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1. Introduction

It has long been known that biological locomotion is produced
by a neural structure called central pattern generator (CPG).[1–5]

This structure is made of neural circuits that are specialized in

generating rhythmic patterns of neural
activity even without requiring external
sensory inputs.[6,7] They are located in the
spinal cord of vertebrates or in the nervous
system of invertebrates and are responsible
for controlling and coordinating repetitive
movements and sequences of activity,
such as walking in mammals,[8] the rhythm
of swimming in fish,[9] the control of the
heartbeat,[10] or the basic rhythm of breath-
ing.[11] Usually, these neural structures are
made of, at least, two neuronal populations
that alternate their cycles of activity,
producing oscillations in the output without
the need to receive oscillating signals as
stimulus.

The research field called neuromorphic
engineering aims to implement these
neural structures in electronic devices,
emulating the way living beings have
solved complex problems using biological
circuits.[12] Neuromorphic robotics com-
bines both the neuromorphic engineering
community and roboticists, leading to

potential applications that bring together expertise from both
fields.[13,14]

The robotics field borrows concepts from biological CPGs to
create locomotion in robotic platforms. To implement these neu-
ral structures, there are several options available, including using
coupled oscillators, artificial neural networks (ANNs), or spiking
neural networks (SNNs). Among these options, SNNs stand out
as the closest to biology in terms of performance and behavior.
This is primarily due to its temporal information encoding,
which enhances its resilience against noise when compared to
ANNs.[15] Furthermore, SNNs stand out in terms of biological
synaptic plasticity and energy efficiency,[16] as they only consume
energy when neurons emit spikes (action potentials), closely
resembling the functioning of the brain. Consequently, when
applied in robotics, the use of SNNs results in reduced resource
requirements, lower energy consumption, and simplified
algorithms, in contrast to traditional approaches that rely on
ANNs or coupled oscillators.

The use of SNNs for locomotion generation gave rise to spik-
ing central pattern generator (sCPG). Using spiking neurons, a
rhythmic output pattern can be generated, which can be used to
generate motion on robotic platforms. In addition, one of the
advantages of SNNs is that they can generate very stable patterns
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For some years now, the locomotion mechanisms used by vertebrate animals have
been a major inspiration for the improvement of robotic systems. These mech-
anisms range from adapting their movements to move through the environment to
the ability to chase prey, all thanks to senses such as sight, hearing, and touch.
Neuromorphic engineering is inspired by brain problem-solving techniques with
the goal of implementing models that take advantage of the characteristics of
biological neural systems. While this is a well-defined and explored area in this
field, there is no previous work that fuses analog and neuromorphic sensors to
control and modify robotic behavior in real time. Herein, a system is presented
based on spiking neural networks implemented on the SpiNNaker hardware
platform that receives information from both analog (force-sensing resistor) and
digital (neuromorphic retina) sensors and is able to adapt the speed and orientation
of a hexapod robot depending on the stability of the terrain where it is located and
the position of the target. These sensors are used to modify the behavior of dif-
ferent spiking central pattern generators, which in turn will adapt the speed and
orientation of the robotic platform, all in real time. In particular, experiments show
that the network is capable of correctly adapting to the stimuli received from the
sensors, modifying the speed and heading of the robotic platform.
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without the need to incorporate any sensory or brain information
to regulate their operation or oscillation frequency.[14,17,18]

Previous works that explore the implementation of CPGs as
signal generators for robotic actuator control are: ref. [19] where
two different topologies of CPGs with coupled oscillators are pre-
sented to provide different motion patterns to a quadruped robot;
however, these patterns are not interchangeable on the fly; others
like ref. [20] or ref. [14] use a set of CPGs to produce various
motion patterns in hexapod robots; however, the pattern cannot
be modified autonomously. The same occurs in ref. [19].

There are some previous works that use a sCPG similar to the
one proposed in this article but they include an open-loop net-
work that does not conceive the use of sensory inputs for real-
time modification of the system. For example, in refs. [14,20,21],
three sCPGs designs capable of implementing different gait pat-
terns on robotic platforms are presented, using the SpiNNaker
neuromorphic platform[22] together with a field programmable
gate array (FPGA) to process the signals received from the neuro-
morphic chip. In ref. [21], in addition, a dynamic vision sensor
(DVS) is used that influences the selection of the hexapod’s walk-
ing rhythm, but a constant connection to a computer is required.
In ref. [23], the authors propose another sCPG architecture with
the ability to modify its amplitude, phase, and frequency without
requiring any sensory information. Other neuromorphic plat-
forms such as Loihi[24] have also been used to generate locomo-
tion in a robotic lamprey that can select up to two different gait
patterns but does not use a control loop over the generated[25]

motion. These previous works demonstrate that the use of
sCPGs provides significant energy savings compared to conven-
tional actuation and control methods. Furthermore, these works
highlight the fact that it would be interesting to incorporate exter-
nal sensory feedback to modify the behavior of the neural
network and, therefore, the behavior of the robotic platform.

There are some previous works that include sensory
feedback.[26–28] In such cases, conventional oscillators have been
used to model the behavior of the CPG, or Hopf oscillators, as in
ref. [29] where it is used to generate the rhythmic pattern in the
CPG. In another recent work,[30] they used different inertial mea-
surement unit sensors and distance sensors for a robotic fish to
modify in real time a series of coupled oscillators, autonomously
selecting the most optimal swimming routine depending on the
surroundings.

In ref. [31], 12 spiking neurons modulated by sensory feed-
back are used to shape the sCPG and the modification of the
motion pattern of the robotic structure is achieved by adding
or subtracting the neural structures, whereas in our work, it is
done by an adaptive mechanism of the SNN. Furthermore,
the authors used the Izhikevich neural model,[32] which involves
a more complex computational model than the one proposed in
this article: the leaky integrate-and-fire (LIF) model. Conversely,
in ref. [33], a neuromorphic auditory sensor (NAS) is used as an
input sensor to decide the pattern to be followed by the sCPG in
SpiNNaker, depending on the audio processed by a FPGA and
recognized by the SNN. In ref. [34], a closed-loop system is
presented that incorporates a time difference encoder in
SpiNNaker together with a FPGA to process the intermediate
signals, which analyzes the information received from a NAS
and a sound source localization system to modify the behavior
of a robotic arm. In our work, we use a similar approach: a fusion

of the force-sensitive resistors (FSRs) and the DVS is used to
modify the behavior of the neural network implemented in
SpiNNaker in real time.

A recent work proposes the combination of firing and nonfir-
ing neurons to simulate a neural network that regulates ampli-
tude, phase, and frequency (each independently) in a closed-loop
system.[35] On the one hand, the nonfiring neurons used in
Strohmer’s study are LIF neurons, with a threshold high enough
to avoid neuronal firing when the analog input varies. On the
other hand, the firing neurons employ the adaptative exponential
integrate-and-fire (AdEx) model, a considerably more complex
neuronal model than that used in the work presented in this arti-
cle, with a complex implementation in neuromorphic hardware.
The primary focus of the study is the search for an optimal com-
bination of spiking and nonspiking neurons to create a sensori-
motor neuron network capable of adjusting the network’s output
(spiking) based on analog parameters at the network’s input
(nonspiking). However, locomotion is not the primary objective
of this article, although it is briefly mentioned. As mentioned
earlier, the authors propose compatibility of their network with
neuromorphic hardware, although this compatibility is limited
only to the nonspiking neurons and a cloud-based simulation
service called CloudBrain.

The proposal made in this article differs in several aspects:
compared to ref. [35], a different spiking neuron model is used
and all neurons are firing neurons. The second aspect that sets us
apart is the use of information obtained from an FSR and a DVS
that allows us to modify the behavior of the neural network con-
trolling the hexapod robot. This enables us to adjust its speed and
direction based on terrain characteristics and activity detected
within the field of view of the DVS. The third andmost important
aspect to emphasize is the validation of our model on neuromor-
phic hardware, specifically on the SpiNNaker platform, where we
utilize high-level software tools that enhance the reproducibility
of the network for the scientific community.

The main goal of this work is to design and implement a SNN
composed of a sCPG and a Winner Take All (WTA) network that
change their behavior depending on external variables in the
environment of a hexapod robot. On the one hand, the FSR sen-
sors will increase or decrease the activity of the sCPG depending
on the stiffness of the terrain, resulting in a higher or lower speed
of the hexapod. On the other hand, the DVS sensor will detect the
predominant direction of motion, generating spikes associated
with this direction and sending them to the WTA network.
The WTA network will then select the winner and transmit
the spikes to the FPGA to modify the behavior of the robotic plat-
form, implementing a prey–predator model. Furthermore, the
SNN network presented in this work is able to adapt to these
input stimuli and modify the behavior of the neural network only
with the external sensory information provided. Although FSR
and DVS sensors are used, the adaptation step presented in this
work can be used with any type of sensor to introduce the exter-
nal stimulus.

The main contributions of this work are: 1) To the authors’
knowledge, this work is the first to combine neuromorphic
and analog sensors as input to the SpiNNaker platform for
closed-loop control of a hexapod using sCPGs; 2) The experi-
ments have not only been simulated but also implemented in
hardware, in this case using an FPGA and a spinn-3 platform;
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and 3) The implemented workflow is fully functional in real time
and with closed-loop online terrain adaptation and pattern
change.

The rest of the article is structured as follows: Section 2 is
divided into two subsections: first, the materials (Section 2.1)
used in this work are introduced, including the neuromorphic
platform and the hardware used. The implemented methods
are described in Section 2.2, along with the SNN models. The
results obtained are presented in Section 3 and discussed in
Section 4 and, finally, the conclusions of this work are briefly
discussed in Section 5.

2. Experimental Section

2.1. Materials

This section describes both the software and hardware used to
perform the experiments proposed in this work.

2.1.1. Spiking Neural Network Architecture (SpiNNaker)

SpiNNaker[22,36,37] stands for “Spiking Neural Network
Architecture” and is a research project and hardware platform
designed to simulate large-scale biological neural networks. It
was developed at the University of Manchester in the UK as part
of the Human Brain Project (HBP)[38] and is primarily used
in the fields of computational neuroscience and biologically
inspired artificial intelligence.

The idea behind SpiNNaker is to use specialized hardware
design to simulate how neural networks work in the human
brain. SpiNNaker models the communication between neurons
in a neural network using a large number of low-cost and
effective processors coupled in a certain way instead of relying
on conventional central processing units.[39] These processors
can perform computations at the neuronal level and connect
to each other in a low-latency, high-speed network. This config-
uration enables an asynchronous communication infrastructure
for transmitting short packets, representing individual
neuron firings,[40] identified using address event representation
(AER).[41]

Various SpiNNaker machines were manufactured and made
commercially available, including SpiNN-3 and SpiNN-5, which
house 4 and 48 SpiNNaker chips, respectively. Additionally, they
incorporate spiNNlinks,[42] which facilitates real-time input/out-
put interfacing with neuromorphic sensors and other neuromor-
phic platforms such as FPGAs.[43–45] To design and implement
SNNs on these machines, researchers can employ a PyNN-based
software package[46] named sPyNNaker.[47]

Notably, the Advanced Processor Technologies group from the
School of Computer Science at the University of Manchester
recently constructed a million-core machine, accessible through
the HBP portal. In this study, a local SpiNN-3 machine was
utilized to implement the robotic platform.

2.1.2. FPGA

An FPGA Nexys 4 DDR[48] development board was used for
communication between the sensors and the neuromorphic

platform. This board is equipped with an FPGA Xilinx Artix-7
XC7A100T-1CSG324C, which offers a programmable logic
capacity of 100 000 cells and digital signal processors slices,
providing sufficient processing power for this work.

2.1.3. DVS

The AER DVS128 retina chip (silicon retina)[49] is an array of
autonomous photoreceptors (pixels) that respond to logarithmic
changes in brightness intensity in real time by placing the
address of that specific pixel on an asynchronous bus. Only pixels
that are stimulated by a change in illumination generate spikes,
saving storage and bandwidth over conventional vision sensors.
The pixel addresses use of the AER protocol and contain the X
and Y coordinates of the photoreceptor that detected the change
in brightness.

In this work, a retina DVS sensor[50,51] was used, containing a
128� 128 pixels matrix, whose generated output is used as input
to a WTA network to decide whether the robotic platform should
continue forward or whether it should turn left or right, to target
the direction that generates the highest spiking activity. The
addresses associated with each pixel are composed of 7 bits asso-
ciated with the Y coordinate, 7 bits associated with the X coordi-
nate, and a polarity bit representing the change in contrast, where
a logic 1 means an increase in brightness and a logic 0 means a
decrease. This sensor is connected to a pAER interface that
allows real-time visualization of the retinal output, while simul-
taneously sending the events to the FPGA platform through the
CAVIAR connector.[52]

2.1.4. FSRs

To modify the running speed of the robotic platform, different
analog sensors have been used. These sensors will generate a
voltage output depending on the pressure that is exerted on
them. Since the weight of the robotic platform is stable and
equally distributed on each leg, the only variable that will modify
the value provided by these sensors will be the terrain on which
they are located: If the robot is on firm, flat ground (such as con-
crete), the forces will be distributed evenly over the surface of the
sensors, generating a higher pressure and therefore a higher
voltage. If, in contrast, the platform is on more uneven ground
(such as sand), the forces generated by the weight of the robot
will not be evenly distributed over the entire surface of the sen-
sors, thus generating less pressure on them and therefore a lower
voltage.

2.1.5. Dynamixels AX-12A Actuators

Eighteen Dynamixel AX-12A motors will be used to move the
robotic platform.[53] These actuators have the ability to control
their speed, temperature, position, voltage, and load supported.
Each of these motors incorporates an ARM Cortex-M3 microcon-
troller that manages the internal logic of the motor, allows them
to be easily controlled, and enables bidirectional communication
via the Dynamixel network protocol. In addition, multiple motors
can be daisy-chained on a single communication bus, allowing
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multiple motors to be controlled with a single cable and a single
interface.

2.1.6. Robotic Platform

A hexapod has been designed and manufactured using 3D
printing, which allows all the necessary electronics to be housed
on its surface. The robotic platform performs the movement
thanks to the 18 Dynamixels motors that it incorporates, which
are controlled by the FPGA.

2.1.7. Minimum Required Configuration

Figure 1 illustrates the minimum configuration required to accu-
rately replicate the tests conducted in this study. This setup
includes a SpiNN-3 board, a DVS, an FSR, an FPGA unit, and
two Dynamixel AX-12A motors. One of the Dynamixel motors is
used to regulate speed in response to signals from the FSR, while
the other adjusts orientation based on the information provided
by the DVS.

2.2. Methodology

2.2.1. Neuron Models

The neural model used to implement the neurons of the network
is the LIF model. This model is defined according to Equation (1)
and (2)

dV
dt

¼ �ðV � V rÞ þ RIðtÞ
τm

(1)

if VðtÞ ¼ V th then lim
δ!0;δ>0

Vðtþ δÞ ¼ V r (2)

where V is the membrane potential of the neuron, R represents
the resistance presented by this membrane, τm the time constant

of the neuron, Vr the resting potential, Vth the threshold required
to trigger the firing of the neuron, and I(t) is the stimulus (in the
form of current) entering the neuron.

CPG Populations: The CPG is the main neural structure of the
network and is composed of the populations A and B of 100 neu-
rons each, which form the CPGAB, represented in Figure 2. The
number of neurons per population and their parameters have
been set prioritizing the reduction of the total number of neu-
rons in the network: using fewer neurons per population causes
erratic network performance, such as loss of rhythmicity or net-
work outputs that do not correspond to the expected result. These
populations, on the one hand, are self-excited and self-inhibited
with a probability of 25% and 75% and weights of 5 and 1.5 nA,
respectively. These probabilistic parameters have been estab-
lished since the number of excitatory synapses received by the
adapting network populations from the FPGA-SpiNNaker input
populations are more numerous than the inhibitory connections
produced internally in the adapting network itself. Furthermore,
the excitatory synaptic weight values are considerably higher than
those of the inhibitory synaptic weights, maintaining a balance
between the probability of connection and the strength with

Figure 1. Minimum required configuration to replicate the experiment.

Figure 2. CPGAB network topology.
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which the connection is established. The probability of inhibition
between one population and the other is also 75%, with a weight
of 0.25 nA. Due to this configuration, when one of the popula-
tions has activity, the other will be inhibited accordingly, causing
the oscillation in the network. It is important to note that these
populations are designed to work as tonic neurons, so they are
injected with a very low but constant external current to ensure
that they are constantly generating activity. Therefore, in these
two populations the neuronal model would be as follows

dV
dt

¼ V r � V þ RðIexc � Iinh þ IstÞ
τm

(3)

where Ist is the current injected into neurons in populations A
and B. This value is set to 0.1 nA, which is sufficient to maintain
the desired minimum oscillation. The neuronal parameters
governing the behavior of these populations are presented in
Table 1.

Adaptive Populations: In this part of the network, we can
distinguish three populations: POPREF is composed of 50 neu-
rons that directly receive the input stimuli linked to the FSR,
and its neuronal parameters are those presented in Table 1.
POPE and POPI are populations of 100 neurons each, and their
weights are configured in such a way that, depending on the
activity of POPREF, the activity of these neurons increases or
decreases. In turn, these populations have inhibitory connections
between them, achieving an oscillatory phenomenon between
these two populations similar to that of CPGAB. These popula-
tions are based on the neuronal model LIF, but their neuronal
parameters are adapted in such a way that the input–output ratio
of these populations is 1:1, thus ensuring that their behavior is
closely related to the input provided by the FSR. Their parame-
ters are shown in Table 2, and their connection scheme is illus-
trated in Figure 3.

By connecting CPGAB to the adaptive network via excitatory
and inhibitory synaptic connections, it is possible to modify
its activity depending on the input received from the FSR sen-
sors. The complete network is shown in Figure 4 and its opera-
tion can be summarized in two possible cases: 1) If the activity of
POPREF is greater than the activity of CPG, POPExc will be
strongly excited by POPREF and weakly inhibited by POPA, which
will increase its activity, in turn causing an increase in the activity
of CPG. Furthermore, POPExc will strongly inhibit POPInh,

preventing the latter from inhibiting CPG; and 2) If the activity
of POPREF is lower than the activity of CPG, POPInh will be
strongly excited by CPG and weakly inhibited by POPREF, which
will increase its activity, which in turn will cause a decrease in the
activity of CPG. In addition, POPInh will strongly inhibit POPExc,
preventing the latter from exciting CPG.

The weights of this entire network have been tuned using a
grid search-based weight search algorithm, and are configured
to ensure stable oscillations of the CPG over the entire input
range of the FSRs. This input will oscillate between 10 and

Table 1. Neuron parameters for the proposed CPG in SpiNNaker
hardware platform.

Parameter Value

cm 0.25 nF

τm 12.5 ms

τr 0.001 ms

ureset –70.0 mV

urest –65.0 mV

uth –50.0 mV

τsyne 7.0 ms

τsyni 17.1 ms

Ibias 0.1 mA

Table 2. Proposed neural parameters for the adaptive populations on the
SpiNNaker hardware platform.

Parameter Value

cm 0.1 nF

τm 0.1 ms

τr 0.0 ms

ureset –65.0 mV

urest –65.0 mV

uth –64.91 mV

τsyne 0.1 ms

τsyni 0.1 ms

Ibias 0.0 mA

Figure 3. Topology of the CPGEI network.

Figure 4. FSR adaptive network topology.
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171Hz (for minimum and maximum pressure values, respec-
tively). Thanks to this configuration, the CPG will provide stable
oscillations but with variable activity, which will be used to select
the gait pattern to be adopted by the robotic platform.

WTA Network: The neurons of the WTA network receive the
activity generated by the DVS retina and their output will be used
to select the direction to be followed by the robotic platform.
These populations incorporate the same parameters as those
of CPGAB, except for the injected current (Table 3). For this rea-
son, the activity or inactivity of these neurons is due solely to the
input activity received by these populations from the FPGA. The
topology of this network and its interaction with the DVS can be
seen in Figure 5.

Since the retina is a 128� 128 pixel matrix, to select the direc-
tion of the robotic platform, it was decided to divide the X coor-
dinate into three windows: the first 39 pixel columns are linked to
the right direction, the next 50 to the center, and the last 39 to the
left. In this way, when a pixel detects changes in brightness, the
direction AER associated with that pixel will be sent to
SpiNNaker. Depending on its X coordinate, this address will
be used to excite one of the three populations in SpiNNaker.
The weights of the synaptic connections are configured so that
the population that generates the most activity is the winner and
strongly inhibits the previous two; thanks to this, only the AER
events of a single winning population will be transmitted to the
robotic platform at a time, allowing it to decide which direction to
follow.

2.2.2. Complete SNN Topology

The complete topology of the neural network that allows control-
ling the speed and orientation of the robotic platform is shown
in Figure 6 and its distribution of populations and neurons is
shown in Table 4.

3. Experiments and Results

This section describes the experiments conducted with respect to
the proposed spiking architecture. Four experiments are carried
out without the retina to check the performance of the network
considering the external sensor changing value. Another four

Table 3. Neuron parameters for the proposed WTA network in SpiNNaker
hardware platform.

Parameter Value

cm 0.25 nF

τm 12.5 ms

τr 0.001 ms

ureset �70.0 mV

urest �65.0 mV

uth �50.0 mV

τsyne 7.0 ms

τsyni 17.1 ms

Ibias 0.0 mA

Figure 5. DVS adaptive network topology.

Figure 6. Complete topology of the adaptive network with a total of 9 populations and 579 neurons.
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experiments include the retina to show the network decision
considering the spiking input stimulus.

The first experiment includes a 10Hz input stimulus from the
population bound to the FSR (minimum value provided by
the FSRs). The results are shown in Figure 7. It can be seen that
the activity of POPEXC and POPFSR is very similar. Due to the
interaction of POPEXC and POPINH with CPGAB, the average
oscillation frequency of the obtained POPCPG is 7Hz. It is impor-
tant to note that the frequency of the CPG does not linearly adapt
to the input frequency of the FSR. It rather moves in a narrow
frequency range (between 5 and 20Hz) which is enough to be
able to select and modify the gait pattern of the robotic platform.

The second experiment includes, as stimulus, intermediate
frequencies of 85 Hz from the population bound to the FSR.
The results are shown in Figure 8. In this experiment, it can
be observed how the activity of the POPEXC population is greatly

increased by the excitation received by POPFSR. It is interesting to
highlight how, although increasing the frequency of POPFSR

should decrease the frequency of POPINH, the opposite effect
occurs due to the increase in the oscillation frequency of
POPCPG, which excites, albeit weakly, POPINH. The average
oscillation frequency of the CPG is 13Hz.

As a third experiment, the CPG network was subjected to con-
stant inputs of 171 Hz (maximum values provided by the FSRs)
from the population bound to them. The results are shown in
Figure 9. In this case, it can be observed how POPEXC is strongly
excited by POPFSR, while the activity of POPINH is considerably
reduced. In this scenario, not only does the oscillation frequency
of POPCPG increase, which is around 20Hz, but also the number
of shots at a given time instant in each population of POPCPG

increases.
Finally, a last experiment has been performed in which the

input linked to the FSR is oscillatory, and it can be observed
how the CPG adapts to the input by increasing or decreasing
its total frequency (the frequency obtained by considering both
populations of the CPG) and its individual frequency (the
frequency of each neuron within each population at individual
time points when its population is firing). The results are shown
in Figure 10.

As mentioned previously, the WTA network will receive all
AER addresses associated with retinal pixels that have detected
changes in luminosity. It is possible to receive up to 20 000
addresses per second on SpiNNaker, each representing one of
the 128 possible directions linked to the X-coordinate of the ret-
ina. Various experiments have been conducted to subject the net-
work to different stimuli, using a pen to create motion in front of
the retina and activate the pixels. It is important to note that these
scenarios propose situations that will not occur in a real and

Table 4. Number of neurons per population in the complete network.

Population Number of neurons

A 100

B 100

Exc 100

Inh 100

Ref 50

Center 50

Right 39

Left 39

FSR 1

Figure 7. Behavior of the CPG network at 10 Hz inputs. Thanks to the regulating action of the POPEXC and POPINH populations, the output frequency of
the CPGAB remains stable around 7 Hz.
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controlled environment of the robotic platform, such as receiving
similar changes in luminosity in more than one window simul-
taneously or introducing noise into one of the windows to assess
the network’s behavior in response to these phenomena.

First, a higher activity was generated in the left region of the
DVS, where it can be observed that during the entire simulation
the stimulus was generated intermittently in the POPLEFT region
intermittently, generating peaks of minimum activity (e.g.,

Figure 8. Behavior of the CPG network at 85 Hz inputs. Intermediate frequencies cause a generalized increase in oscillations in all populations, while
POPINH and POPEXC keep the CPG stable throughout the duration of the experiment.

Figure 9. Behavior of the CPG network in response to 171 Hz inputs. It is interesting to observe how the significant excitation caused by POPEXC on the
CPG not only increases its frequency to 20 Hz but also leads to an increase in the number of neurons firing in each population of the CPG during the
moments when they are active.
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t= 1000, t= 2000, and t= 4000ms) in some instants due to the
stimulus coming out of the visible range of the retina. The results
are shown in Figure 11.

Another experiment was also carried out in which more
activity was generated in the central region of the DVS. The
results can be seen in Figure 12, and it is possible to check that
the detection of events in all the windows does not imply activity
in all of them at the output of the WTA network. The activity
will be maintained only in the population that has generated
the highest number of events in a given time.

The same experiment was also performed generating
increased activity in the right region of the DVS. In this experi-
ment, it is again verified that, although the central population has
produced some events in the instants t= 800 and t= 3000ms,
the output of the WTA network only contemplates the events
of the winning population. The results can be seen in Figure 13.

Finally, an experiment has also been performed in which the
WTA network is subjected to random activity over the entire
visual field of the DVS. The result of this experiment can be seen
in Figure 14. It is interesting to see how the network shows
tolerance to instantaneous noise. For example, although at
t= 1200ms, the winning population at that instant is POPLeft,
at the output of the WTA POPCenter remains the winner because
POPLeft has not generated enough activity for long enough to
exceed the activity previously generated by POPCenter.

4. Discussion

The set of experiments conducted demonstrates: 1) the ability of
the sCPG model to adapt to variable inputs from the FSRs by
changing its oscillation frequency to increase or decrease the

speed of the robotic platform, respectively; and 2) the ability
of the WTA network model to select the spatial region with
the highest spiking activity from a DVS input, thus orienting
the robotic platform toward that direction. Thanks to these
two features, course and speed adaptation, it is possible to imple-
ment a fully functional “prey–predator”model where analog and
neuromorphic sensor inputs are fused. This information can
be used by the network implemented in SpiNNaker to make a
decision about the behavior of the robotic platform.

From a bioinspired point of view, the biological features
of the CPG (described in Section 1) show the functions that
these neuronal structures can perform in living beings, as well
as the characteristics of the neurons that form this type of
neural structure. The CPG design includes biologically plausible
structures.

In the biological model, the neurons that make up the CPG
can be either tonic or phasic. In the former case, tonic neurons
emit the neurotransmitter at a constant but low rate, whereas
phasic neurons act almost instantly, emitting a rapid pulse of
activity to bring postsynaptic neurons into action quickly. In this
work, both types of neurons have been implemented: on the one
hand, CPGAB is made up entirely of tonic neurons. They include
a very low (0.1 nA) but constant current injection, which ensures
that even if no stimulus was received from the FSRs, the oscilla-
tion of the CPGs could be maintained over time, fulfilling the
intrinsic rhythm generation that biological CPGs show. On
the other hand, the POPEXC and POPINH populations act as pha-
sic neurons, since at a minimum excitation signal received, they
are able to reach the threshold to produce a neuronal firing: excit-
ing or inhibiting the CPGAB almost instantly. With this feature,
the centralized control to which the CPG is subjected is modeled.
Although CPGs can function autonomously, they are often under

Figure 10. Behavior of the CPG network in response to oscillatory inputs. The CPG adjusts its frequency based on the input associated with the FSRs,
demonstrating its adaptation to external stimuli.
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control of the central nervous system to adapt to the needs of the
surrounding environment.

Another feature of biological CPGs is their plasticity, which
means that they can adapt and change over time in response
to different signals. In this work, the CPG implemented can
adapt to the conditions of its environment just as any biological
being would do. The FSRs modify the oscillation frequency of the
CPG, which results in a regulation of the gait of the robotic
platform depending on the terrain. This functioning is
similar to that of the vestibular system of living beings.
Thanks to this behavior, the condition of variability presented

by the biological CPGs, which adapt their patterns in response
to different conditions, is also fulfilled. To complete the CPG
model, the DVS is used in the network to select the orientation
to be followed by the robotic platform, imitating the decision-
making capacity that living beings have when taking a
course based on what their optical system detects (prey, dangers,
obstacles, etc.).

However, there are also features of the CPG presented in this
work that may differ with respect to biological ones. The number
of neurons used in this work has been estimated only with the
stability of the whole system as a priority, reducing almost to zero

Figure 11. Behavior of the WTA network in response to events generated in the left region.
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the scenarios in which the network output is unstable or nonco-
herent. In biological CPGs focused on locomotion, a relatively
complex neural network is required (depending on factors such
as species or movement pattern), but it is estimated that in
mammals, such as humans, these CPGs can be composed of
thousands of neurons.[2] Furthermore, while in this work the
CPG is only responsible for adjusting the speed of the robotic
platform, in the biological environment, these neural structures
are used simultaneously to control speed, direction, balance, and
other aspects of locomotion according to the specific needs of the

organism and environmental conditions, without being the only
ones involved in this task.[1,7]

Another important aspect to mention, which is related to the
previous one, is the use of a WTA network for decision making
regarding the orientation of the robotic platform. While these
networks may model certain aspects of competition and inhibi-
tion observed in some brain functions, they do not directly or
specifically resemble a particular biological neural structure of
the nervous system, leaving this function in the biological
environment reserved, again, for the CPGs.[54]

Figure 12. Behavior of the WTA network in response to events generated in the central region.
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Finally, in terms of computational resources and power
consumption, the network presented in this work uses a total
of 579 neurons with around 200.000 synapses, while other works
such as refs. [20,31] use a much smaller number of neurons to
control the robotic platform (both of these works used 12
neurons to build the entire network). Due to the high number
of neurons used, more power consumption is expected to train
and run the network. However, this system is potentially more
efficient than those based on ANNs. This greater efficiency is
mainly due to the fact that its neurons only activate in response

to a specific stimulus, thereby reducing the required computa-
tional calculation. In our system, this translates into lower energy
consumption when processing sensory inputs. Particularly, by
using the WTA network to process signals from a DVS, we
observed reduced energy consumption compared to equivalent
processing by ANNs. This is primarily due to the sporadic
and event-based nature of the DVS, which consumes energy only
when its pixels detect changes in brightness. In contrast,
conventional cameras process frames constantly, implying
higher energy consumption.

Figure 13. Behavior of the WTA network in response to events generated in the right region.
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5. Conclusion

In this article, a sCPG model implemented on SpiNNaker that
receives information from analog and neuromorphic sensors
simultaneously is proposed. The architecture presented includes
a closed-loop control to adapt locomotion frequencies and orien-
tation that can be applied to any legged robot. The information
from the environment provided by the FRSs and the DVSs is
processed instantaneously by SpiNNaker, which generates a fre-
quency output that is sent to the FPGAs and eventually used to
control the actuators.

The system has been validated using data from irregular
surfaces. These data generate pressure differences on the
FSRs, which in turn cause variations in the voltage emitted by
these sensors. The obtained values are converted into
spikes, which are received and processed by SpiNNaker.
Subsequently, SpiNNaker adjusts the frequency of the CPG
and the gait pattern of the robotic platform based on these
signals.

Furthermore, the proper operation of the WTA network to
determine the direction of the robotic platform should follow
has been verified. The WTA network is based on activity detected

Figure 14. Behavior of the WTA network in response to randomly generated events.
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in various regions of the DVS. The results of the experiments
show that the WTA network effectively selects the winning
region, completely excluding the other two options. Similar to
the CPG, the output of the WTA network is sent to the
FPGA, which in turn adjusts the orientation of the robotic
platform based on this information.

In future work, the architecture presented will be tested in
robots with different leg configurations, which will allow us to
demonstrate its reproducibility on other robotic platforms,
regardless of the number of legs they have. Furthermore, the
DVS will be used not only to follow the direction where the high-
est activity is, but also to incorporate into the network a learning
routine that allows it to recognize specific shapes or patterns,
which would induce the robotic platform to pursue a specific
target by recognizing its shape and not only the generated
activity. In addition, other neuromorphic sensors such as the
NAS will be included in the loop to bring robotic behavior closer
to biology.

Acknowledgements
This research was partially supported by project PID2019-105556GB-C33
funded by MCIN/AEI/10.13039/501100011033.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

Keywords
adaptative learning, central pattern generators, neuromorphic hardware,
neurorobotics, spiking neural networks, SpiNNaker

Received: October 9, 2023
Revised: December 19, 2023

Published online: February 17, 2024

[1] S. Grillner, P. Wallen, Annu. Rev. Neurosci. 1985, 8, 233.
[2] M. MacKay-Lyons, Phys. Ther. 2002, 82, 69.
[3] G. M. Hughes, C. A. Wiersma, J. Exp. Biol. 1960, 37, 657.
[4] R. M. Harris-Warrick, Prog. Brain Res. 2010, 187, 213.
[5] P. A. Guertin, Front. Neurol. 2013, 3, 183.
[6] S. L. Hooper, Curr. Biol. 2000, 10, R176.
[7] E. Marder, D. Bucher, Curr. Biol. 2001, 11, R986.
[8] A. J. Ijspeert, Neural networks 2008, 21, 642.
[9] J. Kahn, A. Roberts, Philos. Trans. R. Soc. London, Ser. B 1982, 296,

229.
[10] E. A. Arbas, R. L. Calabrese, J. Comp. Physiol. A 1984, 155, 783.
[11] C. Von Euler, J. Appl. Physiol. 1983, 55, 1647.
[12] C. Mead, Nat. Electron. 2020, 3, 434.
[13] A. Linares-Barranco, F. Perez-Peña, A. Jimenez-Fernandez, E. Chicca,

Front. Neurorobot. 2020, 14, 590163.

[14] D. Gutierrez-Galan, J. P. Dominguez-Morales, F. Perez-Peña,
A. Jimenez-Fernandez, A. Linares-Barranco, Neurocomputing 2020,
381, 10.

[15] Y. Kim, Y. Li, H. Park, Y. Venkatesha, A. Hambitzer, P. Panda, in Proc.
of the AAAI Conf. on Artificial Intelligence, Vol. 37, Washington D.C.,
February 2023, pp. 8308–8316.

[16] G.-I. Uleru, M. Hulea, A. Barleanu, Biomimetics 2023, 8, 28.
[17] P. Lopez-Osorio, A. Patiño-Saucedo, J. P. Dominguez-Morales,

H. Rostro-Gonzalez, F. Perez-Peña, Neurocomputing 2022, 502, 57.
[18] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. V. Schaik,

R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek,
P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur,
K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona,
J. Wijekoon, Y. Wang, K. Boahen, Front. Neurosci. 2011, 5, 73.

[19] L. Righetti, A. J. Ijspeert, in 2008 IEEE Int. Conf. on Robotics and
Automation, IEEE, Pasadena, CA, May 2008, pp. 819–824.

[20] H. Rostro-Gonzalez, P. A. Cerna-Garcia, G. Trejo-Caballero,
C. H. Garcia-Capulin, M. A. Ibarra-Manzano, J. G. Avina-Cervantes,
C. Torres-Huitzil, Neurocomputing 2015, 170, 47.

[21] B. Cuevas-Arteaga, J. P. Dominguez-Morales, H. Rostro-Gonzalez,
A. Espinal, A. F. Jimenez-Fernandez, F. Gomez-Rodriguez,
A. Linares-Barranco, in Advances in Computational Intelligence: 14th
Int. Work-Conf. on Artificial Neural Networks, IWANN 2017, Cadiz,
Spain, June 14–16, 2017, Proceedings, Part I 14, Springer, Cádiz,
Spain, June 2017, pp. 548–559.

[22] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, Proc. IEEE 2014, 102,
652

[23] B. Strohmer, P. Manoonpong, L. B. Larsen, Front. Neurorob. 2020, 14,
41.

[24] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, H. Wang, IEEE
Micro 2018, 38, 82.

[25] E. Angelidis, E. Buchholz, J. Arreguit, A. Rougé, T. Stewart, A. von
Arnim, A. Knoll, A. Ijspeert, Neuromorph. Comput. Eng. 2021, 1,
014005.

[26] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, G. Cheng, Int. J.
Rob. Res. 2008, 27, 213.

[27] G. Li, H. Zhang, J. Zhang, R. T. Bye, Adv. Rob. 2014, 28, 389.
[28] S. A. Kurkin, D. D. Kulminskiy, V. I. Ponomarenko, M. D. Prokhorov,

S. V. Astakhov, A. E. Hramov, Chaos 2022, 3232, 033117.
[29] M. Wang, J. Yu, M. Tan, Int. J. Adv. Rob. Syst. 2014, 11, 170.
[30] D. Korkmaz, G. Ozmen Koca, G. Li, C. Bal, M. Ay, Z. H. Akpolat,

J. Mar. Eng. Technol. 2021, 20, 125.
[31] A. Spaeth, M. Tebyani, D. Haussler, M. Teodorescu, in 2020 3rd IEEE

Int. Conf. on Soft Robotics (RoboSoft), IEEE, New Haven, CT, May
2020, pp. 46–51.

[32] E. M. Izhikevich, IEEE Trans. Neural Networks 2004, 15, 1063.
[33] D. Gutierrez-Galan, J. P. Dominguez-Morales, F. Perez-Pena,

A. Jimenez-Fernandez, A. Linares-Barranco, in 2019 IEEE Int.
Symp. on Circuits and Systems (ISCAS), IEEE, Sapporo, Hokkaido,
Japan, May 2019, pp. 1–1.

[34] T. Schoepe, D. Gutierrez-Galan, J. P. Dominguez-Morales,
H. Greatorex, A. F. Jiménez Fernández, A. Linares-Barranco,
E. Chicca, Neuromorph. Comput. Eng. 2023, 3, 024009.

[35] B. Strohmer, R. K. Stagsted, P. Manoonpong, L. B. Larsen, Front.
Neurosci. 2021, 15, 633945.

[36] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, A. D. Brown, IEEE Trans. Comput. 2012, 62, 2454.

[37] S. Furber, P. Bogdan, SpiNNaker: A Spiking Neural Network
Architecture, now publishers, Boston-Delft 2020.

[38] H. Markram, Sci. Am. 2012, 306, 50.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300646 2300646 (14 of 15) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300646 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


[39] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi,
C. Patterson, D. R. Lester, A. D. Brown, S. B. Furber, IEEE J. Solid-
State Circuits 2013, 48, 1943.

[40] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, S. Yang,
IEEE Des. Test Comput. 2007, 24, 454.

[41] M. Mahowald, Ph.D. Dissertation, California Institute of Technology
Pasadena 1992.

[42] L. A. Plana, J. Garside, J. Heathcote, J. Pepper, S. Temple,
S. Davidson, M. Luján, S. Furber, IEEE Access 2020, 8, 84918.
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