1	SHORT-FORM PAPER
2	
3	Inhibition of LpxC increases antibiotic susceptibility in Acinetobacter
4	baumannii
5	
6	Meritxell García-Quintanilla, José M. Caro-Vega, Marina R. Pulido, Patricia Moreno-
7	Martínez, Jerónimo Pachón and Michael J. McConnell
8	
9	Unit of Infectious Diseases, Microbiology, and Preventive Medicine and Biomedical
10	Institute of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of
11	Sevilla, 41013, Sevilla, Spain.
12	
13	
14	
15	Author to whom correspondence should be addressed:
16	Michael J. McConnell
17	Unit of Infectious Disease, Microbiology, and Preventive Medicine
18	Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla
19	Avenida Manuel Siurot s/n, 41013 Sevilla, Spain
20	e-mail: mcconnell.mike75@gmail.com
21	Phone: +34 955923104
22	
23	Running Title: LpxC inhibition and antibiotic susceptibility
24	Key Words: Acinetobacter baumannii; antibiotic resistance; lipopolysaccharide; LpxC
25	

26 Abstract

27	LpxC inhibitors have generally shown poor in vitro activity against
28	Acinetobacter baumannii. We show that the LpxC inhibitor PF-5081090 inhibits lipid
29	A biosynthesis, as determined by silver staining and measurements of endotoxin levels,
30	and significantly increases cell permeability. The presence of PF-5081090 at 32 mg/L $$
31	increased susceptibility to rifampicin, vancomycin, azithromycin, imipenem and
32	amikacin, but had no effect on susceptibility to ciprofloxacin and tigecycline.
33	Potentiating existing antibiotics with LpxC inhibitors may represent an alternative
34	treatment strategy for multidrug resistant A. baumannii.
35	

37	The increasing number of infections caused by multidrug resistant Acinetobacter
38	baumannii warrants that novel treatment strategies are explored (1). Inhibitors of LpxC,
39	a zinc-dependent deacetylase that catalyzes the first committed step in the biosynthesis
40	of lipid A, have been identified and are currently being developed for use as
41	antimicrobial agents (2, 3). LpxC inhibitors have demonstrated potent antibacterial
42	activity against a number of Gram negative species including, Pseudomonas
43	aeruginosa, Escherichia coli and Klebsiella pneumoniae (3-6). However, these
44	inhibitors have been reported to have poor antimicrobial activity against A. baumannii
45	strains in vitro (3, 6, 7), which may be explained by the finding that lipopolysaccharide
46	(LPS) biosynthesis is not essential for viability in A. baumannii (8, 9). In spite of a lack
47	of in vitro antibacterial activity, a recent study has reported that LpxC inhibition can
48	contribute to A. baumannii clearance in vivo by enhancing bacterial
49	opsonophagocytosis and reducing inflammation (7). Importantly, in this study mice that
50	were treated with an LpxC inhibitor were completed protected from A. baumannii
51	infection (7). We recently reported that A. baumannii clinical isolates that acquire
52	resistance to colistin via the loss of LPS due to mutations in the lipid A biosynthesis
53	genes <i>lpxA</i> , <i>lpxC</i> and <i>lpxD</i> demonstrate increased cell permeability and increased
54	susceptibility to certain antibiotics (10). Based on these findings, we hypothesized that
55	pharmacologic inhibition of LPS biosynthesis in A. baumannii with an LpxC inhibitor
56	may similarly increase antibiotic susceptibility.
57	The A. baumannii reference strain ATCC 19606 and six clonally distinct,
58	multidrug resistant clinical isolates (Ab-84, Ab-108, Ab-167, Ab-176, Ab-7 and Ab-31)
59	that have been previously characterized were used (11, 12). IB010 is a colistin-
60	resistant, LPS-deficient derivative of A. baumannii ATCC 19606 which contains a
61	deletion (nucleotides 104-565) in the <i>lpxD</i> gene (13). PF-5081090 (also called LpxC-4;

62 Sigma) is a pyridone methylsulfone hydroxamate-based LpxC inhibitor that is63 commercially available (3, 6).

64	Checkerboard assays were performed in order to determine the concentrations
65	PF-5081090 in combination with azithromycin, rifampicin, and vancomycin that
66	inhibited growth of all seven strains included in the study. These antibiotics were
67	chosen for checkerboard assays as mutant strains deficient in LPS biosynthesis were
68	previously shown to have increased susceptibility to vancomycin, rifampicin, and
69	azithromycin (10). Fractional inhibitory concentration indices (FICI) were calculated as
70	previously described (14), and results were interpreted as follows: synergistic effect is
71	defined as FICI of ≤ 0.5 ; partial synergism as FICI > 0.5 < 1; additivity as FICI = 1;
72	indifference as FICI >1 \leq 4; and antagonism as FICI of more than 4. As shown in Table
73	1, PF-5081090 was synergistic with all antibiotic combinations for all strains tested.
74	Furthermore, the presence of 32 mg/L of PF-5081090 reduced MIC values for the
75	antibiotic tested ≥ 8 fold for all strains and antibiotics, except in the case of
76	azithromycin for strain Ab-84, which was diminished just two fold. Based on these
77	results, 32 mg/L of PF-5081090 was used for all subsequent studies.
78	We next wanted to characterize the effect of PF-5081090 on LPS biosynthesis in
79	A. baumannii. Overnight cultures of ATCC 19606 were diluted 50-fold in Mueller
80	Hinton broth in the absence and presence of 32 mg/L of PF-5081090. Growth was
81	monitored at 37 °C with shaking until reaching an OD_{600} of 0.5. LPS was extracted from
82	the bacteria resulting from 5 mL of each culture using the LPS Extraction Kit (iNtRON
83	biotechnology) following the manufacturer's instructions. A carbohydrate-specific
84	silver staining protocol was used to visualize LPS after separation of samples by SDS-
85	PAGE as described previously (15). As can be seen in Figure 1A, untreated ATCC
86	19606 cells showed abundant lipid A (lane 1), whereas ATCC 19606 grown in the

87	presence of 32 mg/L of PF-5081090 demonstrated a dramatic reduction in the presence
88	of lipid A (lane 2). IB010, an LPS- deficient derivative of ATCC 19606 which contains
89	a mutation in the <i>lpxD</i> gene (13), was used as a control and did not contain lipid A, as
90	expected (lane 3). To further characterize the ability of PF-5081090 to inhibit LPS
91	biosynthesis, endotoxin levels were measured in ATCC 19606 strain and four of the
92	multidrug resistant clinical isolates that had been grown in the presence (32 mg/L) or
93	absence of PF-5081090 using the QCL-1000 Limulus Amebocyte Lysate assay (Lonza)
94	according to the manufacturer's instructions. All strains demonstrated a reduction in
95	endotoxin levels after treatment with PF-5081090 compared to untreated cells (Table 2).
96	We previously demonstrated that A. baumannii mutants deficient in LPS due to
97	mutations in <i>lpxA</i> , <i>lpxC</i> or <i>lpxD</i> demonstrated increased membrane permeability (10).
98	To determine if a similar phenotype was produced with pharmacologic inhibition of
99	LpxC, cell permeability was characterized in the ATCC 19606 strain and four multidrug
100	resistant clinical isolates in the presence (32 mg/L) or absence of PF-5081090 using an
101	ethidium bromide accumulation assay as previously described (10). Briefly, bacterial
102	cells were treated as described above for measuring endotoxin levels, and aliquots of 95
103	μL of cells adjusted to an OD_{600} of 0.2 were incubated for 10 min at 37 °C.
104	Fluorescence (λ_{excite} , 530 nm; λ_{emit} , 600 nm) was measured at 60 min after the addition
105	of 5 μ L of ethidium bromide (final concentration 2 mg/L). The assay was performed in
106	triplicate samples. All strains showed significant increases in cell permeability in the
107	presence of PF-5081090 (Figure 1B).
108	We next determined if pharmacologic inhibition of LpxC with 32 mg/L of PF-
109	5081090 affected susceptibility to amikacin, azithromycin, ciprofloxacin, colistin,
110	imipenem, rifampicin, tigecycline and vancomycin for all strains included in the study
111	by determining MIC values by broth microdultion according to the recommendations of

112	the Clinical and Laboratory Standards Institute (16). As shown in Table 2, 32 mg/L of
113	PF-5081090 resulted in increased susceptibility to rifampicin in all strains, with all
114	strains demonstrating an MIC of ≤ 0.03 in the presence of the LpxC inhibitor,
115	representing a more than 1,000-fold reduction in the case of two strains demonstrating
116	rifampicin MICs of 32 mg/L in the absence of inhibitor. PF-5081090 also increased
117	susceptibility to vancomycin and azithromycin, resulting in reductions in MICs of
118	between 8- and 16-fold for all strains except Ab-84, which did not demonstrate
119	increased susceptibility to azithromycin in the presence of PF-5081090 (Table 2). A
120	mechanistic explanation for the lack of increased susceptibility to azithromycin
121	observed with strain Ab-84 is, at present, not clear. A more moderate effect was
122	observed with amikacin and imipenem, with all strains showing 2- to 8-fold increased
123	susceptibility. No changes in MIC values were observed with ciprofloxacin and
124	tigecycline. Interestingly, all strains were more resistant to colistin in the presence of
125	PF-5081090, presumably due to reduce levels of LPS, the major bacterial target for
126	colistin. Importantly, the MIC of PF-5081090 alone was 256 mg/L for all strains tested,
127	which is in agreement with results from previous studies describing high MIC values for
128	A. baumannii with LpxC inhibitors (3, 6, 7).
129	To further characterize the ability of PF-5081090 to increase susceptibility to
130	rifampicin, vancomycin and azithromycin, time-kill assays were carried out using the
131	ATCC 19606 strain. Overnight cultures of the ATCC 19606 strain were adjusted to a
132	concentration of 5 x 10^5 cfu/mL in Mueller-Hinton broth with the indicated
133	concentrations of rifampicin, vancomycin or azithromycin both in the presence or
134	absence of 32 mg/L of PF-5081090. Growth at 37 °C was monitored by quantitative
135	plating of aliquots taken at 0, 2h, 4h, 8h, 12h, 24h and 48h. The assay was performed in
136	triplicate with independent cultures. As can be seen in Figure 1C, ATCC 19606 cultured

in the presence of subinhibitory concentrations of rifampicin (0.03 mg/L), vancomycin

138 (32 mg/L), and azithromycing (0.125 mg/L) grew similarly to untreated cultures.

However, when PF-5091080 (32 mg/L) was included in the cultures together with these

140 antibiotics at the same concentrations, significant bacterial killing was observed.

141 Notably, in the case of azithromycin, regrowth was observed after the initial bactericidal

142 effect (Figure 1C). The presence of 32 mg/L of PF-5081090 alone did not affect the

143 growth of ATCC 19606 (data not shown).

The results presented here indicate that, although LpxC inhibition alone does not 144 145 result in high level in vitro antibacterial activity in A. baumannii, it can increase 146 susceptibility to certain antibiotics. Given a recent study demonstrating that treatment 147 with an LpxC inhibitor alone can afford protection against A. baumannii infection (7), characterizing the effect LpxC inhibition in combination with other antibiotics in 148 149 experimental models of infection may be of interest. The increased susceptibility to 150 rifampicin that is observed upon inhibition of LpxC was especially dramatic, as MIC values for all strains were at the lower limit of concentrations used in the study (≤ 0.03 151 mg/L). The results obtained with vancomycin are also of potential interest since this 152 antibiotic is traditionally used for the treatment of Gram positive bacterial infections 153 due to the intrinsic resistance to vancomycin seen with most Gram negative species. 154 These results are in line with previous findings describing synergism between 155 vancomycin and colistin, an antibiotic that also produces bacterial membrane damage, 156 157 in A. baumannii (17). The increased cell permeability observed upon inhibition of 158 LpxC (Figure 1B) make it tempting to speculate that the increased antibiotic 159 susceptibility is, at least in part, due to the increased permeability of the bacterial 160 membrane. The results presented here are in agreement with our recently published 161 findings demonstrating that strains deficient in LPS biosynthesis due to mutations in

- 162 *lpxA*, *lpxC* and *lpxD* have increased susceptibility to certain antibiotics (10). Taken
- together, these studies indicate that LPS loss, whether it is due to mutation or
- 164 pharmacologic inhibition, can increase antimicrobial susceptibility to certain antibiotics
- 165 in *A. baumannii*.
- 166

168 Acknowledgements

- 169 JP and MJM own stock in the biotechnology company Vaxdyn, S.L. Vaxdyn S.L. had
- 170 no role in the funding, planning, execution or analysis of this study. The other authors
- 171 declare no potential conflicts of interest.
- 172

174 **References**

175	1.	McConnell MJ, Actis L, Pachon J. 2013. Acinetobacter baumannii: human
176		infections, factors contributing to pathogenesis and animal models. FEMS
177		Microbiol Rev 37: 130-155.
178	2.	Barb AW, Zhou P. 2008. Mechanism and inhibition of LpxC: an essential zinc-
179		dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol
180		9: 9-15.
181	3.	Tomaras AP, McPherson CJ, Kuhn M, Carifa A, Mullins L, George D,
182		Desbonnet C, Eidem TM, Montgomery JI, Brown MF, Reilly U, Miller AA,
183		O'Donnell JP. 2014. LpxC inhibitors as new antibacterial agents and tools for
184		studying regulation of lipid A biosynthesis in Gram-negative pathogens. MBio
185		5: e01551-01514.
186	4.	Actis LA, Tolmasky ME, Crosa LM, Crosa JH. 1993. Effect of iron-limiting
187		conditions on growth of clinical isolates of Acinetobacter baumannii. J. Clin.
188		Microbiol. 31: 2812-2815.
189	5.	Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che
190		Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M,
191		Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S,
192		Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI,
193		Mullins L, Noe MC, O'Donnell J, Penzien J, Plummer MS, Price LM,
194		Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG.
195		2012. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J
196		Med Chem 55: 914-923.
197	6.	Montgomery JI, Brown MF, Reilly U, Price LM, Abramite JA, Arcari J,
198		Barham R, Che Y, Chen JM, Chung SW, Collantes EM, Desbonnet C,

199		Doroski M, Doty J, Engtrakul JJ, Harris TM, Huband M, Knafels JD,
200		Leach KL, Liu S, Marfat A, McAllister L, McElroy E, Menard CA, Mitton-
201		Fry M, Mullins L, Noe MC, O'Donnell J, Oliver R, Penzien J, Plummer M,
202		Shanmugasundaram V, Thoma C, Tomaras AP, Uccello DP, Vaz A, Wishka
203		DG. 2012. Pyridone methylsulfone hydroxamate LpxC inhibitors for the
204		treatment of serious gram-negative infections. J Med Chem 55:1662-1670.
205	7.	Lin L, Tan B, Pantapalangkoor P, Ho T, Baquir B, Tomaras A,
206		Montgomery JI, Reilly U, Barbacci EG, Hujer K, Bonomo RA, Fernandez
207		L, Hancock RE, Adams MD, French SW, Buslon VS, Spellberg B. 2012.
208		Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by
209		modulating inflammation and enhancing phagocytosis. MBio 3.
210	8.	Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. 2011. Insertion
211		sequence ISAba11 is involved in colistin resistance and loss of
212		lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother
213		55: 3022-3024.
214	9.	Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T,
215		Henry R, Crane B, St Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce
216		JD. 2010. Colistin resistance in Acinetobacter baumannii is mediated by
217		complete loss of lipopolysaccharide production. Antimicrob Agents Chemother
218		54: 4971-4977.
219	10.	Garcia-Quintanilla M, Carretero-Ledesma M, Moreno-Martinez P, Martin-
220		Pena R, Pachon J, McConnell MJ. 2015. Lipopolysaccharide loss produces
221		partial colistin dependence and collateral sensitivity to azithromycin, rifampicin
222		and vancomycin in Acinetobacter baumannii. Int J Antimicrob Agents 46:696-
223		702.

224	11.	Fernandez-Cuenca F, Tomas-Carmona M, Caballero-Moyano F, Bou G,
225		Martinez-Martinez L, Vila J, Pachon J, Cisneros JM, Rodriguez-Bano J,
226		Pascual A. 2013. [In vitro activity of 18 antimicrobial agents against clinical
227		isolates of Acinetobacter spp.: multicenter national study GEIH-REIPI-Ab
228		2010.]. Enferm Infecc Microbiol Clin.
229	12.	Garcia-Quintanilla M, Pulido MR, Moreno-Martinez P, Martin-Pena R,
230		Lopez-Rojas R, Pachon J, McConnell MJ. 2014. Activity of host
231		antimicrobials against multidrug-resistant Acinetobacter baumannii acquiring
232		colistin resistance through loss of lipopolysaccharide. Antimicrob Agents
233		Chemother 58: 2972-2975.
234	13.	Garcia-Quintanilla M, Pulido MR, Pachon J, McConnell MJ. 2014.
235		Immunization with lipopolysaccharide-deficient whole cells provides protective
236		immunity in an experimental mouse model of Acinetobacter baumannii
237		infection. PLoS One 9:e114410.
238	14.	Drago L, De Vecchi E, Nicola L, Gismondo MR. 2007. In vitro evaluation of
239		antibiotics' combinations for empirical therapy of suspected methicillin resistant
240		Staphylococcus aureus severe respiratory infections. BMC Infect Dis 7:111.
241	15.	Buendia-Claveria AM, Moussaid A, Ollero FJ, Vinardell JM, Torres A,
242		Moreno J, Gil-Serrano AM, Rodriguez-Carvajal MA, Tejero-Mateo P,
243		Peart JL, Brewin NJ, Ruiz-Sainz JE. 2003. A purL mutant of Sinorhizobium
244		fredii HH103 is symbiotically defective and altered in its lipopolysaccharide.
245		Microbiology 149: 1807-1818.
246	16.	Clinical and Laboratory Standards Institute. Methods for dilution
247		antimicrobial susceptibility tests for bacteria that grow aerobiaclly:
248		approved standard-ninth edition. Document M07-A9. Wayne P.

249	17.	Gordon NC, Png K, Wareham DW. 2010. Potent synergy and sustained
250		bactericidal activity of a vancomycin-colistin combination versus multidrug-
251		resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother
252		54: 5316-5322.
253		
254		
255		
256		

Table 1. Fractional inhibitory concentration indices for azithromycin, rifampicin and

Strain	FICI AZM + In	FICI RIF + In	FICI VAN +In
ATCC 19606	0.25 (1/8 MIC AZM + 1/8 MIC PF)	0.15 (1/8 MIC AZM + 1/32 MIC PF)	0.18 (1/8 MIC AZM + 1/16 MIC PF)
Ab-84	0.37 (1/8 MIC AZM + 1/4 MIC PF)	0.15 (1/8 MIC AZM + 1/32 MIC PF)	0.25 (1/8 MIC AZM + 1/8 MIC PF)
Ab-108	0.25 (1/8 MIC AZM + 1/8 MIC PF)	0.14 (1/8 MIC AZM + 1/64 MIC PF)	0.25 (1/8 MIC AZM + 1/8 MIC PF)
Ab-167	0.25 (1/8 MIC AZM + 1/8 MIC PF)	0.15 (1/8 MIC AZM + 1/32 MIC PF)	0.25 (1/8 MIC AZM + 1/8 MIC PF)
Ab-176	0.25 (1/8 MIC AZM + 1/8 MIC PF)	0.14(1/8 MIC AZM + 1/64 MIC PF)	0.25(1/8 MIC AZM + 1/8 MIC PF)
Ab-7	0.18 (1/8 MIC AZM + 1/16 MIC PF)	0.18 (1/8 MIC AZM + 1/16 MIC PF)	0.18 (1/8 MIC AZM + 1/16 MIC PF)
Ab-31	0.18 (1/8 MIC AZM + 1/16 MIC PF)	0.15 (1/8 MIC AZM + 1/32 MIC PF)	0.18 (1/8 MIC AZM + 1/16 MIC PF)

vancomycin in combination with the LpxC inhibitor PF-5081090.

259 FICI: Fractional Inhibitory Concentration Index; AZM: Azithromycin; RMP:

260 Rifampicin; VAN: Vancomycin; PF:PF-5081090; In: PF-5081090

	EU	Minimum inhibitory concentration (mg/L) in the absence (-In) and presence (+In) of 32 mg/L of PF-5081090 (In)																
	Fold	AN	ИK	AZ	ZM	С	IP	CS	ST	IP	M	F	RIF	T	GC	V	AN	
Strain	change	-In	+In	-In	+In	-In	+In	-In	+In	-In	+In	-In	+In	-In	+In	-In	+In	In
ATCC 19606	8.4	2	1	0.5	0.125	0.125	0.125	0.125	2	1	0.25	2	≤0.03	0.06	0.125	128	8	256
Ab-84	7.4	8	2	64	64	128	128	0.06	0.25	128	64	2	≤0.03	0.5	0.5	128	16	256
Ab-108	5.5	256	64	16	2	32	32	0.06	0.5	256	64	2	≤0.03	0.5	0.5	128	16	256
Ab-167	6.5	256	64	16	2	64	64	0.125	2	256	64	4	≤0.03	1	0.5	128	16	256
Ab-176	3.5	256	64	16	2	64	64	0.25	0.5	256	64	4	≤0.03	0.5	0.5	128	16	256
Ab-7	ND	16	8	64	4	64	64	0.125	1	16	4	32	≤0.03	0.5	0.5	256	32	256
Ab-31	ND	64	8	16	1	32	32	0.125	2	32	4	32	≤0.03	0.25	0.25	256	16	256

262 Table 2. Minimum Inhibitory Concentrations of *A. baumannii* strains in the absence and presence of PF-5081090. MDR: multidrug resistant. EU:

263 Endotoxic Units. AMK: amikacin; AZM: azithromycin; CIP: ciprofloxacin; CST: colistin; IPM: imipenem; RIF: rifampicin; TGC: tigecycline; VAN:

264 vancomycin; In: PF-5081090; ND: Not Determined.

266 Figure Legend

- 267 (A) Lipid A detection after silver staining. Lane 1: ATCC 19606; Lane 2: ATCC 19606
- treated with 32 mg/L of PF-5081090; Lane 3: IB010. (B) Cell permeability of A.
- 269 *baumannii* strains treated (white bars) with 32 mg/L of PF-5081090 or left untreated
- 270 (black bars) determined by measuring accumulation of ethidium bromide into the cell.
- 271 This experiment was performed by triplicate. p=0.01; p=0.006; Student's t-test. (C)
- Time-kill curves of combinations with PF-5081090 in ATCC 19606. Growth of ATCC
- 273 19606 was measured in MHB (circles), in the presence (squares) of the antibiotics
- rifampicin (0.03 mg/L), vancomycin (32 mg/L) or azithromycin (0.125 mg/L) and in the
- presence of the antibiotic and 32 mg/L of PF-5081090 (triangles). The assay was
- 276 performed in triplicate with independent cultures.

