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H I G H L I G H T S  

• Introducing a hybrid heuristic-metaheuristic routing protocol for WBANs. 
• Presenting a heuristic Takagi-Sugeno FIS (TSFIS) for just-in-time routing. 
• Applying a metaheuristic-driven GWO for optimizing the TSFIS model. 
• Utilizing a tunable fitness function based on the application specifications.  
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A B S T R A C T   

Wireless body area network (WBAN) is an internet-of-things technology that facilitates remote patient moni
toring and enables medical staff to administer timely treatments. One of the main challenges in designing WBANs 
is the routing problem, which is complicated due to dynamic changes in network topology and the limited re
sources of nodes. Several heuristic and metaheuristic methods have been presented to solve the routing problem 
in WBANs. Although metaheuristics outperform heuristics by producing higher-quality solutions, they cannot 
respond to real-time requests. This paper introduces a reactive routing protocol for WBANs that combines a fuzzy 
heuristic with a metaheuristic learning model. It utilizes a Takagi-Sugeno Fuzzy Inference System in conjunction 
with the Grey Wolf Optimizer (named TSFIS-GWO). The objective is to simultaneously benefit from the ad
vantages of both approaches, namely, the effectiveness of metaheuristics for offline hyperparameter tuning and 
the quickness of fuzzy heuristics for real-time routing. At every round, the tuned fuzzy system takes multiple 
parameters of the current state of the nodes and links to construct the multi-hop routing tree under IEEE 
802.15.6. To optimize the performance of the protocol for each WBAN, the fuzzy rules of the TSFIS model are 
automatically adjusted through a learning method based on GWO. This is done in accordance with the specific 
requirements of the application, and the tuning process takes place once before the protocol is applied. Simu
lation results in three applications demonstrate that the proposed TSFIS-GWO model is capable of providing real- 
time solutions while outperforming the existing methods in terms of application-specific performance measures.   

1. Introduction 

Over the past two decades, the use of wireless sensor networks 

(WSNs) has become widespread for monitoring and controlling various 
environmental conditions such as temperature, humidity, wind, etc. [1]. 
A wireless body area network (WBAN) is a particular kind of WSN that is 
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made up of a set of low-power bio-sensor nodes which are either 
implanted in or attached to the human body [2]. Each sensor node is 
able to communicate over short distances with other nodes and with the 
central processor unit through wireless links [3]. The utilization of 
WBANs has gained significant attention in recent years, due to their 
real-time and continuous monitoring capabilities in various medical and 
non-medical applications such as entertainment, sports, aerospace, 
telemedicine, and treatments [4]. In the WBAN health monitoring 
application, vital information from the body is continuously transmitted 
to medical servers, which allows medical personnel to remotely monitor 
and provide the appropriate treatments to patients [5]. 

The overall structure of a monitoring system based on WBANs is 
shown in Fig. 1, which consists of three main parts, including WBAN on 
the patient side, network connection side, and medical service side. In 
this figure, notations ‘p’ and ‘m’ mean data forwarding from the patient 
side and medical service side, respectively. A WBAN includes several 
bio-sensor nodes and a central control unit (i.e., sink) [6]. Each node is 
able to identify local data, encompassing both physiological and 
non-physiological information such as blood pressure, blood oxygen, 
electroencephalograph (EEG), electrocardiograph (ECG), and electro
myograph (EMG) [7]. During each round, every node transmits its own 
data either directly or with the assistance of a relay node (cluster head) 
to the sink, and then, the sink forwards the gathered data to medical 
servers through wired/wireless communications, for further processing 
[3]. 

1.1. Routing problem in WBANs 

While several challenges are common to both WBANs and WSNs, it is 
important to adequately recognize and address the functional differ
ences between them when designing a routing protocol for a WBAN [8]. 
Bio-sensors must be harmless to the human body with less transmitted 
power. Unlike node-based mobility in WSNs, a WBAN has a group-based 
movement topology. WBANs belong to heterogeneous networks in 
which different nodes have different tasks. WBANs are typically in 
contact with medical data, requiring more reliability than WSNs [7]. 
Unlike free-space WSNs, routing in WBANs encounters more physical 
challenges, attenuation, and greater path loss [9]. 

In WSNs, the network lifetime is typically assessed using diverse 
metrics such as first node dies (FND), half nodes die (HND), and last 

node dies (LND) [10]. However, in the case of WBANs, the failure of 
even a single sensor node can have irreversible consequences, making 
the network lifetime primarily defined as FND [4]. More specifically, in 
WBANs, if one or more nodes fail, the remaining nodes can still sustain 
communication, and the network lifetime can be still measured using 
various metrics such as FND, HND, and LND. However, considering that 
many WBAN applications become impractical after the failure of the 
first node, most research places emphasis on FND as the primary mea
sure of network lifetime. 

Challenges associated with minimum energy consumption and 
maximum satisfaction of quality of service (QoS) metrics are among the 
essential goals when designing a routing protocol for WBANs. Further
more, as bio-sensors in WBANs are connected to the human body, they 
typically have a smaller battery and antenna than WSNs [11]. Therefore, 
bio-sensors are highly resource-constrained with ultralow-power sup
plies, where replacing or recharging their batteries is difficult [12]. In 
this case, reliable energy-efficient routing is of utmost importance to 
improve the stability period until FND while taking QoS metrics into 
account. 

1.2. Our motivation 

Cluster-based protocols are commonly employed routing techniques 
for achieving energy efficiency in WBANs [13,14]. It should be noted 
that cluster-based routing in WBANs has been proven to be a 
non-deterministic polynomial-time hard (NP-hard) problem [15]. As a 
result, exact search techniques cannot solve it within polynomial time 
[12]. Although various heuristic [4], [7], [17–30] and metaheuristic 
[8], [31–38] algorithms have been proposed to solve this problem, the 
existing methods suffer from some drawbacks, which can be highlighted 
as:  

• The controllable parameters of current heuristics are manually set 
and kept constant, which means that no retuning process is per
formed considering the specific requirements of the application. 

• In WBANs, it is crucial to respond quickly to the online routing re
quests from the patient sensor nodes. So, the direct use of time- 
consuming metaheuristic algorithms as the routing protocol does 
not make practical sense in WBANs, as it may lead to irreparable 
damages in transmitting critical data packets. 

Fig. 1. General architecture of WBAN-based monitoring systems.  
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• In most existing methods, some important issues such as energy ef
ficiency, reliability, path loss, and hotspot problems are not properly 
taken into account. Although these parameters may be reported as a 
performance measure in the final results, they have not been used 
within the routing algorithm to guide it to achieve a higher-quality 
solution. 

Metaheuristic-based routing protocols in WBANs have acceptable 
results with high solution quality. However, they apply an iteratively- 
based optimization algorithm to construct the optimized paths, which 
boosts overhead and delay at the data transmission phase. On the other 
hand, heuristic-based algorithms can generate routing solutions very 
fast but suffer from low solution quality (e.g., low network lifetime). Our 
motivation is to alleviate the drawbacks of both heuristic and meta
heuristic techniques, while simultaneously benefitting from their ad
vantages, i.e., high quality of the metaheuristic algorithms and the fast 
speed of the heuristic algorithms. 

1.3. Our contributions 

In this study, we present a tunable routing protocol for WBANs uti
lizing a multi-criteria Takagi-Sugeno fuzzy inference system (TSFIS) and 
a grey wolf optimizer (GWO). The TSFIS is used as the core of the routing 
protocol to generate real-time solutions, while the GWO is used offline 
for the hyperparameter tuning of the TSFIS, once before it performs for 
the online routing in WBANs. The proposed method can be seen as a 
hybrid technique based on a fuzzy heuristic (for online routing) and a 
metaheuristic (for offline tuning). We have considered the Takagi- 
Sugeno fuzzy system for the fuzzy heuristic part of the proposed 
method because of its simpler structure, smoother landscape, and ease of 
parameter optimization compared to other fuzzy inference systems like 
the Mamdani system [39]. Furthermore, we have chosen the GWO al
gorithm for the metaheuristic part, as it offers several advantages 
including fast convergence, a balanced method of exploration and 
exploitation, simplicity, flexibility, and robustness, which make it a 
promising approach for optimizing continuous hyperparameter tuning 
problems [40]. Overall, the main contributions of this paper can be 
highlighted as follows: 

• Introducing a tunable hybrid heuristic-metaheuristic routing proto
col for WBANs based on TSFIS and GWO (named TSFIS-GWO). It not 
only delivers high performance by automatically optimizing the 
TSFIS model using GWO based on the application-specific objectives 
but also functions as a real-time routing protocol that can quickly 
respond to online routing requests.  

• As far as we know, this is the first study to introduce a Takagi-Sugeno 
fuzzy system for just-in-time (JIT) routing in WBANs. The majority of 
the existing fuzzy systems for WBANs have utilized Mamdani fuzzy 
systems, while this paper presents a tunable parameter-based Takagi- 
Sugeno fuzzy system.  

• Presenting a multi-criteria TSFIS to select a proper forwarder node 
for each routing request based on various informative criteria of the 
communication links and sensor nodes such as the residual energy, 
distance, reliability, path loss, and estimated dissipated energy.  

• Performing GWO in an offline scheme to optimize Takagi-Sugeno 
fuzzy rules of the TSFIS model using a weighted averaging fitness 
function, where its weights are determined according to the 
application-specific requirements in terms of the network lifetime, 
reliability, and path loss. 

The organization of this study is as follows: Section 2 reviews the 
existing routing protocols in WBANs. The system model is presented in 
Section 3. Section 4 introduces the TSFIS-GWO routing protocol. Section 
5 presents the simulation results of the TSFIS-GWO protocol and com
pares them with existing methods. Finally, concluding remarks with 
some directions for future works are provided in Section 6. 

2. Review of literature 

To achieve energy efficiency in WBANs, clustering is the most widely 
used routing protocol. These methods involve dividing various sensor 
nodes into distinct clusters, with each cluster containing a cluster head 
(CH), also called the forwarder or the relay node [41]. The CH nodes act 
as gateways between their member nodes and the base station (sink). 
Clustering techniques can be distinguished by how forwarder nodes 
would be selected [42]. Considering the NP-hardness of the clustering 
problem in WBANs, there are three alternatives to search for the optimal 
solution:  

• Exact methods: Generally, there are 2N-1 different clustering solutions 
for WBANs with N nodes [4], which means that the search space 
grows exponentially with the number of sensor nodes. Although 
exact methods such as branch-and-bound [43] and column genera
tion [44] obtain the optimal solution, these techniques cannot be 
applied to real-size WBAN applications.  

• Heuristic methods: Heuristics refer to problem-specific techniques 
that can produce near-optimal solutions within a reasonable time
frame [45,46]. In the context of routing techniques for WBANs, 
heuristic methods are extensively utilized and can be classified as 
either classical or fuzzy heuristics. Classical heuristics utilize a pre
cise crisp function to determine the priority of nodes that will 
function as CH [10]. On the other hand, fuzzy heuristics calculate the 
priority of nodes using a fuzzy inference system (FIS) [47].  

• Metaheuristic methods: As an extension to heuristics, metaheuristics 
are a class of problem-independent algorithms that are designed to 
improve the quality of solutions through iteratively refining inter
mediate solutions [45, 48, 49]. In WSNs and WBANs, 
metaheuristic-based clustering methods aim to partition active 
sensor nodes into distinct clusters to optimize one or more objective 
functions, such as extending the network’s lifetime. Although met
aheuristic algorithms generally take more running time than heu
ristics, they usually converge to a solution of higher quality [50]. 

Due to the NP-hardness of the clustering problem in WBANs, exact 
search techniques are not applicable, and thus, heuristics or meta
heuristics should be applied. In the following, existing classical (crisp) 
heuristic, fuzzy heuristic, and metaheuristic-based routing protocols for 
WBANs are described in detail. 

2.1. Classical heuristics 

Several routing protocols based on classical heuristics have been 
introduced for WBANs, including thermal-aware, clustering, delay- 
aware, and QoS-based techniques. Thermal-aware routing algorithm 
(TARA) [17] distributes the load over different nodes/links to avoid data 
transfer through hotspot zones. M-ATTEMPT is another thermal-aware 
routing protocol that was developed by Javaid et al. [18] to select the 
shortest path with the minimum number of hops among all possible 
routes. However, M-ATTEMPT does not consider the energy level of the 
nodes, and its procedure for the detection of hotspot zones boosts more 
complexity and causes more dissipated energy [51]. Moreover, these 
techniques do not take into account the reliability and network lifetime. 

Clustering protocols distribute load among all sensor nodes. 
Anybody is a clustering protocol presented by Watteyne et al. [19], 
which utilizes a random self-election strategy, where each sensor de
cides whether or not its role is a CH. While this method ensures load 
balancing across all nodes, it fails to take into account factors such as 
node positions, reliability, path loss, and energy consumption. Nadeem 
et al. [20] presented a multi-hop protocol called SIMPLE, which chooses 
relay nodes with higher energy and less distance. It ensures that energy 
consumption is balanced among all nodes while achieving maximum 
throughput. However, SIMPLE does not consider mobility, path loss, or 
hotspot problems, which may result in a single node forwarding the data 
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of all source nodes. Ullah et al. [7] introduced an energy-efficient and 
reliability-aware protocol, called ERRS, which focuses on improving the 
lifetime and reliability of WBANs. The protocol includes two strategies 
for CH selection and rotation, making it an adaptive static protocol. 
However, it does not consider path loss, load balancing, or hotspot 
problems. 

Delay-aware approaches focus on finding low-delay paths from each 
node to the sink. Umer et al. [21] proposed a delay-aware protocol 
named HRRR to address the need for the fast delivery of critical data 
while conserving the energy of nodes. However, this protocol does not 
consider load balancing or packet overhead. Mehmood et al. [22] pro
posed an energy-efficient and cooperative fault-tolerant protocol 
(EECFTP) to enhance throughput, latency, and lifetime. Nevertheless, 
the concept of cooperative communications introduces some challenges 
in WBANs such as increased processing overhead and computational 
complexity. 

QoS-based methods are composed of separate modules that address 
different QoS metrics, such as reliability, delay, and energy efficiency. 
Kumar et al. [23] presented a lightweight QoS routing protocol (LQRP), 
which adopts a modular technique considering two types of data 
packets, i.e., normal data and high-priority data. In this protocol, at first, 
the packets at the upper layer arrive at the data packet classification 
unit. Then, the packets with high priorities are transmitted in real-time, 
while normal packets need to wait for a proper transmission time. In 
[24], an energy-efficient sustainable WBAN using renewable energy 
systems (ESRES) has been presented that utilized an optimization 
method to enhance reliability, QoS, and network lifetime. Although 
QoS-based approaches provide low delay and high reliability, they also 
lead to increased computational complexity due to the management of 
different QoS modules. Additionally, there is no guarantee of a pro
longed network lifetime in these techniques. 

Although classical heuristic techniques are simple and robust 
methods with the capability of quickly responding to real-time routing 
requests, they often have poor performance especially when multiple 
criteria are taken into account. Furthermore, these methods are not 
adaptable to new network architectures and lack the ability to be tuned 
by decision-makers based on specific application requirements. 

2.2. Fuzzy heuristics 

Fuzzy inference systems have also been used for routing in WBANs. 
Chen and Peng [25] present a fuzzy technique for selecting the appro
priate relay nodes (FSRN) in WBANs by calculating the cost of the 
different links to prolong the useful lifetime. The FIS considers the traffic 
load, the battery level, and the number of data packets that have been 
previously forwarded through the different links, to select the optimal 
link. Singh and Singh [26] developed the fuzzy adaptive routing pro
tocol (FARP) based on clusters for WBANs, in which some nodes are 
selected as CHs based on FIS utilizing node priority, node density, bat
tery level, and distance to the sink. In addition, some nodes can be 
selected as CHs based on the level of the battery, the criticality of their 
data packets, and proximity to the sink. 

Aghbolagh and Pourmina [27] proposed a fuzzy clustering algorithm 
(FCA), in which the CHs are adaptively selected at every round based on 
the energy level, intra-cluster distances, and position shifting of the 
nodes due to the body movements. Chavva and Sangam [28] presented a 
fuzzy multi‑hop protocol (FMHP) for health monitoring in WBANs, in 
which data collected by each sensor node is transferred to the sink 
through a parent node section using a Mamdani FIS, using the energy 
level of the nodes as the only fuzzy input parameter. Wang et al. [29] 
developed an energy-efficient protocol that establishes a fuzzy control 
(EEP-FC) that includes the residual energy of the sensor nodes and the 
quality of the different links to determine the best forwarder nodes. 

SIMOF [4] is a multi-objective temperature-aware fuzzy routing 
protocol that utilizes multiple criteria including energy consumption, 
network lifetime, and temperature control, for the cluster head selection 

using a Mamdani FIS. In [30], a fuzzy relay node selection model to 
obtain energy-efficient reliable routes (FRNS-ER) has been suggested. In 
this method, the relay nodes are selected via a FIS according to the 
estimated distances based on the received RSSI, and the estimated di
rections based on the MUSIC algorithm. In general, fuzzy heuristics 
outperform classical heuristics in handling uncertainty and providing 
flexibility to manage multiple criteria. However, the main limitation of 
these techniques is the difficulty in adjusting numerous fuzzy rules by 
the expert when several criteria are utilized as fuzzy inputs. Addition
ally, these methods have similar limitations to classical heuristics in 
terms of the lack of adaptability to new WBANs and limited 
application-specific tunability. 

2.3. Metaheuristics 

Metaheuristic algorithms have also been utilized for routing in 
WBANs. Kaur and Singh [31] developed an energy-efficient routing 
protocol utilizing a genetic algorithm (GA), named EERP-GA. They 
formulated a multi-objective problem comprising energy level, reli
ability, and path loss, to choose optimal routes from the different sensor 
nodes to the sink. Xu and Wang [32] developed an energy-efficient 
protocol based on the combination of GA and ant colony optimization 
(ACO), to balance energy among all nodes and extend the lifetime. 
Esmaeili et al. [16] proposed a cluster-based protocol called EMRP that 
incorporates GA to obtain the best routes considering energy, path loss, 
distance, and energy consumption. In [33], a congestion control mech
anism based on TARA has been presented that utilizes spider monkey 
optimization (SMO) to select relay nodes according to energy, temper
ature, and congestion. Dhanvijay and Patil [34] introduced a protocol 
named QoSEP that uses ACO to route critical data packets efficiently to 
their destination nodes. Bilandi et al. [35] proposed a particle swarm 
optimization (PSO) to identify the correct relay nodes using the energy 
level and distance to the sink. Sharma [36] developed a quantum-based 
PSO (QPSO) to find the shortest energy-efficient paths to the sink. 
Karunanithy and Velusamy [37] developed the MEVPS protocol utiliz
ing ACO to tackle congestion issues in WBANs and decrease latency. 
Aryai et al. [52] proposed a metaheuristic-driven machine learning 
routing protocol (MDML-RP) to optimize the routing path of sensor 
nodes in the WBANs aiming to reduce network congestion and improve 
the overall performance of the system. Samal et al. [38] presented an 
adaptive cuckoo search algorithm (ACSA) for data routing and place
ment of relay nodes in WBANs. They have formulated a linear integer 
programming model to solve the routing/placement problem in WBANs. 
Metaheuristic-based routing protocols can provide high-quality solu
tions to complex routing problems, effectively handle multiple criteria 
and objectives, adapt to new WBANs, and be customized by the 
decision-maker to achieve specific objectives. However, these methods 
require significant computational resources, resulting in slower perfor
mance and reduced robustness against dynamic changes. It results in a 
prolonged response time for the routing protocol (i.e., the time duration 
between receiving the routing request and delivering the routing solu
tion), which poses challenges particularly when urgent data trans
mission is necessary. 

2.4. Our contributions against existing approaches 

Fig. 2 categorizes the reviewed classical heuristic, fuzzy heuristic, 
and metaheuristic approaches, and provides the pros. and cons. of them. 
Generally, classical and fuzzy heuristic-based routing protocols are 
robust methods that have lower computational complexity, enabling 
them to be effective for real-time routing which is of utmost importance 
in WBANs. However, they do not guarantee solution quality since they 
do not incorporate an optimization process. Additionally, these methods 
are not adaptable to new WBANs and applications and cannot be auto
matically adjusted based on the needs specified by the decision-maker. 
In contrast, metaheuristic-based techniques provide higher-quality 
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solutions with the added benefits of adaptability and tunability. 
Nevertheless, since these methods mostly rely on applying a meta
heuristic algorithm during each round to generate routes, there is an 
increase in computational complexity and data transmission overhead. 

To address the limitations of the existing heuristics and meta
heuristics while capitalizing on their respective strengths, the proposed 
metaheuristic-driven fuzzy heuristic protocol utilizes a fuzzy heuristic 
for online routing, capable of providing real-time routing solutions 
while minimizing computational overhead. To optimize the routing 
protocol and make it adaptable and tunable for specific application re
quirements, a metaheuristic algorithm based on GWO is employed as a 
preprocessing phase to adjust the hyperparameters of the routing pro
tocol in an offline procedure. The proposed TSFIS-GWO protocol offers 
numerous benefits including low computational overhead in online 
routing, real-time responsiveness, high solution quality, uncertainty 
handling, and robustness to dynamic changes. The model is flexible with 

multi-criteria fuzzy inputs, metaheuristic-driven optimization, and 
adaptability to new WBANs. Moreover, it can be tuned by decision- 
makers according to specific requirements in each application. 

3. System model 

The functioning of the TSFIS-GWO routing protocol can be catego
rized into two phases, namely setup and steady-state. In the setup phase, 
all routes are designed at the beginning of every round in the sink node 
via a centralized fashion, and then, the sink notifies all nodes about their 
designed routes. Whenever all routes have been set, the steady-state 
phase can be started. In the steady-state phase, each node transmits 
the collected information to the sink, directly or through a relay node 
(CH or forwarder). According to the WBAN architecture in Fig. 3, there 
is a sink attached to the human body. All nodes are assumed to be aware 
of their real-time location, i.e., via GPS or any localization technique. All 

Fig. 2. Classification of the existing routing protocols for WBANs, based on the methodology.  
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communications are done through wireless links. As seen in Fig. 3, only 
single-hop and two-hop communications are allowed according to IEEE 
802.15.6 standard, that is, two-hop for member (non-CH) nodes, and 
single-hop for forwarder (CH) nodes. Each member (non-CH) sensor 
node sends the gathered packet to the corresponding CH node, while a 
CH communicates directly with the sink by sending its sensed data as 
well as the gathered data from all its member nodes. 

3.1. Model of energy 

At every round, the energy level of all nodes is updated using the 
first-order radio communication model [53]. According to this model, 
the energy consumed during the transmission of a data packet of length l 
(bit) from node n to node m is expressed using the following equations: 

ET(n) = ET
elec × l+Eamp × l × dη (1)  

ER(m) = ER
elec × l (2)  

where d is the Euclidean distance from node n to node m (meters), Eamp is 
the consumed energy (joules per bit per meter by the power of η) of the 
amplifier in the transmitter node, and ET

elec and ER
elec are energy con

sumption parameters (joules per bit) of the electronic circuitry of the 
transmitter and receiver nodes, respectively. Furthermore, η expresses 
the path loss exponent of the communication link. 

In accordance with Eq. (1), it is evident that the distance and the path 
loss exponent play a pivotal role, exerting a substantial exponential 
impact (dη) on the dissipation of energy within transmitter nodes [54]. 
This effect amplifies notably when the transmitting node serves as a CH, 
tasked with transmitting larger data packets [55]. The path loss expo
nent is affected by the communication link passing through the human 
body, typically hovering between 3 and 7 depending on the line of sight 
(LOS) or non-line of sight (NLOS) communication scenarios [9, 16, 52]. 
Therefore, an energy-efficient routing protocol necessitates not only a 
keen consideration of inter-node distance but also careful attention to 
the communication link’s path loss exponent for optimal operation. 

3.2. Model of path loss 

Path loss of a communication link is described as the amount of 
attenuation in the power density of an electromagnetic wave, when it 
propagates through space, and is measured in dB (decibels) [20], as 
follows: 

PLn,m = 20 log
(

4πd0f
c

)

+ 10η log
(

dn,m

d0

)

+Xσ (3)  

where c is light speed, d0 is the reference distance, f is the frequency, and 
dn,m is the distance between nodes n and m. Moreover, Xσ is a shadowing 
factor representing the movement of the human body and is considered 
a Gaussian random number whose mean and standard deviation are 
established as 0 and σ. 

3.3. Model of reliability 

The link reliability between nodes n and m can be expressed as the 
packets received at node m divided by the packets sent by node n [56]. 
Based on Eq. (4), the reliability of a path from node n to the sink can be 
calculated by multiplying the reliability of all the links within the path, 

Rn =

{
Rn,sink if n isaCHnode
Rn,fn × Rfn ,sink if n isanon − CHnode (4)  

where fn is the forwarder node of the member node n. 

4. Proposed TSFIS-GWO routing protocol 

The proposed TSFIS-GWO model is an application-specific routing 
protocol utilizing online routing (via TSFIS) and offline tuning (via 
GWO), as seen in Fig. 4. It should be emphasized that the online TSFIS 
model is embedded in the processor unit located at the sink and is 
capable of responding to real-time routing requests from sensor nodes at 
every round. However, the TSFIS model should be fine-tuned using 
GWO based on the specific network details and application re
quirements, once before programming the tuned TSFIS model on the 
processor unit located at the sink for any new WBAN scenario. Since the 
optimization procedure using GWO is done in an offline scheme, it can 
be performed in any software in a PC. In this paper, we have utilized the 
MATLAB software for this purpose. 

4.1. Online routing using TSFIS 

The overall operation of TSFIS at every round can be divided into two 
phases: setup and steady-state. In the setup phase, the sink gathers in
formation on the current status of all nodes. Then, for every root node n, 
the sink calculates the fuzzy priority (FP) of all other candidate nodes 
using the TSFIS model, and accordingly, identifies the node with the 
highest FP as CH of node n. Once all routes are designed, the sink creates 
a time division multiple access (TDMA) schedule specifying when each 
CH can communicate with the sink. Then, a message is broadcasted to all 
nodes to inform them of their current routing role, parents/children, and 
the TDMA schedule. During the steady-state phase, each CH establishes 
its own intra-cluster TDMA to notify its members when they should 
transmit their sensed data packets to the chosen CH node. After 
receiving all the data packets from the member nodes, the CH forwards 
the collected data as a unified packet with its own data to the sink within 
its designated time window. 

At every round, after gathering the information on the current state 
of all nodes by the sink, the crisp value of the input parameters of the 
TSFIS model is calculated for all root nodes (Subsection 4.1.1). Then, the 
FP of the candidate CHs is computed using three main parts: fuzzifica
tion (Subsection 4.1.2), fuzzy inference engine (Subsection 4.1.3), and 
defuzzification (Subsection 4.1.4). Once the FP of all candidate nodes is 
calculated, the best route for the root node is selected via a single-hop or 

Fig. 3. Cluster-based routing in TSFIS.  
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two-hop communication (Subsection 4.1.5). This procedure is repeated 
for all root nodes until designing the routing solution for all nodes. 

4.1.1. Input parameters 
For calculating the priority of each candidate node m, FP(m), to be 

selected as the CH of the root node n, the TSFIS model takes five inputs of 
the candidate node. As highlighted in Subsection 3.1, both distance and 
the path loss exponent have substantial influences over energy dissipa
tion. This oversight becomes particularly pronounced when a trans
mitting node undertakes the role of a CH transmitting larger data 
packets. Therefore, in addition to energy, path loss, and reliability, 
which have direct effects on the determined objectives, we also consider 
the total distance and estimated energy consumption as fuzzy inputs of 
the TSFIS model. This augmentation enables the TSFIS model to holis
tically estimate the combined effect of distance and path loss exponent 
on energy consumption and path loss of the communication links. 

The input criteria of the TSFIS protocol for each candidate node m 
consist of the energy level of node m (Em), the total distance from node n 
to the sink (dn,m+dm,sink), the total path loss of communication links 
between node n and the sink (PLn,m+PLm,sink), the total reliability of the 
communication link from node n to the sink (Rm), and the total estimated 
dissipated energy from the node n and its relay node m (ECn,m+ECm,sink). 
These parameters are normalized within [0,1], as stated below: 

x1(m) =
Em

max
i=1:N

(Ei)
; ∀m = 1, 2, .,N (5)  

x2(m) =
dn,m + dm,sink

max
i=1:N

(
dn,i + di,sink

); ∀m = 1, 2, .,N (6)  

x3(m) =
PLn,m + PLm,sink

max
i=1:N

(
PLn,i + PLi,sink

); ∀m = 1, 2, .,N (7)  

x4(m) =
Rm

max
i=1:N

(Ri)
; ∀m = 1, 2, .,N (8)  

x5(m) =
ECn,m + ECm,sink

max
i=1:N

(
ECn,i + ECi,sink

); ∀m = 1, 2, .,N (9)  

4.1.2. Fuzzification 
After calculation of the normalized crisp value of the input param

eters for each candidate node using Eqs. (5)-(9), they should be trans
formed into linguistic fuzzy variables. The fuzzification process for each 
input parameter utilizes three fuzzy membership functions, namely Low, 

Medium, and High, as depicted in Fig. 5. As all input parameters have 
been normalized to the same range of [0,1], we consider the same 
membership functions for the fuzzification of the different inputs. 

4.1.3. Fuzzy inference engine 
There are different fuzzy inference systems. Among them, Mamdani 

[57] and Takagi-Sugeno [58] are the most widely used techniques to 
model the fuzzy inference system. Both models have their specific ad
vantages and limitations. Although the Mamdani model is more inter
pretable for being manually tuned by an expert [59], the Takagi-Sugeno 
model has some advantages like simpler structure, smoother landscape, 
and more importantly, parameter-based output structure, making it 
more amenable to automatic tuning using optimization algorithms [39, 
60]. Since we apply a metaheuristic-driven optimization procedure for 
the tuning of the fuzzy system, we have chosen the Takagi-Sugeno fuzzy 
model. Generally, a Takagi-Sugeno fuzzy rule k can be expressed as 
follows: 

If antecedencek, then consequencek ; ∀k = 1, 2, .,K (10) 

where K is the number of fuzzy rules stored within the fuzzy rule base 
table. The precedence part is the same for all fuzzy types, which typically 
utilizes AND-based rules, each of which represents a combination of the 
different fuzzy inputs. However, the consequence part differs for each 
fuzzy type. 

Considering five inputs x1(m) to x5(m) and one output FP(m) for each 

Fig. 4. Overall structure of online routing (using TSFIS) and offline tuning (using GWO).  

Fig. 5. Fuzzy membership functions of the normalized crisp input criteria.  
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candidate node m, a typical Takagi-Sugeno fuzzy rule in the TSFIS can be 
expressed as follows:  

where ak
i ∈{Low, Medium, High} is the k-th membership function 

that has been fired for the i-th fuzzy input, and yk(m) is a crisp function 
which is formulated as a polynomial function of the crisp values of the 
five inputs as follows: 

yk(m) = Pkx1(m)+Qkx2(m)+Rkx3(m)+ Skx4(m)+ Tkx5(m)+Uk ; ∀k

= 1, 2, .,K, m = 1, 2, .,N
(12) 

where Pk, Qk, Rk, Sk, and Tk, are the relative weights of the five inputs 
x1, x2, x3, x4, and x5 in rule k, respectively, and also Uk is a bias number 
used to balance the output of rule k. 

4.1.4. Defuzzification 
The defuzzifier is used to aggregate the fired fuzzy outputs achieved 

from the different rules and combine them into a single crisp output. The 
TSFIS utilizes all AND-based combinations from the five inputs in Eq. 
(11). For each candidate node m, some of the rules may be fired if all 
existing input memberships have been activated. Consequently, the final 
crisp output of node m can be obtained using the weighted average 
method [13], as follows: 

FP(m) =

∑K
k=1(μk × yk)
∑K

k=1μk
(13)  

where μk is the multiple (or minimum) of the activated values of the five 
fuzzified inputs, associated with the fired membership functions within 
the rule k. 

4.1.5. Design of routing solutions 
After calculating FP(m) of all candidate nodes for each root node n, 

the candidate node with the highest FP value is identified as the 
forwarder node (CH) of node n, fn. Based on the IEEE 802.15.6 standard, 
which is used in the TSFIS model, each node may use single-hop or two- 
hop transmission to send its sensed data packet to the sink [61]. If the 
selected forwarder node is any node other than node n (i.e., fn∕=n), node 
n is considered a non-CH node and submits its data to the sink using a 
two-hop communication with the help of the selected forwarder node. 
Otherwise, in the case of fn=n, node n is considered a CH node and sends 
its data as well as the data from its member nodes (as existed) directly to 
the sink (single-hop communication). 

4.2. Offline tuning using GWO 

In this section, we present an offline tunning process based on the 
GWO algorithm to optimize the TSFIS model once before applying it for 
online routing. Given the mentioned advantages of GWO in addressing 
continuous-space hyperparameter tuning problems, it has been chosen 
to optimize the continuous Takagi-Sugeno fuzzy parameters within the 
TSFIS protocol. 

4.2.1. Optimization problem 
As mentioned above, the proposed TSFIS model employs all AND- 

based Takagi-Sugeno fuzzy rules. With five fuzzy inputs (i.e., I=5) 
within Eq. (11), each processed through three fuzzy membership func
tions, the TSFIS model encompasses a total of K=35=243 fuzzy rules. As 
per Eq. (12), each Takagi-Sugeno fuzzy rule comprises I+1 parameters 
including Pk, Qk, Rk, Sk, Tk, and Uk (k=1,2,…,K). As seen in Fig. 6, a 
feasible solution can be represented as a matrix with K=243 rows and 
I+1=6 columns, where each row k represents the six parameters of the 
fuzzy rule k. As a result, the TSFIS model entails a total of K×(I+1)=
1458 controllable parameters that should be fine-tuned according to the 
specific application measures. 

According to Eq. (12), each Takagi-Sugeno fuzzy rule utilizes a 
weight for each input plus a bias parameter. The selection of CH is 
influenced positively by the residual energy (x1) and reliability (x4) of 
nodes, where higher energy or path reliability increases the likelihood of 
a node for being selected as a CH. On the other hand, the distance (x2), 
path loss (x3), and energy consumption (x5) have negative impacts on 
the selection, decreasing the priority of the node to be chosen as the CH. 
Accordingly, the range of parameters is defined as Pk∈[0,1], Qk∈[-1,0], 
Rk∈[-1,0], Sk∈[0,1], Tk∈[-1,0]. Furthermore, as the role of the bias 
parameter is to balance the outputs, its range is considered as Uk∈[-1,1]. 
These ranges are used to limit the range of parameters (lower and upper 
bounds of GWO) in the random generating initial population as well as 
updating the entire population at every iteration. 

To measure the quality of a feasible solution g (i.e., a grey wolf), the 
corresponding Takagi-Sugeno fuzzy rule base table is extracted by 
decoding the solution using Eqs. (11) and (12), and then, the WBAN is 
simulated considering the fuzzy rules provided by the solution. When 
the network simulation has been completed, the fitness of the solution 
can be calculated based on an application-specific fitness function. To 
achieve this purpose, each solution g can be evaluated by a normalized 
weighted averaging fitness function to maximize the FND network 
lifetime, minimize the average path loss (APL), and maximize the 
average path reliability (APR), as follows: 

maximize :

{

Fitnessg = wFND ×

(
FNDg

Rmax

)

+ wAPL ×

(
APLg

PL0

)− 1

+ wAPR ×
(
APRg

)
} (14) 

subject to 

FNDg < Rmax ∀g, (15)  

APLg ≥ PL0 ∀g, (16)  

APRg ≤ 1 ∀g, (17) 

Fig. 6. Representation of a feasible solution.  

If x1(m) = ak
1 & x2(m) = ak

2 & x3(m) = ak
3 & x4(m) = ak

4 & x5(m) = ak
5, then yk(m) = f (x1, x2, x3, x4, x5) ;

∀k = 1, 2, .,K, m = 1, 2, .,N
(11)   
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APRg =
1

LNDg

∑LNDg

r=1

(
1

Ar,g

∑Ar,g

n=1
Rn(r, g)

)

∀g, (18)  

APLg =
1

LNDg

∑LNDg

r=1

(
1

Ar,g

∑Ar,g

n=1
PLn,sink

(
r, g
)
)

∀g, (19)  

LNDg ≤ Rmax ∀g, (20)  

PL0 = 20 log
(

4πd0f
c

)

, (21)  

PLn,sink
(
r, g
)
≥ PL0 ∀g, r, (22)  

wFND +wAPL +wAPR = 1. (23) 

In Eq. (14), Fitnessg measures the fitness value of the solution g (i.e., 
grey wolf g), wherein FNDg, APLg, and APRg, are the FND, APL, and APR 
obtained by simulation of the WBAN using the corresponding TSFIS 
model decoded from the solution g. Eqs. (15)-(17) express the bound
aries of FNDg, APLg, and APRg, which causes all three objective terms as 
well as the total fitness function to be between zero and one. Eqs. (18) 
and (19) measure the average reliability and path loss of all communi
cations from alive nodes to the sink during the whole network simula
tion, where Ar,g is the number of alive nodes in the simulation round r for 
the solution g, and notations Rn(r,g) and PLn,sink(r,g) are respectively the 
reliability and path loss of data transmission from node n to the sink at 

round r for the solution g. Eq. (20) expresses that the maximum rounds 
considered for the network simulation (Rmax) must be larger than the 
LND of any solution g. Eq. (21) calculates the path loss at the reference 
distance d0, and Eq. (22) emphasizes that the path loss of any commu
nications is higher or equal to PL0. Furthermore, Eq. (23) expresses that 
the summation of the weights of different objectives (wFND, wAPL, and 
wAPR) is equal to 1. The wFND, wAPL, and wAPR are constant parameters 
within [0,1], which adjust the relative effects of FND, APL, and APR, 
within the fitness function, respectively. 

4.2.2. Optimization algorithm 
GWO is a swarm intelligence algorithm with balanced exploration- 

exploitation ability, which was first proposed in 2014 by Mirjalili 
et al. [40]. It was inspired by the hunting behavior of grey wolves. As 
seen in Fig. 7, the search begins by randomly initializing a population of 
grey wolves consisting of PopSize solutions. During each iteration, the 
quality of the current population is assessed using a fitness function 
tailored to the specific application. Then, the entire population is 
modified using the attacking prey (exploitation) and the search for prey 
(exploration). These processes are carried out in successive steps until 
the stop criterion is satisfied. A pre-specified number of iterations (i.e., 
MaxIter) is defined as the termination condition of the GWO algorithm. 
Pseudo-code of the hyperparameter tuning process for the TSFIS pro
tocol with GWO is provided in Algorithm 1. 

Algorithm 1. . Tuning of TSFIS using GWO. 
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4.2.3. Fitness function evaluation 
Whenever a solution has been updated via the GWO operators, its 

feasibility must be checked. If all the parameters are within the allow
able ranges, the solution is feasible. Otherwise, if any parameter goes 
beyond the search space, it is amended by limiting the violated pa
rameters in the corresponding boundaries. To measure the quality of 
each wolf, the corresponding Takagi-Sugeno fuzzy rule base table is 
extracted, and then the WBAN is simulated considering the fuzzy rules 
provided by that wolf. When the simulation has been completed, the 
fitness of the wolf is calculated based on the application-specific 
objective(s). It should be noted that the fitness function presented in 
Eq. (14) is a hypothetical fitness function, which is used as an example to 
provide the simulation results in this paper. However, depending on the 
application specifications, it is possible to define the fitness function 
using alternative formulas. 

4.2.4. Population updating 
Gray wolves possess a social structure that consists of hierarchy 

levels, namely alpha, beta, delta, and omega [62]. The alpha is the 
leader whose instructions must be obeyed by all other grey wolves. The 
beta serves as an advisor to the alpha, reinforcing the alpha’s orders and 
providing feedback to the alpha. The delta must submit to the alpha and 
beta but dominates the rest of the pack (omegas). During each iteration 
of the algorithm, the fitness function is used to evaluate the quality of all 
gray wolves, which are then sorted based on their fitness value from best 
to worst. The top three solutions are designated as alpha (Sα), beta (Sβ), 
and delta (Sδ), respectively. At each iteration t, the position of each gray 
wolf g is updated as follows: 

Sg

(

t+ 1
)

=
1
3

(
Xα

g +Xβ
g +Xδ

g

)
(24)  

where Xα
g , Xβ

g , and Xδ
g, are respectively the factors of the encircling prey 

based on the alpha, beta, and delta, which are expressed as follows: 

Xα
g = Sα − Aα

g .

⃒
⃒
⃒Cα

g . Sα − Sg(t)
⃒
⃒
⃒ (25)  

Xβ
g = Sβ − Aβ

g.

⃒
⃒
⃒Cβ

g. Sβ − Sg(t)
⃒
⃒
⃒ (26)  

Xδ
g = Sδ − Aδ

g.

⃒
⃒
⃒Cδ

g. Sδ − Sg(t)
⃒
⃒
⃒ (27)  

where A and C are random vectors that are generated respectively as 
Eqs. (28) and (29), where r1 and r2 are uniform random vectors with 

arrays in [0,1], and a is a parameter that is decreased from 2 to 0. 

A = 2a. r1 − a (28)  

C = 2. r2 (29) 

Based on the values of the arrays within A, attacking prey or search for 
prey is performed. More specifically, each wolf may converge toward the 
prey if |A|<1 (attacking prey) or diverge from it if |A|>1 (search for 
prey). According to Eq. (28), the value of the arrays of A is within [-a,a]. 
As a is a linearly decreasing parameter over the course of iterations, the 
chance of the exploitation (attacking prey) gradually increases, while 
the probability of the exploration (search for prey) decreases. 

4.3. Computational complexity analysis 

In the following, the computational complexity of the proposed 
TSFIS-GWO model in the online routing phase using TSFIS and the off
line tuning phase using GWO is analyzed. The TSFIS model has a 
computational complexity of O(MI) for constructing the route of a single 
node at every round, where I is the number of fuzzy input parameters 
and M is the number of memberships considered for the fuzzification of 
each input parameter. As a result, the computational complexity of the 
TSFIS model at every round in the online routing phase over a WBAN 
comprising N sensor nodes can be expressed as O(N×MI). Furthermore, 
the offline tuning phase using GWO has a computational complexity of O 
(MaxIter×PopSize×CCFitness), where PopSize is the population size of 
GWO, MaxIter is the maximum number of iterations of GWO, and 
CCFitness is the computational complexity of evaluating the fitness of a 
grey wolf at a single iteration. To calculate the fitness of a grey wolf, the 
WBAN must be completely simulated using the corresponding TSFIS for 
Rmax rounds. So, the fitness function evaluation has a computational 
complexity of O(N×MI×Rmax). As a result, the computational complexity 
of the offline tuning phase using GWO can be expressed as O 
(MaxIter×PopSize×N×MI×Rmax). 

It should be emphasized that the high computational complexity of 
the GWO algorithm is solely present in the offline tuning phase and does 
not impose any overhead during the online routing phase, where the 
model is actually used for routing. Therefore, while the offline tuning 
phase may be computationally intensive, it does not impact the real-time 
responsiveness of the proposed model during the online routing phase. 
This guarantees that the routing process remains efficient and stream
lined, while also allowing for the essential application-specific adjust
ments and optimization to be implemented beforehand. 

Table 1 
WBAN parameters.  

Parameter Value 

MAC IEEE 802.15.6 
Size of workspace 1.8 m × 0.8 m × 0.3 m 
Height of body 1.8 m 
Width of body 0.8 m 
Thickness of body 0.3 m 
Position of sink (1 m, 0.4 m, 0.3 m) 
No. nodes 20 
Size of data packets 100 bit 
Size of control packets 16 bit 
Link reliabilities [0.8,1] 
Initial energy of nodes 0.5 J 
Eamp 1.97 nJ/bit/mη 

ET
elec 16.7 nJ/bit 

ER
elec 36.1 nJ/bit 

d0 0.1 m 
f 2.4 GHz 
c 3×108 m/s 
η [3,6]  

Fig. 7. Flowchart of GWO for the fuzzy rule tuning of the TSFIS.  
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5. Simulation results 

The TSFIS-GWO approach was successfully implemented on a com
puter with MATLAB R2020b, utilizing a 2.6 GHz i7 CPU and 16 GB 
RAM. For the metaheuristic-driven offline tuning phase, we have used 
MATLAB source codes of the original GWO algorithm, accessible at 
http://www.alimirjalili.com/SourceCodes/GWO.zip. 

5.1. Settings 

The network parameters are summarized in Table 1. The experi
ments were conducted in a workspace modeled as a 3D human body 
with dimensions of 1.8 m × 0.8 m × 0.3 m. The sink is positioned at 
coordinates (1 m, 0.4 m, 0.3 m). There are 20 sensor nodes attached to 
or implanted in the body, where each node is furnished with a power 
source that possesses an initial energy of 0.5 Joule. 

The parameters of the TSFIS-GWO protocol are summarized in  
Table 2. In the online routing phase, we have designed a typical Takagi- 
Sugeno fuzzy system with AND-based rules. As described in Subsection 
4.1, the parameters related to the number of inputs, normalization of 
inputs, fuzzification, and defuzzification, have been set with fixed 
values. However, the parameters within the fuzzy rule base table of 

TSFIS are automatically tuned using GWO. In the offline tuning phase 
using GWO, PopSize and MaxIter have been set as 50 and 1000, 
respectively. Furthermore, the weights of the fitness function of Eq. (14), 
i.e., wFND, wAPL, and wAPR, are variable parameters that can be deter
mined by the user based on the desired impacts of the FND, APL, and 
APR in the application. 

Table 3 showcases three WBAN applications (scenarios), each 
tailored with specific emphasis on different objectives within the fitness 
function of Eq. 14. Since WBANs are networks that consist of hetero
geneous nodes, the network’s validity significantly diminishes after 
reaching FND. Therefore, it is deemed the most critical metric in all 
applications considering an FND’s weigh at least equal to 0.5, i.e., 
wFND≥0.5. By prioritizing varying aspects of FND, APL, and APR, three 
applications are considered for simulations, which can be described as 
follows: 

App. 1 (High Stable Lifetime): By focusing on a prolonged and highly 
stable network lifetime until FND, the weightage within the fitness 
function is adjusted to prioritize FND significantly. Accordingly, the 
weight assignments are set as wFND=0.8, wAPL=0.1, and wAPR=0.1, 
ensuring a robust extension of network stability until FND while also 
considering slight impacts for the APL and APR. 

App. 2 (Low Path Loss): This application aims at minimizing path loss 
while still taking into account the importance of FND. Here, the fitness 
function is balanced between the three objectives with weights set as 
wFND=0.5, wAPL=0.5, and wAPR=0, ensuring both reduced path loss and 
sustained network longevity. 

App. 3 (High Path Reliable). In this application, the primary focus 
lies on enhancing the link reliability while maintaining a reasonable 
FND. Consequently, the weights of the fitness function are assigned as 
wFND=0.5, wAPL=0, and wAPR=0.5, thereby emphasizing link reliability 
alongside network sustainability while ignoring the path losses of the 
communications. 

It is important to highlight that the proposed application-specific 
fitness function (formulated in Eq. 14) serves as a hypothetical func
tion that leverages the FND, APL, and APR objectives to describe the 
given scenarios of App. 1, App. 2, and App. 3. Nevertheless, it can be 
customized by the decision maker to include additional QoS metrics and 
objectives such as HND, LND, bandwidth, and so forth, within the fitness 
function to address new applications and other types of scenarios. 

5.2. Results of offline tuning 

As mentioned above, the proposed TSFIS-GWO protocol should be 
tuned using GWO once before applying it to any new WBANs (applica
tions). Generally, the higher the value of PopSize and MaxIter in a met
aheuristic algorithm, the more chance to achieve a better solution by 
accepting more computational complexity [63]. To evaluate the effects 
of MaxIter and PopSize on the fitness value and running time, the GWO 
has been performed to optimize the TSFIS model considering different 
iterations of 100, 500, 1000, and 2000, and different populations of 10, 
25, 50, 100. The obtained fitness value and running time for App. 1 are 
provided in Tables 4 and 5, respectively. Furthermore, the results are 
graphically illustrated as surface plots in Fig. 8. The results show that 
increasing both MaxIter and PopSize leads to enhancing the fitness value 
while increasing the running time, due to generating and evaluating 
more solutions. 

Table 2 
Controllable parameters of the TSFIS-GWO protocol.  

Phase Parameter Definition/Value Fixed/Variable 

TSFIS No. input parameters 5 Fixed 
Range of input parameters Linear normalization 

within [0,1] 
Fixed 

No. input fuzzy 
membership functions 

3 (Low, Medium, High) Fixed 

No. parameters within 
TSFIS model 

1458 Fixed 

Value of parameters within 
TSFIS model 

[-1,1] Variable (Tuned 
by GWO) 

Defuzzification Weighted average 
method 

Fixed 

GWO Population size (PopSize) 50 Fixed 
Maximum number of 
iterations (MaxIter) 

1000 Fixed 

Fitness function weights 
(wFND, wAPL, wAPR) 

[0,1] Variable 
(Defined by 
user)  

Table 3 
Application-specific weights within the proposed fitness function.  

Scenario FND APL APR 

weight 
(wFND) 

impact weight 
(wAPL) 

impact weight 
(wAPR) 

impact 

App. 1 (High 
Stable 
Lifetime)  

0.8 Very 
high  

0.1 Low  0.1 Low 

App. 2 (Low 
Path Loss)  

0.5 High  0.5 High  0 Zero 

App. 3 (High 
Path 
Reliable)  

0.5 High  0 Zero  0.5 High  

Table 4 
Average fitness value of GWO over 10 successive runs in App. 1.  

Iterations Population 

10 20 50 100  

100  0.416  0.440  0.499  0.510  
500  0.455  0.487  0.524  0.526  
1000  0.473  0.502  0.533  0.534  
2000  0.486  0.512  0.535  0.537  

Table 5 
Average running time [h] of GWO over 10 successive runs in App. 1.  

Iterations Population 

10 20 50 100  

100  0.07  0.17  0.46  1  
500  0.50  1.1  3.1  6.8  
1000  1.1  2.7  6.7  14.4  
2000  2.4  5.8  14.2  29.3  
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According to Table 4 and the left-side plot in Fig. 8, for any PopSize, 
the convergence speed is gradually decreased during the execution of 
the algorithm and finally fed into saturation. By comparing the runs with 
the same number of fitness evaluations (NFE), i.e., MaxIter×PopSize, we 
can find different results in small and large numbers of populations. The 
results show that with a small population size of 10 or 20, more itera
tions with the same NFE cannot lead to a better solution. For example, 
the GWO with MaxIter=1000 and PopSize=20 outperforms the GWO 
with MaxIter=2000 and PopSize=10. In contrast, in the case of higher 
population sizes, the higher number of iterations works a little bit better 
than a higher population size. It can be seen by comparing the GWO with 
MaxIter=1000 and PopSize=50 with that of with MaxIter=500 and 
PopSize=100. 

From the time analysis in Table 5 and the right-side plot in Fig. 8, it 
can be seen that the number of iterations significantly extended the 
computation time, even more than a linear relationship. The main 
reason is that at the early iterations, the algorithm encounters random 
solutions leading to a small lifetime obtained by the TSFIS model. As 
mentioned above, to evaluate the fitness of each feasible solution (i.e., a 
grey wolf), the WBAN must be completely simulated using the corre
sponding TSFIS for Rmax network simulation rounds. Therefore, the 

higher the quality of a solution, the more time is required for the fitness 
evaluation with a higher value of average alive nodes within Rmax. For a 
PopSize of 50, the time increases 31 folds with an increase in the number 
of iterations from 100 to 2000, which is 1.55 times higher than the 
increasing amount in the NFE. The situation is similar with other pop
ulation sizes. 

According to the obtained results, in many situations when PopSize 
was 50 or 100 with 1000 or 2000 iterations, the final fitness values are 
very close and almost similar. Even considering a PopSize of 50 with 500 
iterations has a little bit smaller fitness. However, to ensure achieving 
the best fitness while the running time is also under consideration, we 
have set PopSize and MaxIter of GWO as 50 and 1000, respectively. These 
values are used for the remainder of the simulations in this paper. 
Although a JIT solution is of utmost importance for the online routing 
phase, we can accept more time for the offline tuning phase. It should be 
emphasized that the GWO-based tuning procedure with a huge running 
time of 6.7 h is performed as a training phase only once before applying 
the tuned TSFIS for a new WBAN application, and thus, it doesn’t boost 
any delay during the online data transmission phase. 

To capture the convergence of GWO, Fig. 9 provides the best and 
average fitness among all individuals versus iterations for App. 1. The 

Fig. 8. Effects of MaxIter and PopSize on the fitness value (left) and running time (right) of the GWO.  

Fig. 9. Convergence of GWO for the TSFIS tuning in App. 1.  
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blue points, depicting the global best solution, showcase an impressive 
initial surge in convergence through more emphasis on exploration 
within the first 100 iterations. As the algorithm progresses, a gradual 
shift in the convergence speed can be observed by transitioning from 
rapid optimization to more exploitation of the refined solutions. After 
around 500–600 iterations, a slowdown in convergence speed marks a 
pivotal moment, signifying the algorithm’s maturation in search of the 
most optimal solution. Furthermore, the red points, representing 
average fitness, portray a gradual descent towards higher fitness values, 
revealing the collective performance of the algorithm. 

To verify the effectiveness of the GWO algorithm in the fuzzy rule 
tuning of the TSFIS model, it is compared with GA (as the most common 
evolutionary algorithm), PSO (as a popular metaheuristic with contin
uous search space), ACO (as a popular metaheuristic with discrete 
search space), and Aquila Optimizer (OA) [64] (as a recent meta
heuristic). Each algorithm was applied separately to tune the TSFIS 
protocol with the same circumstances. To ensure an equitable compar
ative analysis across diverse metaheuristic algorithms, all approaches 
underwent simulation with identical parameters to GWO (i.e., 
PopSize=50 and MaxIter=1000), maintaining uniformity in the NFE. 
However, due to variations in parameterization among different algo
rithms (GA, PSO, ACO, and AO), fine-tuning was achieved through 
iterative experimentation guided by the original papers. For GA, specific 
probabilities were refined, setting recombination, uniform crossover, 
and swap mutation at 10%, 60%, and 30%, respectively. For PSO, the 
inertia weight has been set to be decreased from 0.9 to 0.1 during the 
execution of the algorithm, while the attraction coefficients have been 
set as c1=c2=2. ACO has been set up by initial pheromones at 0.5 
bounded within the [0,1] range for pheromone trials, while the evapo
ration and deposition factors stood at 5% and 0.2, respectively. Finally, 
as suggested in [64], the exploitation adjustment parameters of AO have 
been fixed to α=δ=0.1. 

Due to the random nature of metaheuristics, each algorithm was 
applied to tune the TSFIS protocol in 10 runs. The results obtained by the 
different methods on 10 runs in App. 1 can be seen in Table 6, which 
shows that GWO outperforms the GA, PSO, ACO, and AO, by obtaining 
higher fitness (on average). Another point is that the GWO algorithm 
obtains less STD% over 10 runs, which demonstrates that it is more 
trustable than the other metaheuristics for every run. Moreover, the 

comparative analysis of the algorithms reveals strikingly similar running 
times, albeit with nuanced differences arising from the distinct operators 
employed within each algorithm. This uniformity mainly stems from the 
intrinsic time-intensive nature of the fitness evaluation part, eclipsing 
the unique operators within each algorithm. The convergence of the 
different algorithms under the same NFE exposure to the identical 
fitness function underscores their nearly running times. 

5.3. Results of online routing 

Once the Takagi-Sugeno fuzzy rules of TSFIS have been optimized for 
a new application using GWO, it can be utilized as a real-time routing 
protocol in that specific application. Table 7 provides the network life
times obtained by the TSFIS-GWO protocol for three WBAN applications 
in terms of different definitions of FND, HND, and LND. The round 
histories of alive nodes and the number of delivered data packets are 
summarized in Tables 8–9, respectively. Moreover, sub-fitness functions 
(FND, APL, and APR) and the total fitness function (Eq. 14) were ob
tained as provided in Table 10, where the best results among the 
different applications are shown in bold. The results in Table 10 
demonstrated that the best FND, APL, and APR were achieved in ap
plications 1, 2, and 3, respectively, highlighting the flexibility of the 
proposed approach in adapting to changes in the fitness function based 
on the application-specific requirements. 

To acquire a better understanding of the results achieved across 
various applications as simulation rounds progressed, Figs. 10–13 

Table 6 
Comparison of the different metaheuristic algorithms in terms of the fitness 
value (best, worst, mean, and STD%) and running time [h] for 10 successive runs 
in App. 1.  

# Run GA PSO ACO AO GWO 

1  0.515  0.515  0.515  0.517  0.533 
2  0.523  0.507  0.521  0.504  0.532 
3  0.517  0.519  0.520  0.527  0.539 
4  0.511  0.496  0.510  0.524  0.532 
5  0.522  0.499  0.526  0.516  0.533 
6  0.519  0.528  0.516  0.520  0.532 
7  0.523  0.518  0.519  0.517  0.529 
8  0.504  0.497  0.510  0.510  0.530 
9  0.517  0.512  0.524  0.514  0.530 
10  0.515  0.504  0.518  0.508  0.532 
Best Fitness Value  0.523  0.528  0.526  0.527  0.539 
Worst Fitness Value  0.504  0.496  0.510  0.504  0.529 
Average Fitness Value  0.517  0.510  0.518  0.516  0.532 
STD% of Fitness Values  1.13  2.11  1.04  1.41  0.51 
Average Running Time [h]  6.8  6.6  7.1  6.8  6.7  

Table 7 
Obtained FND, HND, and LND in various applications.  

Lifetime Definition App.1 App.2 App.3 

FND  2663  1855  1581 
HND  3163  3253  3387 
LND  3382  3999  4771  

Table 8 
The number of functioning nodes as the rounds progressed in various 
applications.  

Round # App.1 App.2 App.3  

0  20  20  20  
500  20  20  20  
1000  20  20  20  
1500  20  20  20  
2000  20  19  19  
2500  20  18  17  
3000  18  16  15  
3500  0  6  9  
4000  0  0  2  
4500  0  0  1  
5000  0  0  0  

Table 9 
The number of delivered data packets as the rounds progressed in various 
applications.  

Round # App. 1 App. 2 App. 3  

0 0 0 0  
500 10,000 10,000 10,000  
1000 20,000 20,000 20,000  
1500 30,000 30,000 30,000  
2000 40,000 39,854 39,580  
2500 50,000 49,273 48,586  
3000 59,621 57,543 56,759  
3500 62,843 62,514 62,680  
4000 62,843 64,104 65,519  
4500 62,843 64,104 66,468  
5000 62,843 64,104 66,738  

Table 10 
Obtained fitness functions in various applications.  

Measure App. 1 App. 2 App. 3 

FND  2663  1855  1581 
APL (dB)  61.5  53.07  70.44 
APR (%)  80.45  78.81  82.74 
Total fitness  0.539  0.374  0.572  
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illustrate the history of the number of alive nodes, APL, APR, and hot
spot temperature, respectively. As mentioned above, the highest weight 
for the FND has been set in App. 1 with wFND=0.8. As seen in Fig. 10, the 
highest FND has been obtained in App. 1, and then App. 2 obtains a little 
bit more FND against App.3. In terms of APL minimization, the three 
applications can be ordered from the least APL to the most APL as App. 
2, App. 1, and App. 3 (see Fig. 11), considering the weight of APL as 
wAPL=0.5, wAPL=0.1, and wAPL=0, respectively. Moreover, as seen in 
Fig. 12, they can be ordered from the best to the worst as in App. 3, App. 
1, and App. 2, in terms of the APR. The results show that the same orders 
as the impact weights have been achieved for each performance 
measure. 

Based on the results obtained, it can be inferred that in App. 1, a 
prolonged stability period is achieved as the first node experiences 
delayed death, and the subsequent node deaths occur at a nearly con
stant rate until the last node’s demise. Due to the superior performance 

of TSFIS-GWO in achieving FND in App. 1 relative to other applications, 
the amount of data received at the sink keeps increasing until FND is 
attained, but then it decreases sharply. Extending the FND in App. 1 
results in more nodes being able to transmit their data to the sink over a 
greater number of rounds compared to the other applications. However, 
if a better trade-off between the network lifetime and APL/APR is 
required, more weight should be given to APL/APR, which is achieved in 
Apps. 2 or 3. 

5.4. Evaluating against existing methods 

To demonstrate the effectiveness of the TSFIS-GWO protocol, it was 
pitted against three other routing protocols in WBANs: a classical heu
ristic method (ERRS) [7], a fuzzy heuristic method (FRNS-ER) [30] and 
a metaheuristic-based protocol (ACSA) [38]. The network lifetimes of 
FND, HND, and LND, obtained by different routing protocols are 

Fig. 10. The number of functioning sensor nodes in various applications.  

Fig. 11. The average path loss (dB) in various applications.  

S. Memarian et al.                                                                                                                                                                                                                              



Applied Soft Computing 155 (2024) 111427

15

summarized in Table 11. Based on the results for App. 1, the TSFIS-GWO 
protocol demonstrated significantly better FND performance compared 
to three other routing protocols. By considering FND as the most sig
nificant factor within the fitness function of the GWO to tune the TSFIS 
model for App. 1, the TSFIS-GWO protocol obtains more stability period 
as the first node dies later than App. 2, App. 3, and other techniques. 
Specifically, the gain of TSFIS-GWO in FND is 404% higher than ERRS, 

133% higher than FRNS-ER, and 60.6% higher than ACSA. Consider less 
weight for FND in TSFIS-GWO for Apps. 2 and 3, this gain for App. 2 has 
been reduced to 251%, 62.8%, and 11.9%, and for App. 3–199%, 38.8% 
and − 4.6%, compared to ERRS, FRNS-ER, and ACSA, respectively. To 
illustrate the flexibility of the TSFIS-GWO protocol, Figs. 14–16 statis
tically qualify the different methods in terms of the number of alive 
nodes, APL and APR, respectively. These statistics indicate that the 

Fig. 12. The average path reliability (%) in various applications.  

Fig. 13. The hotspot temperature in various applications.  

Table 11 
Obtained FND, HND, and LND by the different routing protocols.  

Lifetime ERRS [7] FRNS-ER [30] ACSA [38]  TSFIS-GWO 

App.1  App.2  App.3 

FND  528  1139  1658   2663   1855   1581 
HND  2610  2384  3197   3163   3253   3387 
LND  3199  3323  4335   3382   3999   4771  
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TSFIS protocol outperforms the other compared protocols on average for 
all three applications, as it has achieved the best overall results. 

A comparison of the different objective measures can be seen in  
Table 12. The results demonstrated that the maximum gain of TSFIS- 
GWO in FND, APL, and APR, is in Apps. 1, 2, and 3, respectively. 
Although in some cases, TSFIS-GWO has worse FND, APL, or APR than 
the compared methods, it outperforms all existing methods in all ap
plications in terms of the total fitness. For example, ACSA has better FND 
and worse reliability than TSFIS-GWO in App. 3, which results that the 
total fitness of TSFIS-GWO being a little bit more than that of ACSA. It 
clearly demonstrates the adaptability of TSFIS-GWO with the desired 
measures in each WBAN application, which can be re-tuned based on the 

specific requirements of the application. 
To aggregate the obtained results, the total fitness obtained by the 

different techniques in different applications can be summarized in  
Table 13. Furthermore, the improvement rate of the total fitness value 
obtained by TSFIS-GWO in each application compared to other protocols 
is given. As we have reported in Table 12, the compared methods have 
obtained better results in some cases (e.g., APL of FRNS-ER in App. 1, 
APR of ACSA in App. 2, and FND of ACSA in App. 3). Obviously, there is 
a trade-off between the different objectives, i.e., FND, APL, and APR. 
However, the TSFIS-GWO protocol outperforms all existing methods in 
all applications in terms of the total application-specific fitness value. 
Based on the improvement rates in Table 13, the gain of TSFIS-GWO in 

Fig. 14. Comparison of the number of functioning nodes obtained by different routing protocols.  

Fig. 15. Comparison of average path loss (dB) obtained by different routing protocols.  

Fig. 16. Comparison of average path reliability (%) obtained by different routing protocols.  
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the total fitness value (on average for all applications) is 67.3%, 32.6%, 
and 20.3%, as compared to ERRS, FRNS-ER, and ACSA, respectively. It 
clearly illustrates the tunability of the TSFIS-GWO protocol with the 
specific objectives in each application. 

5.5. Discussion 

In Section 5, we have justified the effectiveness of the proposed 
TSFIS-GWO protocol against the existing techniques in terms of the 
different performance metrics. To compare the different techniques 
from the time analysis point of view, the total time required for the 
offline tuning and online routing phases is provided in Table 14. The 
online routing time (response time) of each routing protocol has been 
computed as the mean duration from the moment routing requests are 
received to the generation of the routing solution by the routing pro
tocol. It should be emphasized that the existing classical/fuzzy heuristic 
and metaheuristic approaches don’t have any tuning step, and conse
quently, they do have not an offline tuning time. Although the proposed 
metaheuristic-driven TSFIS protocol consumes an extra time of around 
7 hours to tune the TSFIS model, this phase is done in an offline step 
once before applying the tuned TSFIS model for a new WBAN. There
fore, the time-consuming offline procedure not only does not boost any 
delay during the data transmission phase but also enables the TSFIS 
protocol with tunability and adaptability with the application-specific 
objectives. Besides, the results show that the online routing time of 
the proposed protocol is within the range of other classical/fuzzy heu
ristics (ERRS and FRNS-ER), which guarantees to provide JIT solutions 
in real-time applications. Although ACSA has obtained better results in 
some sub-objectives (such as the best APR in App. 2 and the best FND in 
App. 3), it is not tunable, and more importantly, suffers from the need 

for applying a time-consuming metaheuristic directly during the online 
routing phase. 

As previously mentioned, ERRS is a classical heuristic that employs 
two methods for CH selection and rotation to prolong the network 
lifetime and enhance communication reliability. On the other hand, 
FRNS-ER is a fuzzy heuristic that selects relay nodes using a FIS to 
establish energy-efficient and reliable routes. Additionally, ACSA is a 
metaheuristic-based routing protocol that determines data routing and 
relay node placement in WBANs. Since FRNS-ER utilizes a FIS for route 
construction instead of a crisp function like ERRS, it has outperformed 
ERRS in almost all scenarios, except for slightly inferior performance in 
terms of reliability. Furthermore, as demonstrated by the simulation 
results, the metaheuristic-based ACSA protocol exhibits superior per
formance in terms of FND and APR compared to the two heuristic-based 
techniques. However, due to the absence of a path loss-related strategy, 
the APL of ACSA is inferior to all other techniques. The outcomes 
demonstrate that the proposed TSFIS-GWO protocol outperforms all 
compared techniques in terms of achieving superior performance based 
on the application-specific metrics. Specifically, it possesses the advan
tages of adaptability and flexibility in dealing with new scenarios and 
changing circumstances. 

In summary, the proposed TSFIS-GWO model offers several advan
tages that stem from the combination of fuzzy heuristics and meta
heuristics, which are outlined below: 

• Real-time responsiveness (low response time) of the routing proto
col, due to applying a heuristic-based model (i.e., TSFIS) for online 
routing.  

• High solution quality, due to optimizing the routing protocol using 
the GWO metaheuristic algorithm.  

• Flexibility with multi-criteria fuzzy inputs.  
• Uncertainty handling and robustness to dynamic changes, which 

allows the model to adapt to changes in the network environment 
and continue to provide rapid routing solutions.  

• Multi-objective optimization by converting the multiple objectives 
into a weighted averaging formula, which enables the system to 
simultaneously optimize different objectives.  

• Adaptability to the application-specific requirements, as the TSFIS 
protocol can be re-optimized using GWO to suit the characteristics of 
a new WBAN.  

• Tunability with new scenarios, as an application-specific fitness 
function can be determined by the decision maker to meet specific 
requirements of the application. 

However, the proposed model encounters high complexity during 
the offline phase, which needs substantial computational resources and 
time for fine-tuning the routing protocol prior to its deployment in a new 
WBAN. As previously mentioned, the proposed routing protocol based 

Table 12 
Comparison of performance measures obtained by different routing protocols.  

Application Measure ERRS  
[7] 

FRNS-ER  
[30] 

ACSA  
[38] 

TSFIS- 
GWO 

App. 1 FND  528  1139  1658  2663 
APL (dB)  64.4  59.43  76.82  61.5 
APR (%)  78.3  77.56  80.16  80.45 
Total 
Fitness  

0.193  0.294  0.372  0.539 

App. 2 FND  528  1139  1658  1855 
APL (dB)  64.4  59.43  76.82  53.07 
APR (%)  78.3  77.56  80.16  78.81 
Total 
Fitness  

0.208  0.283  0.296  0.374 

App. 3 FND  528  1139  1658  1581 
APL (dB)  64.4  59.43  76.82  70.45 
APR (%)  78.3  77.56  80.16  82.74 
Total 
Fitness  

0.444  0.502  0.567  0.572  

Table 13 
Comparison of the total fitness and improvement rate (%) of TSFIS-GWO against the existing methods.  

Application Total Fitness Value Improvement % of TSFIS-GWO against: 

ERRS [7] FRNS-ER [30] ACSA [38] TSFIS-GWO ERRS [7] FRNS-ER [30] ACSA [38] 

App. 1  0.193  0.294  0.372  0.539  179  83.3  44.9 
App. 2  0.208  0.283  0.293  0.374  79.8  32.2  27.6 
App. 3  0.444  0.502  0.567  0.572  28.8  13.9  0.9  

Table 14 
Comparison of the running time for offline tuning [h] and online routing [s], on average in different applications.  

Phase Classical Heuristic Fuzzy Heuristic Metaheuristic Metaheuristic-Driven TSFIS (Proposed) 

ERRS [7] FRNS-ER [30] ACSA [38] GA PSO ACO AO GWO 

Offline Tuning [h] N/A N/A N/A  7.1  6.7  7.3  7  6.9 
Online Routing [s] 0.13 0.21 34  0.18  0.18  0.18  0.18  0.18  
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on the TSFIS model requires an offline optimization procedure, con
ducted once before programming into the processor unit of the sink node 
for a new WBAN scenario. Consequently, a limitation of the proposed 
methodology arises when confronted with real-world applications 
wherein network structures may undergo alterations after several 
rounds of network operation. In such scenarios, the TSFIS model cannot 
be re-fined during its ongoing operation within the same network. 
Although the tuned TSFIS model demonstrates adaptability to minor 
changes (e.g., node failures or deaths), significant alterations can 
diminish the performance of the pre-tuned model.Top of Form 

6. Conclusion 

This study has presented a learning model utilizing Takagi-Sugeno 
fuzzy inference system and grey wolf optimizer, namely TSFIS-GWO, 
as an adaptive real-time routing protocol for WBANs. The TSFIS-GWO 
protocol is a hybrid technique based on a heuristic-based online rout
ing and a metaheuristic-based offline tuning. The simulations over three 
WBANs have shown that the TSFIS-GWO protocol outperforms the 
existing heuristics and metaheuristics in terms of stability period, reli
ability, and path loss. Although the tuning procedure requires extra 
running time to perform GWO, it is performed in an offline scheme once 
before the protocol is applied for online applications, and thus, it does 
not boost any computational complexity and overhead within the online 
routing. Overall, the proposed method has the advantages of real-time 
responsiveness, high performance, flexibility, uncertainty handling, 
and adaptability with the application-specific measures defined by the 
decision-maker. 

Despite the advantages of the proposed method, it still possesses 
certain limitations that could be addressed and enhanced in future 
research endeavors. As a future research direction, some missing criteria 
such as temperature and other QoS measures can be added as extra in
puts to the fuzzy model. The proposed approach has been presented for 
data routing within a single WBAN (intra-WBAN routing), typically 
comprising only a few nodes. An intriguing avenue for future research 
lies in extending the proposed approach to larger-scale networks that 
encompass multiple WBANs, thereby incorporating both intra- and 
inter-WBAN routing problems. As another future work, newer meta
heuristics such as Red Fox Optimization (RFO) [65], Artificial Hum
mingbird Algorithm (AHA) [66], Prairie Dog Optimization (PDO) [67], 
and Fire Hawk Optimizer (FHO) [68], could be applied and evaluated to 
optimize the TSFIS model. Another limitation of the proposed routing 
protocol is its reliance on an offline tuning phase when introduced to 
new WBAN scenarios, rendering it unable to autonomously adjust to 
changes in the network structure during the online phase. An appealing 
solution to overcome this limitation is to integrate reinforcement 
learning, which can enable the routing protocol with adaptability and 
real-time responsiveness, while eliminating the need for 
time-consuming offline tuning phase for new scenarios. 
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[43] M. Żotkiewicz, M. Pióro, Exact approach to reliability of wireless mesh networks 
with directional antennas, Telecommun. Syst. 56 (1) (2014) 201–211. 

[44] R. Cerulli, R. De Donato, A. Raiconi, Exact and heuristic methods to maximize 
network lifetime in wireless sensor networks with adjustable sensing ranges, Eur. J. 
Oper. Res. 220 (1) (2012) 58–66. 

[45] M. Sohrabi, M. Zandieh, M. Shokouhifar, Sustainable inventory management in 
blood banks considering health equity using a combined metaheuristic-based 
robust fuzzy stochastic programming, Socio-Econ. Plan. Sci. 86 (2023) 101462. 

[46] X. Chen, H.F. Yan, Y.J. Zheng, M. Karatas, Integration of machine learning 
prediction and heuristic optimization for mask delivery in COVID-19, Swarm 
Evolut. Comput. 76 (2023) 101208. 

[47] H. Esmaeili, V. Hakami, B.M. Bidgoli, M. Shokouhifar, Application-specific 
clustering in wireless sensor networks using combined fuzzy firefly algorithm and 
random forest, Expert Syst. Appl. 210 (2022) 118365. 

[48] U. Kilic, E.S. Essiz, M.K. Keles, Binary anarchic society optimization for feature 
selection, Sci. Technol. 26 (3-4) (2023) 351–364. 

[49] A. Shokouhifar, M. Shokouhifar, M. Sabbaghian, H. Soltanian-Zadeh, Swarm 
intelligence empowered three-stage ensemble deep learning for arm volume 
measurement in patients with lymphedema, Biomed. Signal Process. Control 85 
(2023) 105027. 

[50] M. Shokouhifar, FH-ACO: Fuzzy heuristic-based ant colony optimization for joint 
virtual network function placement and routing, Appl. Soft Comput. 107 (2021) 
107401. 

[51] W. Jiang, Z. Wang, M. Feng, T. Miao, A survey of thermal-aware routing protocols 
in wireless body area networks (July), in: 2017 IEEE International Conference on 
Computational Science and Engineering (CSE) and IEEE International Conference 
on Embedded and Ubiquitous Computing (EUC), Vol. 2, IEEE, 2017, pp. 17–21 
(July). 

[52] P. Aryai, A. Khademzadeh, S.J. Jassbi, M. Hosseinzadeh, O. Hashemzadeh, 
M. Shokouhifar, Real-time health monitoring in WBANs using hybrid 
Metaheuristic-Driven Machine Learning Routing Protocol (MDML-RP), AEU-Int. J. 
Electron. Commun. 168 (2023) 154723. 

[53] W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An application-specific 
protocol architecture for wireless microsensor networks, IEEE Trans. Wirel. 
Commun. (2002) 660–670. 

[54] D.K. Rout, D. Das, S. Das, Channel models for inter-body communication in ultra 
wideband-based body area networks, Wirel. Pers. Commun. 125 (3) (2022) 
2819–2832. 

[55] Zhang, Y., Shao, Y., Luo, R., Xiong, L., & Zhang, J. (2023). Multiple Human 
Activities Classification Based on Dynamic On-Body Propagation Characteristics 
Using Transfer Learning. IEEE Internet of Things Journal. 

[56] M.A. Raayatpanah, A.A. Abyaneh, J. Elias, A. Trotta, Optimal reliable design of 
energy-efficient Wireless Body Area Networks, Internet Things 22 (2023) 100727. 

[57] E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic 
controller, Int. J. Man-Mach. Stud. 7 (1) (1975) 1–13. 

[58] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to 
modeling and control, IEEE Trans. Syst., Man, Cybern. 1 (1985) 116–132. 

[59] H. Ouifak, A. Idri, On the performance and interpretability of Mamdani and 
Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis, Sci. Afr. 20 
(2023) e01610. 

[60] C.A. Bojan-Dragos, R.E. Precup, S. Preitl, R.C. Roman, E.L. Hedrea, A.I. Szedlak- 
Stinean, GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for 
electromagnetic actuated clutch systems, IFAC-Pap. 54 (4) (2021) 189–194. 

[61] D.R. Chen, A real-time streaming control for quality-of-service coexisting wireless 
body area networks, Appl. Soft Comput. 68 (2018) 719–732. 

[62] M.H. Nasir, S.A. Khan, M.M. Khan, M. Fatima, Swarm intelligence inspired 
intrusion detection systems-a systematic literature review, Comput. Netw. 205 (14) 
(2022) 108708. 

[63] D. Połap, Neuro-heuristic analysis of surveillance video in a centralized IoT system, 
ISA Trans. 140 (2023) 402–411. 

[64] L. Abualigah, D. Yousri, M. Abd Elaziz, A.A. Ewees, M.A. Al-Qaness, A.H. Gandomi, 
Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. 
Eng. 157 (2021) 107250. 
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