplest
model among those evaluated (the models trained with the weakly-
supervised learning approach used 1’377’608 image-level annotated
patches in the training subset, as presented in Table 6). Therefore,
fewer patches are needed to achieve even better results at the patch
level compared to other methods. However, these have to be obtained
from pixel-wise annotated data. When looking at the image-level results
(see Table 8), the disadvantages of this method become clear. Fully-
supervised learning has the lowest performances at the image level.
There are only two cases in which this approach performs well, which
is for TMA cores (TMAZ and Gleason challenge datasets) and Valme.
Since the method achieves high performance at the patch level and only
a few patches are densely-extracted from TMA cores due to their size,
it makes sense that the method also performs well at the core level on
these datasets. On the other hand, Valme was one of the datasets used
for training the fully-supervised models, which could explain why the
results of these models at the image level on Valme are not as low when
compared to the rest of the datasets. The image-level results achieved
for datasets such as SICAPv2 and TCGA-PRAD are poor, showing that
13
this approach is not good at generalizing on many different datasets at
this level.

As opposed to full supervision, weakly-supervised models were
trained with image-level labels only. This training approach allows
exploiting image-level annotations, which is an advantage over full
supervision, since images obtained from public datasets commonly
have image-level labels instead of pixel-wise annotations, which are
more difficult to obtain. Therefore, in the weakly-supervised approach,
we can expect to have many more data than in the fully-supervised
approach, which is an advantage when training CNNs. As a counterpart,
image-level data are not ground truth, since the label assigned to each
patch is inherited from the most predominant GP in the TMA core
or WSI. In order to filter the noise, different heuristics must be used,
such as BR. This process does not increase the complexity of the model
architecture itself, which is as simple as the one used for the full super-
vision, but adds an extra layer in the image preprocessing step, which
is completely necessary for training the CNN with relevant data only.
This, together with the fact that a larger amount of patches were used
to train the network, makes this approach more time consuming than
the previous one. In terms of patch-level results, weakly-supervised
learning is one of the methods that performs the worst (together with
instance-based MIL). This behavior is completely expected taking into
account that the CNNs were trained with a large amount of incorrectly-
labeled patches. Nevertheless, as can be seen in the image-level results,
the higher heterogeneity of the data used to train the weakly-supervised
models leads to a better generalization over all the datasets in the test
subset, except for Clinic.

The second variant of the weakly-supervised learning approach
consisted in transferring the weights from the first and fine-tuning
the model with patch-level annotated data. This variant is more time-
consuming than the previous ones, since a two-step training process is
needed. Benefiting from both patch-level and image-level annotations
is more convenient, since both can be exploited at the same time,
using more data for training the models. An expected behavior prior to
analyzing the results would be for the CNNs to learn the image-level
generalization achieved with weak supervision while also acquiring
part of the high-performance on Gleason grading learnt with full su-
pervision after fine-tuning. However, this is not exactly what happens.
As can be seen from the patch-level and image-level results, the transfer
learning approach performs almost the same as the fully-supervised
approach, being slightly worse at the patch level and slightly better at
the image level. Although the former are high, the latter are not as good
as in the weak supervision, meaning that the network mostly forgot
how to perform the first task when it was fine-tuned for learning the
second. This behavior is known as catastrophic forgetting (Goodfellow
et al., 2013; Ramasesh et al., 2021).

The third and last variant of the weakly-supervised learning con-
sisted in training CNNs with all the image-level and patch-level labels
in the training set together at the same time. As opposed to the previous
variant, this variant does not require a two-step learning process in
which the network is first trained with image-level annotations and
then fine-tuned with patch-level annotations. Instead, all these patches
are combined and used to train the third best of all the evaluated
approaches at the image level. In this case, this method used a total
of 1’428’536 patches (where around 4% correspond to patch-level
annotations) for training the models. This proportion could define the
trade-off between performance at the image level and at the patch level,
since increasing the amount of patch-level annotations would make this
approach closer to full supervision, while the other way around would
make it closer to the first weakly-supervised variant.

Among the different training approaches evaluated, semi-supervision
with the teacher/student paradigm is the most complex in terms of
resources and time needed. Two different models have to be trained:
firstly, the teacher, with patch-level annotations only, which is used
to predict unlabeled or image-level annotated data and generate new
labels based on the prediction; and then the student, which is trained
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on the predictions made by the teacher together with patch-level
annotations. This whole process is slow and depends on many steps.
However, as an advantage of this method when compared to the rest,
it is the only method that can exploit unlabeled datasets (the teacher
can make predictions on patches extracted from unlabeled images
and assign a label to them). Semi-supervised learning achieves good
performance at the patch level, being the third best among the six
different approaches. At the image level, this approach is close to full
supervision (slightly better), although it can still generalize better on
some of the most complex datasets in the test set, such as TCGA-PRAD
and PANDA.

All the discussed training approaches (full supervision, the three
weak supervision variants and semi-supervision) share a particular
disadvantage when performing image-level predictions. All of them are
trained at the patch level without using the global annotation of the
image in the process. Therefore they need an extra processing layer
on top of the output of the network that aggregates all the patch-level
predictions of an image into a single GS value. As is presented in Sec-
tion 2.5, in this work we used majority voting for this purpose, which is
not perfect and could lead to errors in the GS prediction, especially for
those cases where the first and the second most predominant GPs in the
image are the same. In our implementation, this limitation is partially
solved by considering the image to have the same first and second
GPs if the most represented pattern has at least twice the amount of
patches as the second pattern. This threshold introduces errors in the
prediction, which result in a lower performance of these methods at the
image level. Although majority voting is not the best solution, as this
problem could be addressed by means of some other complex AI-based
approaches (Duran-Lopez et al., 2021; Campanella et al., 2019), it is
the simplest.

Instance-based and embedding-based MIL approaches do not make
use of the majority voting algorithm, since the architecture used con-
sists of an attention model that aggregates patch-level predictions and
embeddings, respectively. As a counterpart, the architecture of the
models is not trivial, and the training step is not as straight-forward as
in the rest of the methods. Since the GS label of the images is used in
the training step, hundreds of images are needed to achieve robust and
high-performance results. This is one of the main drawbacks of MIL,
since the rest of the methods can exploit individual patch annotations
when training, requiring a smaller amount of images in total. When
analyzing the results at the patch level, it can be observed that the
instance-based Additive-MIL models do not perform very well (they
achieve the worst results at the patch level). Furthermore, embedding-
based MIL models (including Additive-MIL, AB-MIL, DS-MIL, TransMIL
and CLAM) are not even capable of reporting patch-level results due to
their architecture. At the image level, the different MIL methods clearly
achieve the best performance and generalization. Except for TMAZ,
regarding which we already mentioned why full supervision, trans-
fer learning, semi-supervision and even the third weakly-supervised
variant achieved higher 𝜅 than the rest, the different MIL approaches
utperform the rest of the methods in most of the datasets. Particularly,
LAM stands out when looking at Gleason, Clinic and PANDA results.
his behavior was expected, since MIL approaches are optimized for
ood performance at the image level, unlike fully-supervised learning,
hich is optimized for good performance at the patch level.

While CLAM was the method that achieved the best performance at
he image level, TransMIL, embedding-based AB-MIL and embedding-
ased Additive-MIL performed similarly on average. The difference
etween the performance of these 4 methods does not seem to be
epresentative in this case. However, when looking at the performance
n the PANDA dataset (the largest in the test set among the ones
onsidered), CLAM seems to outperform the rest, particularly taking
nto account that the results reported are the average of 10 models and,
hus, outliers are reduced.

The evaluation conducted both at the patch level and at the image
evel for each of the trained models consisted of a vast number of sam-
14

les obtained from different datasets. Some of these datasets were used
as part of an external test set in which samples from the same datasets
were not used in the train and the validation partitions. This applies to
Gleason challenge and Diagset datasets in the case of Gleason grading,
which correspond to a total of 22’316 patches, representing around
65% of the test set and around 25% of the whole amount of patch-level
annotations. For the Gleason scoring task, Gleason challenge, TCGA-
PRAD and PANDA (images sourced from Radboud University Medical
Center) datasets were used as external test set (half of PANDA was
part of the training set, but only those images sourced from Karolinska
Institutet and not from Radboud University Medical Center), which
correspond to a total of 5’597 images, representing around 90% of the
test set and around 45% of the whole amount of images with image-
level annotations. Training with part of this external test set would
have definitely improved the results and the generalization of all the
different approaches evaluated in this work, but we preferred to test
their limitations by having a vast test partition as external test set
in order to have an unbiased evaluation of the different approaches.
However, the great heterogeneity of the training partition allowed the
different approaches to achieve similar results on the datasets that are
part of the external test set compared to the rest of the test partition.

Initializing the models with random weights leads to the worst
results among the different weight initialization alternatives consid-
ered, both at patch-level and at image-level results. Self-supervision
generally improves both Gleason grading and Gleason scoring results
on average for most of the methods considered. Particularly, this can
clearly be seen when looking at image-level results on the PANDA
dataset, which represent the largest amount of images in the test set.
Therefore, self-supervised learning should definitely be used, instead
of using pre-trained weights from ImageNet, in order to achieve higher
performance on Gleason grading and scoring tasks.

5. Conclusions

In this work, a systematic comparison between different state-of-the-
art methods for both Gleason grading and Gleason scoring classification
is presented. These methods, which include fully-supervised, weakly-
supervised, semi-supervised, Additive-MIL, AB-MIL, DS-MIL, TransMIL
and CLAM learning approaches, were trained and evaluated using nine
datasets from different sources collected from pathology workflows
and publicly available repositories. The performance of the methods
was analyzed, highlighting those reaching higher 𝜅 scores at Gleason
grading and Gleason scoring, together with their advantages and draw-
backs and their generalization capability over many different datasets.
In particular, regarding Gleason grading, the models trained using the
fully-supervised approach achieved the best performance, with their
main limitation being the need for locally-annotated data, which are
commonly scarce in publicly-available datasets. However, full super-
vision is the less time-consuming training approach, since the archi-
tecture is simple and it requires fewer images to train in order to
achieve similar or better results than the other methods evaluated.
On the other hand, in terms of Gleason scoring, models trained using
MIL methods and, particularly, CLAM, reach higher performance and
better generalization than the rest. MIL methods can exploit image-level
annotations without the need for a patch-aggregation algorithm, since
an attention model included in their complex architecture is dedicated
to this task. As a counterpart, they need more images and a longer
training process than the rest of the methods. Full supervision limits
the use of heterogeneous data for training, reducing the generalization
of the model in comparison to weak supervision and MIL. However, the
former can reach higher performance with fewer images on internal
data in patch-level classification. The impact of using models pre-
trained with self-supervision showed a general improvement over those
pre-trained with weights from ImageNet. The results presented in this
work could guide researchers working on the automatic analysis of
digitized histopathology images on which practices to adopt depending

on the task to solve and the heterogeneity of the data.
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