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Lagrangian models present several advantages over Eulerian models to simulate the transport of radionuclides 
in the aquatic environment in emergency situations. A radionuclide release is simulated as a number of particles 
whose trajectories are calculated along time and thus these models do not require a spatial discretization 
(although it is always required in time). In this paper we investigate the dependence of a Lagrangian model 
output with the grid spacing which is used to calculate concentrations from the final distribution of particles, 
with the number of particles in the simulation and with the interpolation schemes which are required because 
of the discrete nature of the water circulation data used to feed the model. Also, a Lagrangian model may 
describe the exchanges of radionuclides between phases (liquid and solid), which is done in terms of transition 
probabilities. The dependence of these probabilities with time step is analyzed as well. It was found that the 
optimum grid size used to calculate concentrations should be carefully checked, and that temporal interpolation 
is more significant than spatial interpolation to obtain a more accurate solution. A method to estimate the number 
of particles required to have a certain accuracy level is proposed. Finally, it was found that for low sediment 
concentrations and small radionuclide 𝑘𝑑 , exact equations for the transition probabilities should be used; and 
that phase transitions introduce a stability condition as in Eulerian models.
1. Introduction

Generally speaking, two types of transport models are applied for 
simulating the transport of radionuclides in the aquatic environment: 
Eulerian and Lagrangian models (Periáñez et al., 2019a). Eulerian mod-

els are based on the solution of a differential equation to obtain the 
temporal evolution of the radionuclide concentration in water over the 
domain of interest. A radionuclide release is simulated by a number 
of particles in a Lagrangian model. The trajectory followed by each 
particle is calculated along the simulation time and, finally, the concen-

tration of radionuclides is obtained from the number of particles per 
water volume unit. Many examples of Lagrangian models applied to ra-
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dionuclide transport are found in literature (Schonfeld, 1995; Harms et 
al., 2000; Periáñez and Elliott, 2002; Periáñez, 2005a; Nakano et al., 
2010; Kawamura et al., 2011; Kobayashi et al., 2007; Min et al., 2013; 
Periáñez et al., 2016, among many others).

Lagrangian models are specially well suited to asses radionuclide 
concentrations after an accidental release, since they do not introduce 
numerical diffusion and thus can handle the very high concentration 
gradients between contaminated and clean water which would be ex-

pected after an acute radionuclide release into the sea. Actually, numer-

ical diffusion is one of the disadvantages of Eulerian models. It consists 
of (see for instance Kowalik and Murty, 1993) an artificial smoothing 
of concentration gradients produced by the numerical scheme used to 
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solve the advection terms in the differential equation describing the 
time evolution of radionuclide concentrations in an Eulerian model.

In addition, Lagrangian computations can be significantly faster than 
in Eulerian models when the contaminated area initially is a small part 
of the whole computational domain and if the number of particles in the 
simulation can be not too large (typically a few tens of thousands). This 
is an advantage in emergency modelling, when a fast response must be 
forwarded to decision–makers. Also, a real point source may be defined 
in Lagrangian models: the initial patch size is defined by the grid spatial 
resolution in Eulerian models. Consequently, lower peak concentrations 
are expected if Eulerian models are used.

Finally, the numerical solution of a differential equation required 
in Eulerian models implies the verification of several stability condi-

tions to guarantee a stable solution (Kowalik and Murty, 1993). This 
limits the maximum time step which can be used in an Eulerian model 
and, thus, can significantly increase the computational time. Moreover, 
Lagrangian algorithms are easily parallelized, making it possible to cal-

culate with ∼ 107 particles (Suh et al., 2021).

However, water circulation must be known of course in both Eule-

rian and Lagrangian models to evaluate advection and diffusion. Water 
currents are obtained from an ocean circulation model and conse-

quently consist of discrete data. Currents are specified at the nodes of 
the computational grid used in the hydrodynamic model and at discrete 
time intervals. Thus, interpolation schemes in time and space must be 
used by the Lagrangian model in order to evaluate the water velocity 
at the exact particle position and at the desired moment. Also, a grid 
is required in the Lagrangian model to calculate the radionuclide con-

centration from the number of particles per water volume unit. Usually, 
for computational economy, this grid is the same used to define water 
currents (the same grid used in the hydrodynamic model), but can be 
defined arbitrarily. It should be noted, however, that methods which do 
not use a grid (e.g. kernel methods) can also be applied to the calcula-

tion of concentrations (Lynch et al., 2015; page 290).

Radionuclides are, in general, transported in dissolved and solid 
phases. Exchanges of radionuclides between the liquid and solid phases 
occur in a continuous (and reversible) form along the simulated time. 
These processes are easily described in Eulerian models, since only 
a few additional terms should be added to the differential transport 
(advection–diffusion) equation (see details for instance in Periáñez, 
2005b). However, in a Lagrangian model we are working with indi-

vidual particles which can be either in dissolved form or in the solid 
phase. It is necessary to decide, each time step along the simulation, if 
each particle is changing its state or not. This is done using a stochastic 
approach. The phase transition probabilities in particle tracking mod-

els can be described as Markov processes in systems which jump from 
one state to another in a continuous time. Therefore, it is relevant to 
estimate the dependence of the transition probabilities values with the 
time step used to integrate the model.

The International Atomic Energy Agency (IAEA) has launched sev-

eral programs with the objectives of, among others, testing and improv-

ing numerical models which simulate the transport of radionuclides in 
the environment, as EMRAS, EMRAS–II, MODARIA and MODARIA–II, 
which is the latest effort. Interest in the marine environment increased 
after Fukushima Dai–ichi NPP accident in 2011. The marine working 
group in MODARIA and MODARIA–II was involved in radionuclide 
transport modelling for the marine environment; modelling Fukushima 
releases in the Pacific Ocean was one of the addressed problems (Per-

iáñez et al., 2015, 2019b IAEA, 2019). Lagrangian models were applied 
to this problem and model–model and model–data comparisons were 
carried out (see references above). However, it is difficult to evalu-

ate the causes of the differences in results between models in such a 
complex natural environmental system where we have spatio–temporal 
changing current fields with the generation of eddies, interactions of 
radionuclides with sediments and a complex source term (variable di-

rect releases from Fukushima into the ocean and deposition from the 
2

atmosphere over a large portion of the ocean). Consequently, very sim-
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ple radionuclide transport problems were posed with the objective of 
investigating the dependence of a Lagrangian transport model to grid 
spacing, number of particles, interpolation schemes and dependence 
of phase transition probabilities with the time step. This could help 
to understand the functioning of the most basic aspects of Lagrangian 
transport models, which in turn can lead to improved models which 
could be used in the future.

A brief description of Lagrangian techniques is included in sec-

tions 2.1 and 2.2. The simple 1D transport problems used for the 
analysis are presented in section 2.3. The dependence of results with 
grid spacing and number of particles is analyzed in section 3.1, and the 
interpolation schemes in section 3.2. The dependence of phase transi-

tion probabilities with the time step is studied in section 3.3. Finally, 
the one–dimensional scavenging problem was considered in section 3.4, 
which combines one–dimensional transport and phase transitions. This 
realistic example is used to study the limitation to the time step intro-

duced in Lagrangian models by phase transitions.

2. Methods

2.1. Lagrangian transport models

In Lagrangian models the released activity is represented by a num-

ber of particles, each one equivalent to a given amount of activity (Bq) 
as mentioned above. The path followed by each particle is calculated 
and radionuclide concentrations are evaluated from the number of par-

ticles per volume unit. The equations describing the change in a particle 
position over each time increment 𝑑𝑡 are given by the Itô (Protter, 2004) 
stochastic differential equations:

𝑑𝑥 = 𝑢𝑑𝑡+
𝜕𝐾ℎ

𝜕𝑥
𝑑𝑡+

√
2𝐾ℎ𝑑𝑊𝑥, (1)

𝑑𝑦 = 𝑣𝑑𝑡+
𝜕𝐾ℎ

𝜕𝑦
𝑑𝑡+

√
2𝐾ℎ𝑑𝑊𝑦, (2)

𝑑𝑧 =𝑤𝑑𝑡+
𝜕𝐾𝑣

𝜕𝑧
𝑑𝑡+

√
2𝐾𝑣𝑑𝑊𝑧, (3)

where 𝑢, 𝑣 and 𝑤 are velocity components along coordinate axis (𝑥, 𝑦, 𝑧); 
and 𝑊𝑥, 𝑊𝑦, 𝑊𝑧 are independent components of the stochastic motion, 
which have zero mean and variance 𝑑𝑡 (𝑑𝑊 2

𝑥
= 𝑑𝑊 2

𝑦
= 𝑑𝑊 2

𝑧
= 𝑑𝑡). 

For a finite time step Δ𝑡 they can be simulated as Δ𝑊𝑥 =
√
Δ𝑡𝑅𝑥, 

Δ𝑊𝑦 =
√
Δ𝑡𝑅𝑦, Δ𝑊𝑧 =

√
Δ𝑡𝑅𝑧, where (𝑅𝑥, 𝑅𝑦, 𝑅𝑧) are normally dis-

tributed random variables having zero mean and standard deviation 
one. In practice they can be obtained, in FORTRAN for instance, from 
the random_number function. Derivatives of the diffusion coefficients 
above prevent the artificial accumulation of particles in regions of low 
diffusivity (Proehl et al., 2005; Lynch et al., 2015). Zero or constant dif-

fusion coefficients are used in the present work, thus these term are not 
relevant.

As mentioned before, although a grid is not required to evaluate dif-

fusion and advection, it is generally used to calculate the radionuclide 
concentrations from the position of particles (although there are also 
meshless methods for the calculation of concentration as already men-

tioned): grid cells are defined, then the number of particles inside each 
cell is counted and the resulting concentration 𝐶 is the total activity 
within the cell divided by the cell volume:

𝐶 = 1
𝑉

𝑁∑
𝑖=1

𝑅𝑖 (4)

where 𝑅𝑖 is the number of Bq equivalent to particle 𝑖, 𝑁 is the number 
of particles within the considered cell and 𝑉 is its volume.

While there is no stability criterion equivalent to the Eulerian CFL 
(Courant–Friedrichs–Levy) condition (Kowalik and Murty, 1993) in the 
particle–tracking calculations, it is wise to ensure that in a realistic ap-

plication of a Lagrangian model each particle does not move through 

a distance that exceeds the grid spacing (used by the hydrodynamic 
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Fig. 1. Graph of phase transitions in a three–state system.

model to generate water currents) during each time–step. Thus, maxi-

mum time step is given by:

Δ𝑡 <
Δ𝑥

𝑢𝑚𝑎𝑥

(5)

where Δ𝑥 is grid spacing and 𝑢𝑚𝑎𝑥 is the maximum water velocity.

The review paper Periáñez et al. (2019a) discusses typical spatial 
and temporal resolutions of models, which depend on the particular 
problem to be addressed.

2.2. The master equations to describe phase transitions

Consider a three phase system where exchanges of radionuclides 
between the dissolved state and the solid matter are described by kinetic 
coefficients 𝑘1 and 𝑘2, and where radionuclide decay constant is 𝑘3. 
The activities in dissolved and solid matter phases are 𝐴1 and 𝐴2 (Bq), 
respectively, whereas 𝐴3 represents lost activity due to the radioactive 
decay (𝐴1 + 𝐴2 + 𝐴3 = 𝐜𝐨𝐧𝐬𝐭). The corresponding equations describing 
this system are:

𝜕𝐴1
𝜕𝑡

= −𝑘1𝐴1 + 𝑘2𝐴2 − 𝑘3𝐴1, (6)

𝜕𝐴2
𝜕𝑡

= 𝑘1𝐴1 − 𝑘2𝐴2 − 𝑘3𝐴2, (7)

𝜕𝐴3
𝜕𝑡

= 𝑘3𝐴1 + 𝑘3𝐴2, (8)

where 𝑡 is time. The activity in the considered volume can be rep-

resented as consisting of 𝑁 identical particles being in three phases 
𝑆1, 𝑆2 and 𝑆3 as shown in Fig. 1. Then the activity is distributed in 
these possible phases as 𝑝1𝑁 , 𝑝2𝑁 and 𝑝3𝑁 , where 𝑝1, 𝑝2 and 𝑝3 are 
the probabilities of radionuclide particles to be in each corresponding 
phase. Then equations (6)-(8) can be rewritten in form of the differen-

tial equations for the probability evolutions which describe the Markov 
processes in systems which jump from one state to another in contin-

uous time. These equations (master equations) are equivalent to the 
Kolmogorov forward equations. They are written as:

𝜕𝑝1
𝜕𝑡

= −𝑘1𝑝1 + 𝑘2𝑝2 − 𝑘3𝑝1, (9)

𝜕𝑝2
𝜕𝑡

= 𝑘1𝑝1 − 𝑘2𝑝2 − 𝑘3𝑝2, (10)

𝜕𝑝3
𝜕𝑡

= 𝑘3𝑝1 + 𝑘3𝑝2. (11)

The solution of this system of equations with initial conditions 
𝑝1(0), 𝑝2(0) and 𝑝3(0) = 0 is:

𝑝1(𝑡) =
𝑘2

𝑘1 + 𝑘2

×
(

𝑘1𝑝1(0) − 𝑘2𝑝2(0)
𝑘2

𝑒−(𝑘1+𝑘2+𝑘3)𝑡 + (𝑝1(0) + 𝑝2(0))𝑒−𝑘3𝑡
)

(12)

𝑘1
3

𝑝2(𝑡) =
𝑘1 + 𝑘2
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×
(

𝑘2𝑝2(0) − 𝑘1𝑝1(0)
𝑘1

𝑒−(𝑘1+𝑘2+𝑘3)𝑡 + (𝑝1(0) + 𝑝2(0))𝑒−𝑘3𝑡
)

(13)

𝑝3(𝑡) = 1 − 𝑒−𝑘3𝑡. (14)

The transition probability 𝑝𝑖𝑗 defines the probability that a particle 
in state 𝑖 is transferred to state 𝑗 during a time step Δ𝑡. These transition 
probabilities are used in Lagrangian models to decide if the state change 
occurs or not. Thus, for each particle and time step a independent ran-

dom number 𝑅𝐴𝑁 between 0 and 1 is generated. If 𝑅𝐴𝑁 ≤ 𝑝𝑖𝑗 then the 
change from 𝑖 to 𝑗 occurs. In practice, a label is assigned to each par-

ticle, which identifies its state. The label is changed accordingly to its 
state changes.

The transition probabilities 𝑝1,2 and 𝑝1,3 during the time step Δ𝑡 are 
obtained from (12)-(14) using the initial conditions 𝑝1(0) = 1, 𝑝2(0) =
0, 𝑝3(0) = 0 and relationship (19), shown below. They are written in 
non–dimensional form as

𝑝1,2 = 𝑝2(Δ𝑡) =
𝑚𝑘𝑑

𝑚𝑘𝑑 + 1

×
[
exp

(
−

𝑘3
𝑘1

Δ𝑡∗
)
− exp

(
−
(
1 + 1

𝑚𝑘𝑑

+
𝑘3
𝑘1

)
Δ𝑡∗

)]
, (15)

𝑝1,3 = 1 − exp
(
−

𝑘3
𝑘1

Δ𝑡∗
)

, (16)

where Δ𝑡∗ = 𝑘1Δ𝑡. Additionally, the transition probabilities 𝑝2,1 and 𝑝2,3
during the time step Δ𝑡 are obtained as

𝑝2,1 = 𝑝1(Δ𝑡) = 1
𝑚𝑘𝑑 + 1

×
[
exp

(
−

𝑘3
𝑘1

Δ𝑡∗
)
− exp

(
−
(
1 + 1

𝑚𝑘𝑑

+
𝑘3
𝑘1

)
Δ𝑡∗

)]
, (17)

𝑝2,3 = 1 − exp
(
−

𝑘3
𝑘1

Δ𝑡∗
)

. (18)

To arrive to this form of the equations, the coefficient 𝑘2 is writ-

ten as a function of 𝑘1 and the radionuclide distribution coefficient 𝑘𝑑

(m3kg−1). The following relation holds (Periáñez et al., 2018):

𝑘𝑑 = 1
𝑚

𝑘1
𝑘2

, (19)

where 𝑚 is the concentration of sediment (kg m−3). In practical ap-

plications it is more convenient to fix 𝑘2, since Nyffeler et al. (1984)

found small differences in this parameter between elements. This coef-

ficient 𝑘2 is usually defined as 𝑘2 = 1.16 × 10−6 s−1, which was obtained 
from the experiments in Nyffeler et al. (1984). This value has been used 
in many previous published modelling works [see review in Periáñez 
et al. (2019a)] and also it was applied to different chemical elements. 
𝑘𝑑 values can be obtained from the compilation given in IAEA (2004). 
The sediment concentration 𝑚 obviously depend on the site where the 
model is applied. Thus, 𝑘1 is derived from 𝑚, 𝑘2 and 𝑘𝑑 using equation 
(19) and then included in the transition probabilities equations above.

Once a particle has decayed (it is in state 𝑆3) it is removed from the 
computations, thus there are not transition probabilities 𝑝31 and 𝑝32. 
The coefficient 𝑘3 is the radioactive decay constant of the radionuclide: 
𝑘3 = 𝜆.

2.3. Physical setup of the problems

Two one–dimensional cases are considered, horizontal (longitudi-

nal) transport in a tidal channel and a scavenging process in a water 
column. They are described in the following two sections.

2.3.1. Transport in a channel

A simple 1D problem was considered, consisting of radionuclide 
transport along a channel with constant geometry, to evaluate model 
dependence with grid spacing and interpolation schemes. A tide propa-
gates in the channel and water currents and depths change in time and 
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Fig. 2. Water velocities along the tidal channel at three times.

space. Channel width is not relevant since the exercises are 1D, thus 
results are averaged over the channel width.

The tidal channel is 100 km long. The period of the tide is 12 hours 
and its amplitude 𝐻0 = 0, 25 m. The channel depth is constant and equal 
to 𝐷 = 1 m. From the analytical solution of the 1D wave equation water 
velocities and surface elevations along the channel can be calculated 
at any time and position. Equations for wave propagation in a non–

rotating system are the following (Pugh, 1987):

𝑧(𝑥, 𝑡) =𝐻0 cos(𝑘𝑥−𝜔𝑡) (20)

𝑢(𝑥, 𝑡) =𝐻0(𝑔∕𝐷)1∕2 cos(𝑘𝑥−𝜔𝑡) (21)

where 𝑧 is surface elevation, 𝑢 is water velocity, 𝑔 is gravity; and angular 
speed 𝜔 and wave number 𝑘 are related through the wave speed 𝑐:

𝑐 = 𝜔

𝑘
=
√

𝑔𝐷 (22)

These equations are used to generate data, which are saved in 12 files 
(one per hour) to be read by the transport codes. The channel is divided 
into 1000 cells (segments in this case) with Δ𝑥 = 100 m. Each file con-

tains the water velocity and elevation in the center of each cell from 
equations given above. In addition to the tide, a net residual current 
(net transport) to the right, equal to 0,1 m/s, is included. The 12 files 
contain velocity and elevation profiles along the channel at 𝑡 = 1 h, 𝑡 = 2
h etc. The sequence is repeated to simulate as many days as required. As 
an example, three of the velocity profiles along the channel are given in 
Fig. 2. It may be seen that the tide propagates towards the right side of 
the channel; this way a consistent pattern in which currents change in 
time and space is produced. It is considered that the channel is open at 
both left and right sides, thus if a particle leaves the channel it is simply 
removed from the computation.

A constant horizontal (longitudinal) diffusion coefficient equal to 
1 m2/s is considered. Instantaneous mixing in the transverse direction 
is assumed; in addition vertical diffusion is not added. Two problems 
are treated: a single–particle movement and deposition of radionuclides 
over a segment of the channel:

1. A single particle is released on the surface (although this is not 
relevant) at position 𝑥 = 10 km from the left side of the channel 
at 𝑡 = 0. Its position is calculated during 6 tidal cycles (72 hours). 
Horizontal diffusion is not considered in this case.

2. An initial deposition of 100 Bq/m2 occurs on the first 500 m of the 
channel over a 1 m thick surface layer. The endpoint of the calcula-

tion is to provide a profile of radionuclide concentration along the 
channel length surface after 6 tidal cycles (72 hours).

2.3.2. Modelling the scavenging process

The scavenging process is considered as a realistic example of a 
one–dimensional transport problem which additionally includes phase 
transitions. Scavenging of particle–reactive elements is the process by 
4

which dissolved radionuclides are removed from a water column by ad-
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sorption onto settling particulate matter which eventually deposits on 
the bed sediment.

The differential equations (i.e., Eulerian equations) describing this 
process are presented in what follows. They allow to obtain a self–

similar solution. The Lagrangian approach solution will then be com-

pared with these self–similar solutions.

An idealized one–dimensional problem consisting of the vertical 
spreading of a radionuclide due to diffusion and suspended multifrac-

tion particulate matter settling in a water column, in which advection 
by currents is neglected, is considered (Periáñez, 1998; Maderich et al., 
2021). The sorption–desorption processes between the dissolved state 
(𝛼 = 1) and particulate states 𝛼 = 2 … 𝑛, where 𝑛 is the total number of 
states, is described by a first order kinetics. The general equation for the 
concentration (𝐶𝑑 , Bq/m3) in the dissolved phase (𝛼 = 1) is (Maderich 
et al., 2017):

𝜕𝐶𝑑

𝜕𝑡
= 𝜕

𝜕𝑥

(
𝐷

𝜕𝐶𝑑

𝜕𝑥

)
− 𝜆𝐶𝑑 − 𝑘2

(
𝐶𝑑

𝑛∑
𝛼=2

𝑆𝑝,𝛼𝑘𝑑,𝛼 −𝐶𝑝

)
(23)

where the vertical coordinate 𝑥 is measured downwards from the sur-

face, 𝐷 (m2/s) is the diffusion coefficient, 𝜆 the radioactive decay con-

stant, 𝑆𝑝,𝛼 is the concentration of suspended matter (kg/m3) in state 𝛼
and the distribution coefficient 𝑘𝑑,𝛼 is related to the equilibrium val-

ues of dissolved and particulate radionuclide concentrations (equation 
(19)):

𝑆𝑝,𝛼𝑘𝑑,𝛼 =
𝐶

𝑒𝑞
𝑝,𝛼

𝐶
𝑒𝑞

𝑑

(24)

and the total radionuclide concentration in the particulate phase 𝐶𝑝 is 
given by:

𝐶𝑝 =
𝑛∑

𝛼=2
𝐶𝑝,𝛼 (25)

The equation for the radionuclide concentration in the particulate 
state 𝛼, 𝐶𝑝,𝛼 (Bq/m3), is:

𝜕𝐶𝑝,𝛼

𝜕𝑡
= −

𝜕(𝑤𝑝,𝛼𝐶𝑝,𝛼)
𝜕𝑥

+ 𝜕

𝜕𝑥

(
𝐷

𝜕𝐶𝑝,𝛼

𝜕𝑥

)
− 𝜆𝐶𝑝,𝛼 + 𝑘2(𝐶𝑑𝑆𝑝,𝛼𝑘𝑑,𝛼 −𝐶𝑝,𝛼)

(26)

where 𝑤𝑝,𝛼 (m/s) is the settling velocity of particles in 𝛼 state.

These are the general equations describing the scavenging process, 
which generalize the scavenging model described in Periáñez (1998). 
A simplified problem was considered in which 𝜆 is neglected and only 
dissolved (𝛼 = 1) and one particulate state (𝛼 = 2) are considered. Thus 
𝑘𝑑,2 = 𝑘𝑑 , 𝑆𝑝,2 = 𝑆𝑝 and 𝑤𝑝,2 =𝑤𝑝. Diffusion coefficient 𝐷 is considered 
constant and an instantaneous activity 𝐼0 (Bq/m2) is initially deposited 
in the surface and introduced in the dissolved state. In these conditions, 
a self–similar solution of the equations gives for the dissolved phase 
(Maderich et al., 2021):

𝐶𝑑 (𝑥, 𝑡) =
𝐼∗√
4𝜋𝐷∗𝑡

exp
[
−(𝑥−𝑈𝑡)2

4𝐷∗𝑡

]
+𝑂(𝑡−1) (27)

where:

𝐼∗ =
𝐼𝑜𝑘2

𝑘1 + 𝑘2
=

𝐼0
1 + 𝑆𝑝𝑘𝑑

, (28)

𝑈 =
𝑤𝑝𝑘1

𝑘1 + 𝑘2
=

𝑤𝑝𝑆𝑝𝑘𝑑

1 + 𝑆𝑝𝑘𝑑

, (29)

𝐷∗ =𝐷 +
𝑤2

𝑝
𝑘1𝑘2

(𝑘1 + 𝑘2)3
=𝐷 +

𝑤2
𝑝
𝑆𝑝𝑘𝑑

𝑘2(1 +𝑆𝑝𝑘𝑑 )3
. (30)

3. Results

The dependence of model results with the grid spacing using to cal-
culate concentrations and with the number of particles in the simulation 
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Fig. 3. Radionuclide concentrations along the channel surface calculated for 
different values of Δ𝑥.

is analyzed is section 3.1 and the use of interpolation schemes in sec-

tion 3.2. The dependence of phase transition probabilities with time 
step is studied in 3.3 and, finally, the scavenging example is presented 
in section 3.4. Several institutes have participated in these exercises and 
repeatability of results was checked.

3.1. Dependence with grid spacing and number of particles

The deposition problem on the tidal channel problem was used for 
this study. The endpoint of the calculation was to provide a profile of ra-

dionuclide concentrations along the channel 72 hours after deposition. 
Different values of the grid spacing Δ𝑥, required to evaluate concentra-

tions from equation (4), were used. Horizontal diffusion coefficient was 
initially set to zero.

For computational economy, it is natural to use the same grid ap-

plied to generate water circulation for evaluating radionuclide concen-

trations as well, thus this implies that Δ𝑥 = 100 m. Other values have 
been tested and results are presented in Fig. 3, which shows the final 
radionuclide concentrations along the channel after 72 hours for a num-

ber of different Δ𝑥 choices. The graphic was separated in two panels for 
better clarity. In the lower panel, where Δ𝑥 values are larger, results are 
drawn as a single dot in the middle of each grid cell to reduce a artificial 
displacement in the patch due to the plotting computer routine.

Mass conservation was checked and the maximum error in results 
in Fig. 3 was 0, 99%, which was obtained for the case with Δ𝑥 = 500 m. 
It is most likely due to rounding errors introduced in the calculation of 
concentrations. In cases with smaller Δ𝑥, the error in mass conservation 
is strictly 0, 0%.

It can be seen that noise, with overshooting above initial concen-

trations, is generated for Δ𝑥 values smaller than 10 m. Non–physical 
concentrations are generated, although mass is conserved. A large Δ𝑥

(500 m) produces a significant lowering of peak concentration. Some 
noise is generated with Δ𝑥 = 10 m as well. In this particular exercise 
reasonable results (low noise and relatively small artificial diffusion) 
are obtained if Δ𝑥 = 100 m.

If the number of particles in the simulation increases (10000 par-

ticles were used in calculations shown in Fig. 3) then the statistics, 
understood as number of particles within each grid cell, improves and 
noise decreases. However, noise is not totally removed at low Δ𝑥 values 
in spite of increasing the number of particles by orders of magnitude, 
with the increase in computational cost which this implies. Fig. 4 shows 
results in Fig. 3 for Δ𝑥 = 1 m with 104 particles (as in Fig. 3) and also 
with 106 particles.

In all cases the concentration is reduced with respect to the initial 
deposition of 100 Bq/m2. It is due to the spatio–temporal variations of 
5

the tidal currents, since the front edge of the patch will be moving with 
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Fig. 4. Radionuclide concentrations along the channel surface calculated for 
Δ𝑥 = 1 m with two different number of particles.

Fig. 5. Radionuclide concentrations along the channel surface calculated for 
different values of NP. (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

different velocity than the rear and thus a spreading of the radionuclide 
patch occurs. For instance, if the initial contamination patch is within 
only one grid cell and after the simulation the same patch (diffusion 
is not considered) is shared between two cells, the concentrations will 
necessarily be half than initially.

In this regard, grid cells must be smaller than the deposition area to 
avoid a artificial reduction of peak concentrations. But if cell size is too 
small, then the noise problems arise. It seems that, in general, the op-

timum grid size used to evaluate radionuclide concentrations from the 
distribution of particles in a Lagrangian model should be tested since 
these problems may of course be present in realistic scenarios. In these 
cases, however, they might remain occasionally unnoticed due to the 
complex water circulation schemes and the generally larger turbulent 
mixing.

The number of particles used in the simulation, denoted NP, of 
course affects the quality of results. A value NP=10000 was used in 
the simulations in Fig. 3, as mentioned before. The exercise has been 
repeated (with Δ𝑥 = 100 m), now including horizontal diffusion to deal 
with the full problem, using different NP values. Results are presented 
in Fig. 5. Of course, the distribution is wider than in Fig. 3 and peak 
concentrations are lower due to mixing. This problem is simple, and 
therefore an estimation of the uncertainties in concentrations presented 
in Fig. 5 can be carried out: since the total distribution width (cells with 
concentration above zero) is of the order magnitude of 102 (10 km), the 
average number of particles into each cell at the end of the simulation 
is of the order of NP/102. This figure ranges from 1 (NP=100) to 103
(NP=105).

If it is assumed that the number of particles within a grid cell (if 
the simulation is repeated many times) follows a Gaussian distribution 

(turbulent mixing is a stochastic process, as it is radioactive decay), then 
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Fig. 6. Temporal evolution of the particle position (top) and velocity (bottom) 
as calculated with different interpolations. Position is measured from left side 
of the channel.

an analogy with radioactive counting statistics (García–León, 2022) can 
be carried out. If a radioactive sample is measured and the number of 
counts in the detector is 𝑁𝑐 , then the probability distribution of the 
number of counts obtained is well defined with a single parameter, 𝑁𝑐 , 
and the uncertainty is in good approximation 𝜎 ∼

√
𝑁𝑐 (García–León, 

2022). Therefore, under the considered assumption, the relative error 
of the radionuclide concentration in a given grid cell 𝑖 of a model can 
be estimated as:

𝜎𝑟 =
√

𝑁𝑃𝑖

𝑁𝑃𝑖

(31)

where 𝑁𝑃𝑖 is the number of particles within grid cell 𝑖. Consequently, 
the relative errors of concentrations in Fig. 5 are estimated as 100% 
(NP=100), 32% (NP=1000), 10% (NP=104) and for NP=105 it is 
3.2%. These estimations agree with the deviations with respect to the 
green curve in Fig. 5 (which can be considered close to the true solution 
of the problem; error only 3.2%).

This method of estimating the uncertainty can used to optimize the 
number of particles in order to have a certain accuracy in Lagrangian 
simulations. In a preliminary calculation the area covered by the ra-

dionuclide patch (after an accident for instance) can be estimated. The 
average number of particles in each grid cell to have a certain relative 
error is derived from equation (31) and knowing the number of cells 
affected by the contamination patch the total number of particles is ob-

tained.

3.2. Interpolation schemes

The single particle release in the tidal channel problem was used 
to test the effects of using interpolation in time and/or space. Several 
numerical experiments were carried out, which involved the use of in-

terpolation in both time and space; only interpolation in space and only 
in time. In addition, the exact solution was calculated from the veloc-

ity given by the wave equation solution (equation [(21)]). Only linear 
interpolation schemes were tested. For real applications the effects of 
turbulence will mask any small differences in the interpolation schemes, 
as noted by Elliott and Clarke (1998).

Results of the experiments are presented in Fig. 6. The time evo-

lution of the particle position is shown in the top panel, and the time 
evolution of water velocity at the particle position in the bottom one.

Using both time and space interpolation mimics the exact solution, 
but the same situation is obtained if only time interpolation is used. In 
contrast, a larger error appears if interpolation in time is not used (only 
spatial interpolation). In this case, the final particle position diverges 
6

about 10 km from the exact value. It can be concluded that it is more 
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important to use temporal interpolation than spatial interpolation to 
have a solution closer to the exact one.

This conclusion is correct for the experiment parameters used in the 
study because the corresponding wave length of the tide is about 135 
km, whereas the initial length of contamination is 0.5 km. In general 
both temporal and spatial interpolation can affect results. However, in 
practical situations the size of the radionuclide distribution is much 
smaller than actual tide wavelengths (of the order of 103 km), unless 
we are interested in transport at full oceanic scales of fallout radionu-

clides, for instance. But this is not the case in emergency applications, 
where the interest lies at local to regional scales. Other dynamic fea-

tures of the ocean with smaller scales are wind waves and capillarity 
waves (Knauss, 1997; Open University, 2005). Seiches are standing 
waves which produce a slow oscillation of the water level. They can 
occur in lakes, as well as in bays, estuaries or harbours which are open 
to the sea at one side. However, all these wave motions produce hori-

zontal currents which are negligible in comparison with tidal currents. 
Therefore their effects in radionuclide transport is not significant.

Thus, from a practical point of view, it may be concluded that it is 
more important to use temporal than spatial interpolation.

3.3. Dependence of phase transition probabilities to the time step using 
solutions of the master equations

We are going to analyze the dependence of phase transition proba-

bilities with the time step using exact and approximate solutions of the 
master equations.

The transition probabilities were estimated by Periáñez and Elliott 
(2002) as:

𝑝1,2 = 1 − exp
(
−𝑘1Δ𝑡

)
, 𝑝2,1 = 1 − exp

(
−𝑘2Δ𝑡

)
, (32)

𝑝1,3 = 𝑝2,3 = 1 − exp
(
−𝑘3Δ𝑡

)
. (33)

Expanding the solution of the equations (9)-(11) in a series of powers 
of 𝑘1Δ𝑡 and 𝑘2Δ𝑡, respectively, and restricting ourselves to first-order 
terms, we obtain transition probabilities in the form:

𝑝12(Δ𝑡) ≈ 𝑘1Δ𝑡, 𝑝13(Δ𝑡) ≈ 𝑘3Δ𝑡, (34)

𝑝21(Δ𝑡) ≈ 𝑘2Δ𝑡, 𝑝23(Δ𝑡) ≈ 𝑘3Δ𝑡 (35)

The variations of 𝑝1,2 with non–dimensional time, calculated from the 
exact formula (15) for three values of 𝑚𝑘𝑑 (𝑚𝑘𝑑 = 0.1; 1; 10) and for 
𝑘2 = 1.16 ⋅ 10−5 and 𝑘3 = 1.06 ⋅ 10−8, are compared with equations (32)

and (34) in Fig. 7. Note that the 𝑘3 = 𝜆 value used in the example cor-

responds to a half–life of 2.07 year, which is the one of 134Cs (taken as 
an example) and the 𝑘2 is the value obtained by Nyffeler et al. (1984)

for Cs, mentioned in section 2.2. Finally a range of typical 𝑚𝑘𝑑 product 
values found in the environment is used (Duursma and Carroll, 1996; 
IAEA, 2004).

As may be seen in the figure, at small 𝑘1Δ𝑡 the dependence of 𝑝1,2
on time step is linear and close for all equations. However, at moderate 
time step the exact solution depends on 𝑚𝑘𝑑 , i.e., for these time steps 
𝑝1,2 can depend both on sediment concentration and the 𝑘𝑑 . Notice that 
the approach (34) can be applied for any number of states, but its use 
is restricted to small time steps and corresponding small values of the 
transition probabilities, which guarantees only a single phase change 
during each time step. The drawback of this approach is that a very 
small time step is required for fast reactions (Kinzelbach, 1988). The 
formula (32) works well for large values of 𝑚𝑘𝑑 , i.e., high sediment 
concentration and/or large 𝑘𝑑 , but when small values of 𝑚𝑘𝑑 are found 
in the environment the exact solution should be used.

These points should be taken into account to define transition prob-

abilities when a Lagrangian model including exchanges between phases 

is designed.
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Fig. 7. Dependence of the phase transition probability 𝑝1,2 on non-dimensional 
time step 𝑘1Δ𝑡.

Fig. 8. Solution of the scavenging equation (equation (27)) and particle tracking 
method (PTM) solution with two values of the time step.

3.4. The scavenging process

A comparison of the self–similar solution (equation (27)) and the 
particle tracking method (PTM) solution at 𝑡 = 10 year can be seen 
in Fig. 8. Characteristic parameters of oceanic scales and for 240Pu 
were used: depth 𝐻 = 4000 m, concentration of particulate matter 
𝑆𝑝 = 0.25 × 10−3 kg/m3, settling velocity 𝑤𝑝 = 5 × 10−5 m/s, diffusivity 
𝐷 = 0, distribution coefficient 𝑘𝑑 = 100 m3/kg, desorption coefficient 
𝑘2 = 1.16 × 10−5 s−1, and 𝐼0 = 1 Bq/m2. For this isotope 𝜆 = 3.4 × 10−12
s−1, thus radioactive decay can effectively be neglected. More details on 
the method, selection of parameters and its application to the scaveng-

ing processes are given in Brovchenko and Maderich (2021).

It can be seen in Fig. 8 that phase transitions result in additional 
dispersion. Also, it may be seen that the simulation with Δ𝑡 = 0.05 day 
7

fits the analytical solution better than with Δ𝑡 = 0.5 day.
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The following stability condition is introduced in an Eulerian model 
by the terms describing water/sediment interactions (Periáñez, 1995b):

Δ𝑡 <<
1

𝑘𝑚𝑎𝑥

(36)

where 𝑘𝑚𝑎𝑥 is the maximum kinetic rate involved in the problem. Phys-

ically it means that the amount of radionuclides transferred from one 
phase to another must be smaller than the content in the origin phase. 
Results in Fig. 8 confirm that this limitation holds in the particle track-

ing method: at Δ𝑡 = 0.5 day 𝑘2Δ𝑡 ≈ 0.48, while if Δ𝑡 = 0.05 day then 
𝑘2Δ𝑡 ≈ 0.048. This limitation to the time step must be taken into ac-

count in any problem in which phase transitions are present, not only 
in scavenging processes.

4. Conclusions

Simple one–dimensional transport problems were defined to study 
the Lagrangian model output dependence with regards to grid spacing, 
number of particles in the simulation and interpolation schemes.

In general, the optimum grid size used to evaluate radionuclide con-

centrations from the distribution of particles in a Lagrangian model 
should be tested. If it is too large a significant artificial diffusion is 
produced. In contrast, with too small values results might suffer from ar-

tificial noise and overshooting of concentrations above the initial peak 
magnitude. A method to optimize the number of particles required to 
achieve a given accuracy level in a simulation has been proposed.

With respect to the interpolation schemes required to evaluate the 
water current at the particle position and at a given time, it may be 
concluded that it is more important to use temporal interpolation than 
spatial interpolation to have a solution closer to the exact one. This 
conclusion seems to be generally correct unless we are interested in 
transport at full oceanic scales, which is not the case in emergency ap-

plications of Lagrangian models.

It was found that an approximate expression for the transition prob-

abilities between phases cannot always be applied, but it depends on the 
sediment concentration, radionuclide distribution coefficient and time 
step. In particular, the exact solution should be used for small values of 
𝑚𝑘𝑑 .

Finally, a one–dimensional scavenging process, as a realistic exam-

ple combining transport and phase transitions, was considered in a 
Lagrangian frame. It was found that a limitation to the time step holds, 
which is linked to the kinetic rates, as it was found to occur in Eulerian 
models.
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