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A CMOS-compatible oscillation-based VO2
Ising machine solver

Olivier Maher 1,2 , Manuel Jiménez 3, Corentin Delacour 4, Nele Harnack1,
Juan Núñez3, María J. Avedillo3, Bernabé Linares-Barranco 3,
Aida Todri-Sanial4,5, Giacomo Indiveri 2 & Siegfried Karg1

Phase-encoded oscillating neural networks offer compelling advantages over
metal-oxide-semiconductor-based technology for tackling complex optimi-
zation problems, with promising potential for ultralow power consumption
and exceptionally rapid computational performance. In this work, we investi-
gate the ability of these networks to solve optimization problems belonging to
the nondeterministic polynomial time complexity class using nanoscale
vanadium-dioxide-based oscillators integrated onto a Silicon platform. Spe-
cifically, we demonstrate how the dynamic behavior of coupled vanadium
dioxide devices can effectively solve combinatorial optimization problems,
including Graph Coloring, Max-cut, and Max-3SAT problems. The electrical
mappings of theseproblems arederived from the equivalent IsingHamiltonian
formulation to design circuits with up to nine crossbar vanadium dioxide
oscillators. Using sub-harmonic injection locking techniques, we binarize the
solution space provided by the oscillators and demonstrate that graphs with
high connection density (η > 0.4) converge more easily towards the optimal
solution due to the small spectral radius of the problem’s equivalent adjacency
matrix. Our findings indicate that these systems achieve stability within 25
oscillation cycles and exhibit power efficiency and potential for scaling that
surpasses available commercial options and other technologies under study.
These results pave the way for accelerated parallel computing enabled by
large-scale networks of interconnected oscillators.

Combinatorial optimization problems (COPs) find deep roots in sev-
eral industrial applications, suchas drug synthesis, resourceallocation,
computer vision powered by artificial intelligence, and circuit layout
design1. Their relevance extends beyond computational theory, find-
ing widespread applicability across various industries and remaining
one of the most prevalent challenge faced by computer scientists2. A
multitude of COPs belong to a class of problems solvable in non-
deterministic polynomial time (NP)3. Finding the solution to NP-

complete problems using computing technologies based on the tra-
ditional von Neumann architecture introduces a range of challenges
related to latency, convoluted interconnections, and are difficult to
integrate in compact electronic systems, considering that energy
consumption scales exponentially with the complexity of the
problem4.

This limitation in performance has generated a growing need for
accelerated computing with new types of algorithms and chip
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designs5. In these designs, memory and computation are embedded
together and work in synergy on the same medium to create new
neuromorphic architectures inspired by nature6,7. Consequently, novel
computing paradigms are being explored to replicate some of the
brain’s fundamental operations to solve combinatorial optimization
problems more efficiently4,7–11. In these efforts, researchers have
focused on harnessing the potential of new phase-change materials,
which exhibit high performance and unprecedented power efficiency
in the analog domain2,12,13. The goal is to combine multiple inputs lin-
early and nonlinearly to process information, thereby implementing a
rich catalog of operations similar to those performed by neurons14. In
this work, we study a potential architecture based on coupled oscil-
lators that offers adaptability, error tolerance, and flexibility to achieve
the level of complexity observed in modern computers, while oper-
ating with much lower energy consumption and latency figures15. We
choose toworkwith vanadiumdioxide (VO2),whichdistinguishes itself
fromother phase-changematerials by displaying an intrinsic structural
phase transition at a temperature (68 °C) that can be rapidly triggered
by heating from room temperature16,17. Additionally, VO2 offers
essential features for the fabrication of coupledoscillator-basedneural
networks (ONNs), such as: 1. Scalability, 2. Low-power and high-
frequency operation, 3. Robustness against noise, 4. Easily interface-
able with high-fanout electronic interconnections, 5. High endurance,
and 6. CMOS compatibility18. Unlike other van der Pol oscillator-based
technologies, our VO2-based oscillators do not introduce complex
levels of nonlinearity governed by higher order differential equations,
making them easier to couple and capable of tackling large-scale
problems represented by large interconnected networks2. VO2-based
oscillating neural networks are dynamical systems both complex
enough to encode computationally heavy problems within the heur-
istic domain and simple enough to realize with simple connections
ensuring stable problem-solving and solution convergence under
small programming biases2. Oscillators made of VO2 have been shown
to exhibit extremely high energy efficiency, operating orders of mag-
nitude lower than digital CMOS oscillators19. Foreseen scalability and
energy efficiency play an essential role in our device; operating at
levels far below the threshold voltages of transistors, where leakage
currents have become the main limiting factor for further computing
performance improvements20.

These new VO2 oscillators would not completely supplant CMOS
technology but rather complement it, particularly in areas where step-
by-step instruction-based computation is insufficient2. Our integrated
devices make a stride towards analog computers, leveraging their
inherent parallel processing capabilities encoded in the physical state
of individual units1. This approach has the potential to outperform
digital computers that rely on parallelization across multiple pro-
cessors by employing the Ising model to build specialized purposed
machines for solving NP-Complete problems1,19,21,22. This model allows
for the representation of any problem in the NP complexity class as an
Ising problem, with a polynomial time cost instead of an exponential
one1. By using this formulation, it is possible to carry information in the
phase and/or the frequency (f ) of a signal to achieve richer data
mapping and enhanced robustness to voltage-noise scaling issues18,23.
This is why ONNs have gained popularity in solving optimization
problems, employing various technologies such as bulky LC oscilla-
tors, ring oscillators with latch-based coupling, quantum and photo-
nics equivalents, discrete-time memristors, and CMOS-based
oscillators19,24. However, the successful physical implementations of
these technologies are quite limited and mainly motivated by
simulation-based results2.

In our work, we advance towards realizing capacitively coupled
oscillators for solving COPs, specifically Graph Coloring, Max-cut, and
Maximum 3-Satisfiability (Max-3SAT) problems8–10,17,25,26. We experi-
mentally investigate the benefits of injecting harmonics into the sys-
tem to help discretize outputs, a finding we previously reported27,28

through simulation, and successfully couple up to 9 VO2-based oscil-
lators. Furthermore, we analyze the solvability of problems with fewer
interconnections or minor variability between individual oscillators,
providing insights into their limitations and potential solutions.

Results
VO2 oscillators
Individual units emulating neurons are built to realize self-sustained
oscillations from a direct-current (DC) energy source. The hysteretic
nature of the phase transition in VO2, depicted in Fig. 1a, creates a
region of instability in the current-voltage (I-V) curve when connected
in series with a resistive device8,10,18,19. By carefully selecting an appro-
priate resistance value, such that the load line intersects the unstable
region defined by the transition points, the system can follow the same
electrical trajectory illustrated in Fig. 1b, d, switching periodically from
a high (insulator) to a low (metallic) resistive state29,30. The introduc-
tion of this external series resistance generates a dynamic voltage
divider, establishing the relaxation oscillation nature of the system
with fixed limit cycle, amplitude, and frequency18,19,30. The addition of
an external load capacitor connected off-chip, as shown in Fig. 2, is
employed to achieve uniform frequency operation among the oscil-
lators and compensate for variations in parasitic capacitances resulting
from individual contacts to our VO2 devices (see Fig. 1c)31. This con-
figuration prevents refractory period effects observed in other
studies32 and results in stable oscillations, with less than 3.5% ampli-
tude variation from cycle to cycle (see Fig. 1d)33.

The VO2 devices are fabricated on silicon platformwith a hafnium
oxide interlayer to create a granular film comprised between two
metallic electrodes whose cross-section define an area where current
can flow and generate thermal filaments through Joule heating (see
Fig. 1c)31,34. Our manufacturing process follows semiconductor indus-
try standards, facilitating the integration of our devices at the Back-

Fig. 1 | VO2 devices characteristics. a I-V characteristics schematic of a VO2 device
showing phase-transition points at low (VTL) and high (VTH) threshold voltages. The
intersection of the load line creates stable points outside the hysteresis window,
resulting in self-sustained oscillations. b I-V measurements on a c crossbar VO2

device (active area: 100 × 50 × 60 nm3) connected to a series resistance (Rs) biased
with a voltage ramp ranging from0V to 5 V.dOscillationmeasurements of a single
VO2 crossbar oscillator at 220K (active area: 80× 80× 60nm3, Rs = 50kΩ, CL = 11.27
nF, VDD = 5 V).
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End-of-Line (BEOL) while ensuring their compatibility with CMOS
technology. The detailed fabrication process and the basics on fun-
damental operation can be found in Maher et al.33 and in Supplemen-
tary Information (SI). The typical oscillating behavior of one device is
shown in Fig. 1d. Low temperature operation is furthermotivated in SI.

Dynamics of coupled VO2 oscillators
A VO2-based ONN consists of a system of oscillators acting as neurons,
interconnected with synaptic weights, representing the coupling
strength and the memory of the network9. The interaction between
coupled oscillators has been extensively investigated and can be
described by the Kuramoto model18,23. The Kuramoto formalism ana-
lytically derives the phase dynamics in a network of interconnected
oscillators, demonstrating their ability to synchronize and lock in
frequency18,23,30,35. Although the model is restricted to the “weak-cou-
pling” regime and assumes nearly identical oscillators, it still applies to
a wide range of physical oscillation-based systems and computing
tasks12,18. In real physical systems, the ease with which VO2 oscillators
can be connected becomes the prevailing criterion to successfully
realize computing18,35. While hybrid systems with local plasticity and
high bandwidth capabilities can be designed using programmable
resistive devices, capacitive coupling is the preferred method for
connecting oscillators to solve NP-complete problems6,30. The high-
pass filtering properties of this configuration guarantee synchroniza-
tion without mutually altering the devices’ DC operating points30.

In the case of electrical oscillators, such as our VO2-based
relaxation oscillators, the off-chip implementation of passive and
capacitive interconnection provides direct and sufficiently strong
interaction to bring the oscillators into frequency locking2,31,35. This is
due to the dynamic exchange of non-dissipative power between the
oscillators that ensures synchronization30. When a coupling capaci-
tance is introduced between only two oscillators, it leads to amodified

frequency through the resulting effective capacitance, as demon-
strated by Parihar et al.30, while the phases tend to stabilize in the out-
of-phase configuration, 0 and π respectively, if the coupling value is at
least approximately 1% of the net capacitance of each oscillator19.
When oscillators are interconnected with several others like in Fig. 2,
the resulting phase of each oscillator is the combined effect of the
repelling forces originating from each connection17. One canmake the
most out of this property to effectively map and solve fundamental
optimization problems, prioritizing efficiency over optimality.

Graph Coloring problem
The Graph Coloring problem consists in assigning a color to the nodes
in a graph using the minimum number of colors, such that no con-
nected nodes share the same color17,36.

In Fig. 3, the experimental results of four graph coloring problems
involving three to six oscillators are shown. The input geographical
problem is mapped onto a network of VO2 oscillators, where the
coupling capacitors represent borders between individual countries.
The circuit rapidly converges to a steady state within 10 oscillation
cycles, a significantly faster process compared to testing all potential
combinations. The stability of the phase relationships can be noted in
the time-dependent phase plots found in Fig. 3, illustrating the pro-
gression of phases relative to an initial state (center of the plot) to their
ultimate state (exterior of the plot) in reference to a designated device.
Table S3 (SI) provides details regarding the different parameter values
used in each experimental set, along with corresponding waveforms
showcasing the stable state in Fig. 3. The parameter sets should be
considered as possible examples. Other combinations where the sup-
ply voltage (VDD) and the series resistance (Rs) are adjusted with the
devices’ active area could work as well. An adaption of the parameters
for graphswith different number of nodes and edges is required as the
capacitances vary. This makes it evident that there is a considerable

Fig. 2 | Schematic representation of the mapping realized between an optimi-
zation problem’s graph and anONN.Nodes become VO2 oscillators and vertices,
coupling capacitors (Cc). Each oscillator consists in one crossbar VO2 device

connected to a series resistance (Rs) and a load capacitor (CL). The computational
dynamics of the system evolve from an initial point to a stable phase relationship in
the search for the lowest energy state.
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challenge in establishing any form of metric for selecting values to
color our map and converge rapidly towards a solution17. In our case,
the careful choice of these values resulted in a cluster diameter, which
represents the maximum phase difference among oscillators sharing

the same color grouping, that is relatively small17. For the Central
European and South American graphs, the cluster diameter averaged
33.5° and 30.0°, respectively. The inherent sparsity of these graphs
without all-to-all connectivity makes coloring more challenging17,

Fig. 3 | Experimental results of coupled relaxation VO2 oscillators, involving 3
to 6 nodes to solve the Graph coloring problem. a Input problem, b Oscillator
graph, measured c Waveforms and d Phase relationships of the ONN outputs.

eNumber of cycles required to get to the stable state. For themost complex graph,
the system converges to the solutionwithin 10 oscillation cycles, wherein the phase
order defines a color assignment for each node.
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resulting in larger cluster diameters compared to the Northern Europe
and East Asia graphs. In the South America graph, characterized by
nonuniform connectivity with varying degrees of connections on each
node, the combined and unbalanced repelling effect of the coupling
capacitances establishes a phase ordering among the oscillators17. This
phase ordering can only approximate the minimum vertex coloring,
causing uneven cluster spacing in the solution17,37. More effective
mapping techniques employing a circular ordering in color assign-
ment could be employed to further minimize the cluster diameter,
particularly for larger-scale graphs17.

Ising formulation of problems
Having demonstrated the ability of our VO2-based ONN to solve opti-
mization tasks such as Graph Coloring, we now exploremore complex
COPs where variables (oscillators) are constrained to binary states
(spins) within their Boolean expressions. We focus on two of Karp’s 21
NP-complete problems: Max-cut and 3-SAT3,38–40. Mapping these pro-
blems into an Ising Hamiltonian equation can be achieved by setting
the appropriate coupling coefficients in the energy function39,41:

H = �
X

1 ≤ i≤ j ≤n

Jijsisj �
Xn

i= 1

hisi ð1Þ

Where Jij is a coupling coefficient between units i and j, which can be
positive or negative and is usually achieved in anONN using resistors10

or capacitors26, respectively.
si is the spin (up ↑ or down ↓) of unit i, which can bemapped in a

binarized network of oscillators by the phase (0 or π).
And hi is an external bias, representing the interaction of unit i

with an external unit with fixed spin value.
Mohseni et al.1 andWang et al.39 demonstrated that byminimizing

the system’s energy expressed by the Hamiltonian, the system’s state
naturally evolves towards the ground state, effectively solving the
COP. Analyzing the system’s energy while considering its oscillatory
nature through the Kuramoto model under specific conditions shows
that theONNminimizes a Lyapunovequation23,39,41.When the states are
simplified to a binary form, this equation is equivalent to the Ising
Hamiltonian, ensuring the system evolves to a lower and stable energy
state39,41. The intrinsic physical phase evolution of the coupled oscil-
lators towards this attractor state, as shown in Fig. 2, is exploited to
solve the Hamiltonian equation empirically as a complete and reliable
Ising machine19.

Max-cut problem
The Max-cut problem consists in partitioning a weighted graph into a
binarized state of two sub-graphs where the weights of the edges
between them are maximized3,40 – see Fig. 4. In this problem, specific
conditions include dropping the second term in the energy function
(hi =0 in Eq. (1)). Due to capacitive coupling connecting multiple
oscillators, the phases of neighboring oscillators tend to diverge
towards polar opposites41. This cumulative effect of mutual interac-
tions renders it impossible tomaintain a binary state (0 andπ)41,42. One
strategy to deal with this challenge involves the introduction of a Sub-
Harmonic Injection Locking (SHIL) signal18,27,39,43. When this signal lies
sufficiently close to a multiplying factor N of the natural frequency of
theoscillators (fosc), i.e. fSHIL =N × fosc, phase synchronizationoccurs to
force the phases of all the units within one of the N phase groups that
are exactly 2π/N apart26. We fix N to 2 to ensure binarization for the
Max-cut problem. Solving this problemcanbedonequite efficiently by
combining the effect of noise with subharmonic injection. The
resulting fluctuations in energy enhance the probability that the sys-
tem escapes from localminima (non-optimal solutions) and converges
towards the global minimum (optimal solution). The cycle-to-cycle
variability exhibited in VO2 devices can naturally create such energy

fluctuations. Upon reaching the global minimum, the SHIL signal
maintains the solution in a stable state.

We inject a sinusoidal signal, with a frequency twice that of the
coupled network, through an additional capacitance (CSHIL), as shown
in Fig. 4. The introduction of SHIL also helps strengthening coupling in
the network, enabling adjustment of the oscillators’ frequencies to
mitigate uncertainty in system response, particularly for oscillators
exhibiting high device-to-device variability28,35,43. The values of the
injected signal amplitudes and CSHIL are chosen to be sufficiently high,
ensuring successful synchronization beyond a threshold below which
a stablebinarized solution cannot exist39. Theseparameter values need
to be adapted for each specific problem due to the non-balanced
number of connections among nodes present in most graphs, making
it impossible to satisfy all the constraints imposed by the capacitors
pairing the oscillators26. In scenarios involving large graphs with
numerous connections, the system’s energy landscape becomes more
complex, and a careful selection of these parameters is required to
prevent staying trapped in a localminimum – a phenomenon known as
the ‘freeze-out’ effect41. An experimental example of this phenomenon
is shown in SI. Adjusting carefully the electrical parameters for each
specific problem also maximizes performance and ensures the suc-
cessful binarization of the system. Failure to do so results in large
cluster diameters with nodes found in not well defined phase groups,
as demonstrated in SI.

The dynamics of an oscillator network implement the gradient
descent of the Ising ground state problem, with the solution space
being explored through the circuit’s inherent physical behavior rather
than in a sequential manner42. Therefore, the minimization of the Ising
Hamiltonian in Eq. (1), directly mapped onto a system of coupled
oscillators as in Fig. 2, maximizes the cut-set for any given problem19.

Figure 5 illustrates typical results achieved for graphs involving
four to nine VO2 oscillators. The influence of the parameters Cc, CSHIL,
and VSHIL on the spread of the phases becomes evident in graphs B, D,
E, F, and G (see Table S4 (SI)). In these experiments, a weaker SHIL
signal amplitude or coupling results in a larger cluster diameter in both

Fig. 4 |ONNmappingof theMax-cutproblem. Injectionof the SHIL signal at twice
the frequency thatof the coupled oscillators in the network. This technique ensures
synchronization of every oscillator in one of two defined phase states. TheMax-cut
problem consists in finding a partition of a given graph’s nodes into two sets to
maximize the number of edges between the sets.
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Fig. 5 | Experimental results of coupled relaxation VO2 oscillators, involving 4
to 9 nodes to solve the Max-cut problem. a Input problem, b Solution found,
and c measured Phase relationships of the ONN outputs. d Number of cycles
required to get to the stable state. The systems converge to the solution

within 13 oscillation cycles only when the connection density of the graph
η > 0.4. The oscillators are partitioned into two states: one with a near
0-degree in-phase relation and the other with a close to 180-degree out-of-
phase relation with respect to a reference device.
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states 0 and π, as illustrated in the corresponding phase plots in Fig. 5.
Another important property is the connection density η, defined as the
ratio of the number of edges within the graph to the total number of
edges in a same-sized fully connected graph44. In instances where the
graph is sparse with η <0.4, such as graph F, achieving a balance
between all parameters for successful network binarization while
attaining the ground state proves difficult. This observation alignswith
previous research findings44. The issue arises when dealing with sparse
graphs (η < 0.4), as their equivalent adjacency matrix has significantly
different eigenvalues, referred to as a large spectral radius, making it
challenging for the SHIL signal to effectively divide the graph’s nodes
into only two distinct groups44. Although SHIL is essential for dis-
cretizing the solution, it also introduces limitations on the synchroni-
zation dynamics of the system that potentially lead to suboptimal
solutions43,45.

Figure 6 presents the results of repeatedMax-cut experiments on
graphs C, D, E, and G, using six to nine interconnected VO2 oscillators.
Similar to the findings demonstrated in Fig. 5, theONNs shown in Fig. 6
consistently reach their stable states within 15 oscillation cycles. This
highlights the potential for faster time execution of massive parallel
computations through coupled oscillators46. It should be noted that
most graphs in Figs. 5 and 6 are either planar, i.e. they can be drawn on
a plane without edges intersecting, or nearly planar40. Although algo-
rithms exist to solve the Max-cut problem in polynomial time for pla-
nar graphs40, our results in Figs. 5 and6demonstrate notable efficiency
by attaining solutions within 15 oscillation cycles. It will be essential to
reevaluate this level of performance when dealing with denser non-
planar graphs involving a greater number of VO2 oscillators.

Figure 6 shows that in the case of graph C, which has the highest
connection density (η >0.7), the network attain stability in the ground
state in over 62% of the trial runs. For all graphs except D, the best
solution is found in themajority of cases, exceeding 42% for the largest
graph employing nine oscillators. These already promising outcomes
could be further enhanced by incorporating various techniques
beyond the Kuramoto model tailored for oscillator-based
computing39. This could involve modifications to the shape of oscil-
lations or the SHIL signal, by incorporating additional terms from the
Fourier series expansion39,41. Such adjustments have demonstrated
improved capabilities in computing the optimal solution41.

Max-3SAT problem
The 3-SAT problem consists in finding a Boolean combination of
variables in a way that satisfies a given formula F 3. This formula is

made up of smaller parts called clauses C, and each one contains three
specific pieces of information called literals3.

F =C1 ^ C2 ^ . . . ^ CM�1 ^ CM ð2Þ

Where Cj is the inclusive disjunction of three literals xj, such that

Cj = xa
j _ xb

j _ xc
j� � ð3Þ

Having a dedicated hardware solver for 3-SAT presents a sig-
nificant potential to accelerate the computation of NP-complete pro-
blems, as these problems can all be reduced to 3-SAT3. Themapping of
the Ising Hamiltonian formulation in Eq. (1) to our VO2 ONN hardware
involves using capacitors as coupling coefficients and introducing an
additional signal with the same frequency as the coupled oscillators to
act as an external bias hi. The circuit equivalent of a single node and
edge is illustrated in Fig. 7.

In this configuration, the system seeks the maximum number of
satisfied clauses K, effectively solving the NP-hard Max-3SAT problem
by identifying independent sets of nodes that are not connected. To
construct the equivalent graph, each literal is mapped to a node (VO2

oscillator), while each clause corresponds to an interconnection
(capacitor), forming the triangles depicted in Fig. 7. The goal is to
ensure that at most one node per clause is part of the independent
set38. Furthermore, all complementary literals are interconnected (blue
connections in Fig. 7), as they cannot simultaneously satisfy the two
corresponding clauses. The size of the independent set determines the
count of satisfied clauses, and solving the Max-3SAT is equivalent to
identifying the largest independent set within the correspond-
ing graph.

Figure 8 presents the results of repeated Max-3SAT experiments
on graphs involving six (F 1) to nine (F 2 andF 3) oscillators. The values
of the electrical circuit parameters chosen for each graph are reported
in Table S5 (SI).

F 1 = x1 _ x2 _ x3
� � ^ x1 _ x2 _ x3

� � ð4Þ

F 2 = x1 _ x2 _ x3

� � ^ x1 _ x2 _ x3

� � ^ x1 _ x2 _ x3

� � ð5Þ

F 3 = x1 _ x2 _ x3

� � ^ x1 _ x2 _ x3

� � ^ x1 _ x2 _ x3

� � ð6Þ

The size of the independent set K is measured solely under the
condition that the oscillators which exhibit an in-phase relation-
ship with the bias h (noted as positive spin ↑) are not inter-
connected. In cases where they are interconnected, the system
converges to a stable state not corresponding to an independent
set in our mapping. This results in an undefined count of inde-
pendent sets, noted ∅. It is worth noting that in instances where
nodes (VO2 oscillators) represent logical complements but still
oscillate in-phase with a negative spin↓, the system fails to assign a
true/false value to the associated variable. This situation is depic-
ted in the third Max-3SAT graph of Fig. 7, featuring the variables xa

and �xa. In such cases, the calculated value of K is not associated
with a logical/defined combination of variables within the Boolean
expression.

Figure 8 shows the system’s capacity to identify the Max-3SAT in
all instances F 1, F 2 , and F 3, with a success rate reaching up to 75% in
the case of six coupled oscillators. Across all experimental trials, the
network consistently achieved stability within 23 oscillation cycles, a
significant improvement compared to digital methods. To potentially
enhance the system’s ability to solve Max-3SAT, an approach could
involve balancing and adapting better the parameters for each specific
graph. For example, ensuring the coupling coefficients J are higher

Fig. 6 | Distributionof thecuts attained for graphs involving6 to9coupledVO2

oscillators to solve the Max-cut problem. The optimal solution is found in most
instances for graphs C, E, and G.
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than the bias h would prevent getting trapped in local energy minima
and ensure oscillators representing complement variables stabilize
with opposite spins. The chosen amplitudes (Vh and V2-HIL) and capa-
citances (C1-HIL and C2-HIL) of the injected signals also impact sig-
nificantly the eventual convergence state of the network. Further
exploration of the influenceof thesevalues is required tomaximize the
likelihood of successfully solving theMax-3SAT problem.Nonetheless,
our results presented in Fig. 8 serve as a proof of concept, showcasing
a network of VO2 oscillators capacitively coupled and influenced by
SHIL signals can successfully realize an efficient and quick analog
3-SAT solver.

Discussion
Table 1 provides a comparison between our work and previous studies
on the coupling of oscillators to build Ising machines for optimization
problem-solving. It highlights the limitations of traditional archi-
tectures relying on CMOS technology, such as excessively long com-
puting times7 or high energy consumption47, despite operating at
considerably higher frequencies. Unreported experimental results on

these figures, as in Ahmed et al. and Tatsumura et al.24,48, may imply
unfavorable outcomes.

In our study, we investigated VO2-based ONNs at low frequencies
to demonstrate experimentally their ability to solve COPs. However,
the true potential of these networks lies in their scalability down to
nanometric sizes, enabling ultralow power consumption46 (around
13 µW/oscillator) and rapid convergence49 (time to solution <1 µs) to
optimal solutions with high accuracy within just a few oscillation
cycles. In-depth scaling challenges analyses are reported in Delacour
et al.46 and Carapezzi et al.49. The inherent parallelism of ONN com-
puting allows for short computing times, ranging from tens of nano-
seconds to a few microseconds, even with the current oscillation
frequencies in the MHz domain. This positions energy-efficient phase-
binarized oscillators as an attractive choice to outperform CMOS-
based technologies in addressing NP-complete problems, a finding
also reported in Singhal et al.25. However, the circuit implementation of
large-scale ONNs poses a challenge due to the quadratic increase of
coupling elements. The on-chip coupling implementation of larger
networks can be achieved by using programmable memristive arrays

Fig. 7 | ONNmapping of the Max-3SAT problem. The problem is solved through
the injection of two SHIL signals: one at the same frequency (bias h) of the coupled
oscillators in the network, and the other at twice the frequency to ensure binar-
ization. TheMax-3SAT consists in finding an assignment of true and false (↑ and↓)
values to variables that satisfies the maximum number of clauses in a Boolean
formula, where each clause contains three literals. The maximum independent set

K is calculated under the condition that variables with a positive spin↑ (oscillators
in-phase with the bias h) are not interconnected. In cases where two nodes (VO2

oscillators) represent logical complements but share the same spin value↓ (both
out-of-phase with the bias h), the system fails to assign a true/false value to the
associated variable, which is denoted by .

Fig. 8 | Distribution of the independent set sizeK attained for graphs involving
6 to 9 coupled VO2 oscillators to solve the Max-3SAT problem. The optimal

solution is found in all instances, proving 3-SAT solvers can be implemented with
VO2 oscillators.
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or capacitive banks selected through multiplexers. Such high level of
adaptability is needed to connect nodes based on the unique
requirements of each optimization problem. To address scalability
more efficiently, an alternative approach inspired by graph theory
lemmas involves partitioning a large graph into smaller, more man-
ageable graphs3. For example, the Traveling Salesman Problem could
be solved by accumulating solutions from small-scale ONNs to estab-
lish the shortest path, and the same reasoning could be extended to
Max-cut, Max-3SAT, and other optimizations problems. This would
prevent bulky coupling matrices from occupying a substantial chip
area, particularly in problems with thousands of nodes requiring as
many coupled oscillators.

When these NP-complete problems are large-scale, their intrinsic
complexity increases the risk of getting trapped in a local minima,
resulting in suboptimal solutions. Previous studies addressed this
challenge by employing various techniques to overcome energy bar-
riers in systems with such complex energy landscapes having multiple
local minima19,26,41. These techniques included incorporating decaying
noise as the system approached its ground state or introducing SHIL
signals via simulated annealing, where signal amplitude is varied to
facilitate exploration of the solution space. These methods proved
essential to solve NP-complete problems using oscillation-based
computing19,26,41. However, when applied to our specific experiments
focused on Max-cut and Max-3SAT problems, these techniques failed
to yield any improvements. The results obtained from their imple-
mentation were inconclusive and no definitive conclusions could be
drawn regarding their benefits. We argue that the intrinsic noise pre-
sent in all crossbar oscillators, combined with device-to-device varia-
bility, introduces a satisfactory level of randomness, enabling the
network to effectively explore the entire solution space. This obser-
vation holds true in our experimental setup with small graphs con-
necting up to nine oscillators, and may vary when dealing with larger
problems25.

Additionally, when selecting the electrical parameters for a spe-
cific problem, it is imperative to consider the degree of connectivity
associated with each node within the graph. When the graph is unba-
lanced, as in graph F from Fig. 5 where certain nodes have as few as 2
connections and others as many as 4, our findings suggest that
reaching the best solution becomesmore complex or unattainable. On
the other hand, establishing a more even distribution of connections
within the graph, as seen in graph G where most nodes have 3 or 4
connections, facilitates the identification of acceptable circuit para-
meters, ultimately leading to successful convergence towards the
optimal solution.

We have demonstrated how the dynamic behavior of coupled VO2

oscillators can be harnessed to solve complex optimization problems,
including Graph Coloring, Max-cut, and Max-3SAT problems. Our
approach involves the development of task-specific mappings from
the Ising Hamiltonian formulation to our network of relaxation oscil-
lators,with up tonine crossbar VO2devices.Throughour experimental

findings, we show that the system achieves stability in less than 25
oscillation cycles, indicating the potential for faster time execution of
extensive parallel computations using large-scale networks of inter-
connected oscillators25,46. Using sub-harmonic injection locking, we
binarize the solution provided by the oscillators into two distinct
phase groups, corresponding to “spins up” and “spins down” in the
Ising formulation of Max-cut and Max-3SAT problems. We demon-
strate that graphs exhibiting high connection density (η >0.4) when
mapped onto our VO2 network tend to convergemore readily towards
their optimal solutiondue to the typically smaller spectral radius of the
equivalent adjacency matrix.

The proposed architecture offers a high degree of configurability,
enabling the emulation of associative neural network capabilities
without the requirement of complete all-to-all connectivity50,51. This
versatility and configurability are advantageous for addressing pro-
blems that demand specialized solutions, as they exhibit varying levels
of complexity and inter-unit connectivity15,20. The compact nature of
the VO2 oscillators, connected via nanoscale memristive synaptic and
resistive units (positive coupling) or capacitors (negative coupling), as
demonstrated in this study, highlights the ease with which practical
hardware implementations can be realized to build customizable
analog solvers. Their intrinsic physical characteristics embedding
memory and computation on the same platform can tackle complex
optimization tasks, a feat that has proven inefficient through tradi-
tional digital computing15,39. These oscillators constitute foundational
building blocks for application-specific functions, offering the poten-
tial for seamless integration on a CMOS-compatible medium to
address multifaceted technological challenges across industries.

Data availability
The data generated in this study is available on Zenodo under the
accession code https://doi.org/10.5281/zenodo.10879440.

References
1. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hard-

ware solvers of combinatorial optimization problems. Nat. Rev.
Phys. 4, 363–379 (2022).

2. Csaba, G., Raychowdhury, A., Datta, S. & Porod,W. Computingwith
coupled oscillators: theory, devices, and applications. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE,
2018). https://doi.org/10.1109/ISCAS.2018.8351664.

3. Karp, R.M. ReducibilityAmongCombinatorial Problems. in50Years
of Integer Programming 1958–2008 219–241 (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010). https://doi.org/10.1007/978-3-
540-68279-0_8.

4. Backus, J. Can programming be liberated from the von Neumann
style? Commun. ACM 21, 613–641 (1978).

5. Chicca, E., Stefanini, F., Bartolozzi, C. & Indiveri, G. Neuromorphic
electronic circuits for building autonomous cognitive systems.
Proc. IEEE 102, 1367–1388 (2014).

Table 1 | ONN-based Ising machine benchmark

Technology Max
graph size

Measured time to solu-
tion (µs)

Operating fre-
quency (kHz)

Accuracy Average power (µW/
oscillator)

FPGA SB-based Ising machine with 8
processors48

16,384 1200 262,000 Not mentioned Not mentioned

Schmitt trigger oscillators52 30 Not mentioned ~44 0.72 59

Ring oscillators24 560 Not mentioned 118,000 0.82 41

Asynchronous digital logic + analog
oscillator (CMOS 180nm)7

282 ~7.6 × 106 ~0.21 Not mentioned Not mentioned

CMOS LC oscillators47 240 3500 5 000 ~0.13 21,000

Coupled VO2 oscillators (This work) 9 11,500 ~2 ≤0.75 180

Coupled VO2 oscillators (Projected work46,49) >64 ~1 ~30,000 >0.9 13

Article https://doi.org/10.1038/s41467-024-47642-5

Nature Communications |         (2024) 15:3334 9

https://doi.org/10.5281/zenodo.10879440
https://doi.org/10.1109/ISCAS.2018.8351664
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8


6. Dalgaty, T. et al. Hybrid CMOS-RRAM Neurons with Intrinsic Plasti-
city. in 2019 IEEE International Symposium on Circuits and Systems
(ISCAS) 1–5 (IEEE, 2019). https://doi.org/10.1109/ISCAS.2019.
8702603.

7. Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture
for solving constraint satisfaction problems. Nat. Commun. 6,
8941 (2015).

8. Corti, E. et al. Time-delay encoded image recognition in a network
of resistively coupled VO2 on Si oscillators. IEEE Electron. Device
Lett. 41, 629–632 (2020).

9. Corti, E. et al. Coupled VO2 oscillators circuit as analog first layer
filter in convolutional neural networks. Front Neurosci. 15,
1–12 (2021).

10. Corti, E. et al. Scaled resistively-coupled VO2 oscillators for neu-
romorphic computing. Solid State Electron. 168, 107729 (2020).

11. Mostafa, H., Müller, L. K. & Indiveri, G. Rhythmic inhibition allows
neural networks to search for maximally consistent states. Neural
Comput. 27, 2510–2547 (2015).

12. Raychowdhury, A. et al. Computing with networks of oscillatory
dynamical systems. Proc. IEEE 107, 73–89 (2019).

13. Chakraborty, I., Saha, G. & Roy, K. Photonic in-memory computing
primitive for spikingneural networks usingphase-changematerials.
Phys. Rev. Appl 11, 014063 (2019).

14. Laughlin, S. B. & Sejnowski, T. J. Communication in neuronal net-
works. Science 301, 1870–1874 (2003).

15. Indiveri, G. & Liu, S.-C. Memory and information processing in
neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015).

16. Liu, K., Lee, S., Yang, S., Delaire, O. & Wu, J. Recent progresses on
physics and applications of vanadium dioxide. Mater. Today 21,
875–896 (2018).

17. Parihar, A., Shukla, N., Jerry,M., Datta, S. &Raychowdhury, A. Vertex
coloring of graphs via phase dynamics of coupled oscillatory net-
works. Sci. Rep. 7, 911 (2017).

18. Csaba, G. & Porod, W. Coupled oscillators for computing: a review
and perspective. Appl. Phys. Rev. 7, 1–20 (2020).

19. Dutta, S. et al. An Ising Hamiltonian solver based on coupled sto-
chastic phase-transition nano-oscillators. Nat. Electron. 4,
502–512 (2021).

20. Horowitz, M. 1.1 Computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014). https://doi.
org/10.1109/ISSCC.2014.6757323.

21. Amir, A. et al. Cognitive computing programming paradigm: a
corelet language for composing networks of neurosynaptic cores.
In The 2013 International Joint Conference on Neural Networks
(IJCNN) 1–10 (IEEE, 2013). https://doi.org/10.1109/IJCNN.2013.
6707078.

22. Cassidy, A. S. & Andreou, A. G. Beyond Amdahl’s law: an objective
function that links multiprocessor performance gains to delay and
energy. IEEE Trans. Comput. 61, 1110–1126 (2012).

23. Kuramoto, Y. International SymposiumonMathematical Problems in
Theoretical Physics. vol. 39 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 1975).

24. Ahmed, I., Chiu, P.-W.,Moy,W. & Kim, C. H. A probabilistic compute
fabric based on coupled ring oscillators for solving combinatorial
optimization problems. IEEE J. Solid State Circuits 56,
2870–2880 (2021).

25. Singhal, S. & Bhowmik, D. Superior Performance of Phase Binarized
Oscillators (PBOs) Compared to Quantum Approximation Optimi-
zation Algorithm (QAOA) for Ising Computing (Max-Cut Problem).
(2023) https://doi.org/10.48550/arXiv.2306.14528.

26. Avedillo, M. J. et al. Operating Coupled VO2-Based Oscillators for
Solving Ising Models. https://doi.org/10.1109/JETCAS.2023.
3328887.

27. Núñez, J., Avedillo, M. J. & Jiménez, M. Exploitation of Subharmonic
Injection Locking for Solving Combinatorial Optimization Problems
with Coupled Oscillators using VO2 based devices. In 2023 19th
International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD) 1–4
(IEEE, 2023). https://doi.org/10.1109/SMACD58065.2023.10192227.

28. Corti, E., Delacour, C., Todri-Sanial, A. & Karg, S. Frequency injec-
tion locking-controlled oscillations for synchronized operations in
VO2 crossbar devices. in 2021 Device Research Conference (DRC)
1–2 (IEEE, 2021). https://doi.org/10.1109/DRC52342.2021.9467129.

29. Maffezzoni, P., Daniel, L., Shukla, N., Datta, S. & Raychowdhury, A.
Modeling and simulation of vanadiumdioxide relaxation oscillators.
IEEE Trans. Circuits Syst. I Regul. Pap. 62, 2207–2215 (2015).

30. Parihar, A., Shukla, N., Datta, S. & Raychowdhury, A. Exploiting
synchronization properties of correlated electron devices in a non-
boolean computing fabric for template matching. IEEE J. Emerg.
Sel. Top. Circuits Syst. 4, 450–459 (2014).

31. Tobe, R., Md Mian, S. & Okimura, K. Coupled oscillations of VO2-
based layered structures: experiment and simulation approach. J.
Appl. Phys. 127, 1–9 (2020).

32. Lin, J., Guha, S. & Ramanathan, S. Vanadium dioxide circuits emu-
late neurological disorders. Front Neurosci. 12, 1–13 (2018).

33. Maher, O. et al. Highly reproducible and CMOS-compatible VO2-
based oscillators for brain-inspired computing. https://doi.org/10.
48550/arXiv.2403.02822 (2024).

34. Ramírez, J. G. et al. Ultra-thin filaments revealed by the dielectric
response across the metal-insulator transition in VO2. Appl. Phys.
Lett. 102, 1–5 (2013).

35. Vodenicarevic, D., Locatelli, N., Abreu Araujo, F., Grollier, J. &
Querlioz, D. A nanotechnology-ready computing scheme based on
a weakly coupled oscillator network. Sci. Rep. 7, 44772 (2017).

36. Maritz, P. & Mouton, S. Francis guthrie: a colourful life. Math. Intell.
34, 67–75 (2012).

37. Cheeseman, P., Kanefsky, B. & Taylor, W. M. Where the really hard
problems are. in Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence 331–337 (Morgan Kaufmann Pub-
lishers Inc., 1991).

38. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2,
1–15 (2014).

39. Wang, T. & Roychowdhury, J. OIM: Oscillator-based ising machines
for solving combinatorial optimisation problems. in 232–256 (2019).
https://doi.org/10.1007/978-3-030-19311-9_19.

40. Hadlock, F. Finding amaximum cut of a planar graph in polynomial
time. SIAM J. Comput. 4, 221–225 (1975).

41. Zhang, Y. et al. Oscillator-network-based ising machine. Micro-
machines 13, 1016 (2022).

42. Erementchouk, M., Shukla, A. & Mazumder, P. On computational
capabilities of Ising machines based on nonlinear oscillators. Phys.
D. 437, 133334 (2022).

43. Maher, O. et al. Solving optimization tasks power-efficiently
exploiting VO 2’s phase-change properties with Oscillating Neural
Networks. In 2023 Device Research Conference (DRC) 1–2 (IEEE,
2023). https://doi.org/10.1109/DRC58590.2023.10186951.

44. Mallick, A. et al. Using synchronized oscillators to compute the
maximum independent set. Nat. Commun. 11, 4689 (2020).

45. Haribara, Y., Utsunomiya, S. & Yamamoto, Y. A coherent ising
machine for MAX-CUT problems: performance evaluation
against semidefinite programming and simulated annealing. In
251–262 https://doi.org/10.1007/978-4-431-55756-2_12 (2016).

46. Delacour, C., Carapezzi, S., Abernot, M. & Todri-Sanial, A. Energy-
performance assessment of oscillatory neural networks based on
VO2devices for future edgeAI computing. IEEE Trans. Neural. Netw.
Learn Syst. 1–14 https://doi.org/10.1109/TNNLS.2023.
3238473 (2023).

Article https://doi.org/10.1038/s41467-024-47642-5

Nature Communications |         (2024) 15:3334 10

https://doi.org/10.1109/ISCAS.2019.8702603
https://doi.org/10.1109/ISCAS.2019.8702603
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.48550/arXiv.2306.14528
https://doi.org/10.1109/JETCAS.2023.3328887
https://doi.org/10.1109/JETCAS.2023.3328887
https://doi.org/10.1109/SMACD58065.2023.10192227
https://doi.org/10.1109/DRC52342.2021.9467129
https://doi.org/10.48550/arXiv.2403.02822
https://doi.org/10.48550/arXiv.2403.02822
https://doi.org/10.1007/978-3-030-19311-9_19
https://doi.org/10.1109/DRC58590.2023.10186951
https://doi.org/10.1007/978-4-431-55756-2_12
https://doi.org/10.1109/TNNLS.2023.3238473
https://doi.org/10.1109/TNNLS.2023.3238473


47. Wang, T., Wu, L., Nobel, P. & Roychowdhury, J. Solving combina-
torial optimisation problems using oscillator based Ising machines.
Nat. Comput. 20, 287–306 (2021).

48. Tatsumura, K., Yamasaki, M. & Goto, H. Scaling out Ising machines
using a multi-chip architecture for simulated bifurcation. Nat.
Electron. 4, 208–217 (2021).

49. Carapezzi, S. et al. How fast can vanadium dioxide neuron-
mimicking devices oscillate? Physical mechanisms limiting the
frequency of vanadiumdioxide oscillators.Neuromorphic. Comput.
Eng. 3, 034010 (2023).

50. Hoppensteadt, F. C. & Izhikevich, E. M. Oscillatory neurocomputers
with dynamic connectivity. Phys. Rev. Lett. 82, 2983–2986 (1999).

51. Hoppensteadt, F. C. & Izhikevich, E. M. Pattern recognition via
synchronization in phase-locked loop neural networks. IEEE Trans.
Neural Netw. 11, 734–738 (2000).

52. Bashar, M. K. et al. Experimental demonstration of a reconfigurable
coupled oscillator platform to solve the max-cut problem. IEEE J.
Explor. Solid-State Comput. Devices Circuits 6, 116–121 (2020).

Acknowledgements
This project has received funding from the EU’s Horizon program under
projects No. 871501 (NeurONN), 861153 (MANIC), and 101092096
(PHASTRAC). The authors thank the Cleanroom Operations Team of the
Binnig and Rohrer Nanotechnology Center (BRNC) for their help and
support.

Author contributions
O.M. and N.H. fabricated and characterized the devices. O.M. and C.D.
performed data analysis. O.M. and M.J. set up the experimental mea-
surements. M.J., J.N., and M.J.A conceptualized the implementation
basis of the computing problems. S.K., M.J.A., B.L.B., G.I., and A.T.S.
supervised and directed the project. O.M. wrote the manuscript. All
authors commented on the manuscript.

Funding
Open access funding provided by Swiss Federal Institute of Technology
Zurich.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47642-5.

Correspondence and requests for materials should be addressed to
Olivier Maher or Siegfried Karg.

Peer review information Nature Communications thanks Shriram
Ramanathan, Takahiro Inagaki, and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47642-5

Nature Communications |         (2024) 15:3334 11

https://doi.org/10.1038/s41467-024-47642-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A CMOS-compatible oscillation-based VO2 Ising machine�solver
	Results
	VO2 oscillators
	Dynamics of coupled VO2 oscillators
	Graph Coloring problem
	Ising formulation of problems
	Max-cut problem
	Max-3SAT problem

	Discussion
	Data availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




