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Abstract  

Purpose - The employment of facial-expression recognition to analyse emotions 

constitutes a potential instrument for the measurement of customer satisfaction in the 

tourism sector. The study aims to assess the functionality of Artificial Intelligence to 

measure tourists’ emotions and hence their satisfaction with the quality of the service 

provided on a guided tour when visiting a UNESCO heritage site. 

Design/methodology/approach - The methodology comprises the following stages. 

Firstly, the emotions are analysed through data recorded by using a software application 

on facial-expression recognition on a sample of tourists visiting a heritage site. Secondly, 

the tourists were asked to rate their overall satisfaction with the guided tour visit. Finally, 

a structural equation modelling approach is used to validate the strong relation between 

emotions and satisfaction.  

Findings - The results achieved confirm that the information obtained from facial-

expression recognition demonstrated that it is as valid an instrument as that offered by the 

self-administered questionnaires for the measurement of customer satisfaction. The 

findings from the application reveal that a change in the scientific and professional field 

is emerging in the measurement of customer satisfaction focused on the emotions from a 

digital approach. 
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Research limitations/implications - This research is mainly based on the use of specific 

software for facial-expression recognition with its intrinsic measurement of emotions 

with and in a specific heritage scenario. Other scenarios and software of a more 

sophisticated nature implemented in the tourism and hospitality industry are necessary 

for the in-depth comprehension of the significant role played by emotions in the 

improvement of service quality. 

Practical implications - The recent application of recording emotions in the Tourism 

Industry provides practitioners with useful insights for the detection of deficiencies in 

their services and therefore the means to boost their reputation and destination image. 

Originality/value- Artificial Intelligence presents a new paradigm in the measurement 

of satisfaction by substituting self-administered surveys with a method based on the use 

of innovative software that recognizes faces and detects emotions through facial 

expressions. The paper contributes to the literature by using an Artificial Intelligence 

approach to measure satisfaction through emotions in the tourism sector.  

Keywords: Artificial Intelligence; Facial-expression recognition; Emotions; Satisfaction; 

PLS-SEM; Emotionalyser. 

Paper type Research paper 

1. Introduction 

Traditionally, structural surveys have been employed to assess customer satisfaction in 

order to attain in-depth knowledge on the areas of potential improvement in the provision 

of a specific service (Coghlan & Pearce, 2010; Jacobs, Fehres & Campell, 2012; Walters, 

Sparks, & Herington, 2012; Oh and Kim, 2017). However, with the digital revolution, 

Artificial Intelligence (AI) tools are emerging through which the data collection process 

is greatly improved (Pittman & Reich, 2016; Lowe-Calverley et al., 2019). These 

innovative instruments are able to recognize faces, and to detect, via facial expressions, 

the emotions felt by users at the moment of the consumption of the service (Mauss & 

Robinson, 2009; Wang & Minor, 2008).  

Bearing in mind that emotions have a significant impact on the majority of human 

activities and functions (Faria et al., 2017), facial-expression recognition has already 

begun to be implemented experimentally in certain hotel chains, such as that of the 

Bluebay Group (bluebayresorts.com). Thanks to its use, several of the less efficient 
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features of the hotel could be identified, such as the service provided by the advertising 

leaflets, through the sensors placed on the shelf devoted to these leaflets. Recently, as a 

pioneering initiative in Spain, the Campanile hotel chain has been using sensors to 

recognize facial expressions of emotions to evaluate and improve its protocols in 

customer services (imotionanalytics.com). The method based on the recognition of facial 

expressions allows hoteliers to give an immediate response, make effective decisions, and 

act on the problems that arise on a daily basis. This technology appears to be an effective 

tool for managers to solve such difficulties in their hotels. 

In addition, through facial-recognition technology, there is a reduction in the risk of 

bias in social desirability appearing in responses (Morin, 2011; Paulhus, 2002; Poels & 

Dewitte, 2006; Ravaja, 2004; Shanshi, Scott & Walters, 2014). With results of greater 

accuracy, practitioners can act more effectively by applying measures that optimize the 

quality of service delivery, or experience, and hence increase the perceived value and 

other variables that directly affect customer satisfaction. 

Emotions play a fundamental role as antecedents of satisfaction (De Rojas & 

Camarero, 2008; Yuksel, Yuksel & Bilim, 2010; Walters, Sparks & Herington, 2012; 

González-Rodríguez, et al., 2019) and become the value-base object (measurement 

object) of facial-feature recognition (Lang, Greenwald, Bradley & Hamm, 1993; 

Tarnowski et al., 2017; Kirana et al., 2018). In this respect, negative emotions are related 

to a lack of satisfaction and tourists would perceive a negative experience either in the 

tourist destination or in the quality of the service provided. Conversely, the greater the 

accumulation of positive emotions, the higher the level of customer satisfaction. 

Knowledge regarding the causes of negative emotions, which enables dissatisfaction to 

be suitably addressed, can be gathered with the proper location of intelligent sensors. 

Hence, facial-expression recognition sensors can replace questions from self-

administered questionnaires related to service quality, experience quality, and satisfaction 

in the tourism destination and hospitality sector (Li, Scott & Walters, 2015).  

The unquestionable importance of feelings as an antecedent factor of satisfaction, 

together with the emergence of AI devices, form the basis of the present research devoted 

to the exploration of emotions through facial-expression recognition and their link with 

customer satisfaction measured by a self-administered questionnaire. The accuracy of 

how well emotions are related to customer satisfaction provides the validity of the 

technology used. Thus, the main aims of the present research, directly related to 

improving the perceived quality of a specific service offered on a UNESCO world 
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heritage site are as follows: analyse customer satisfaction from the measurement of the 

emotions that are recorded from tourist facial expressions during the guided tour; and 

demonstrate the importance of emotions as a key antecedent of customer satisfaction, 

which in turn would help practitioners improve the quality of a service. The research 

strives to emphasise the use of artificial intelligence (AI) based on facial-expression 

recognition and emotions, and to reveal that the results provided by AI are sufficiently 

optimal to truly be considered as an effective instrument for the validation of or the 

combination with traditional surveys in order to better understand individuals’ emotional 

responses (Critchley & Harrison, 2013; Kreibig, 2010; Lambie & Marcel, 2002; Mauss, 

Levenson, McCarter, Wilhelm & Gross, 2005; Mauss & Robinson, 2009).  

In order to comply with the objectives above, a literature review has been carried out 

on emotions as an antecedent that influences the satisfaction with the quality of the service 

as perceived by the customers, and on the advantages and disadvantages of the application 

of self-report questionnaires to capture individual emotions. A powerful facial-

recognition tool, Emotionalyser, has been employed to collect data on emotions. 

Structural equation modelling, PLS-SEM, has been applied in order to test the 

effectiveness of the facial-expression recognition used in the measurement of customer 

satisfaction, which in turn would provide information to practitioners regarding 

improvements to service quality.  

 

2. Literature review 

2.1. Satisfaction and emotions  

Traditionally, studies on consumer satisfaction have been addressed from a cognitive 

perspective where satisfaction was generally modelled as the result of a process of 

comparison between the expectations and the perceived results after a consumption 

experience (Bigné et al., 1997a; Oliver, 1977, 1981; Oliver & Desarbo, 1988; 

Parasuraman, Zeithamal & Berry, 1985, 1988, 1994). However, a new trend in addressing 

satisfaction from a cognitive-affective approach emerged in the late eighties in the 

academic literature on customer behaviour (Bagozzi, Gopinath & Nyer, 1999; Bigné & 

Andreu, 2004; Dubé & Menon, 2000; Richins, 1997; Yu & Dean, 2001; González-

Rodríguez et al., 2016). These authors claim that the cognitive component of satisfaction 

is insufficient to understand the consumer's response to a consumption experience since 

satisfaction is a process of cognitive evaluation that produces affective responses that 
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influence a customer’s decision-making and therefore the subsequent consumer 

behaviour.  

The understanding of the influence of emotions on individual responses such as 

satisfaction and behaviour has appeared as a recurrent theme in many disciplines, 

including travel and tourism. Emotions originally studied from consumer psychology 

have been understood as an antecedent driver of responses from consumers exposed to 

advertisements, service interactions, use of products, visiting experiences, or to certain 

environmental conditions, to name but a few. Although there is no standard definition for 

emotion, it is commonly accepted that “Emotions arise in response to events that are 

important to the individual's goals, motives, or concerns” (Frijda, 1988, p. 351). In an 

individual, emotions trigger affective, cognitive, physiological, and behavioural 

responses (Brave & Nass, 2002). In this vein, in behavioural science, it is argued that 

emotion is a key construct for understanding consumer preference with regard to 

consumption of products and services (Dai et al., 2015). Moreover, pleasant feelings and 

satisfying results are identified as emotion-related factors that determine consumption 

experiences (Stock, 2011). Accordingly, in the empirical research, the domain of emotion 

is divided into positive and negative emotions (Dai et al., 2015; Tarnowski et al., 2017). 

In the literature, emotions have been generally measured through the self-report 

questionnaire method and observation techniques (Coghlan & Pearce, 2010; Isomursu, 

Tähti, & Kuutti, K., 2007; Lee & Kyle, 2012; Wang & Minor, 2008). While self-report 

techniques are mainly based on dimensional theories of emotions since they focus on 

cognitive aspects of a subjective or memorable experience, observation techniques are 

mostly related to categorical theories since they observe physiological and expressive 

responses derived from a stimulus.  

Traditionally, in the tourism and hospitality fields, self-report methods based on 

previous measurement scales of emotion have been used to explore how travellers’ 

emotions experienced during a trip are strong predictors of satisfaction (Bigné & Andreu, 

2004; Bigné, Andreu & Gnoth, 2005; Faullant, Matzler, & Mooradian, 2011; San Martin 

& del Bosque, 2008; González-Rodríguez et al., 2019) and behavioural intention (Bigné, 

Mattila, & Andreu, 2008; Donovan, Rossiter, Marcoolyn, & Nesdale, 1994; Machleit & 

Eroglu, 2000; Rodríguez Molina, Frías-Jamilena, & Castañeda-García, 2013; White & 

Scandale, 2005; Yüksel & Yüksel, 2007). A literature review on tourism and consumer 

behaviour reveals that the empirical approach for the measurement of emotions based on 

self-report questionnaires relies on either unipolar (San Martin, 2005) or bipolar items 
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(De Rojas & Camarero, 2008; Alegre & Garau, 2010; Žabkar, Brenčič & Dmitrović, 

2010) to capture data concerning mainly valence and arousal. In the bipolar approach, 

emotions are conceived as bipolar states where extreme positions are mutually exclusive 

(Bagozzi et al., 1999; Oliver, 1997), such as happy/unhappy, entertained/bored. The use 

of bipolar measurement scales is not suitable when individuals experience the two 

extreme positions in the same experience. This situation could happen when the product 

or service provided presents multiple features leading the respondents to experience 

independent states of happiness and unhappiness, or when the service is provided over a 

period of time and hence the respondents might have both positive and negative 

experiences (Andreu, Bigne, Chumpitaz & Swaen, 2006). However, with the unipolar 

scales, the individual indicates the intensity or frequency with which each emotional state 

(positive and negative) is experienced by the respondent. The main limitation of the 

unipolar state is that the answers for positive and negative emotional states may be just 

the opposite and therefore redundant.  

Self-report measures have been useful and widely employed in tourism mainly because 

they are simple and economical methods for the capture of emotions (Healey, Nachman, 

Subramanian, Shahabdeen & Morris, 2010; Micu & Plummer, 2010; Poels & Dewitte, 

2006; Teixeira,Wedel & Pieters, 2012; Domínguez-Quintero et al., 2019). However, self-

report questionnaires present major limitations when measuring travellers’ emotions. 

First, the self-report methods may be biased towards providing socially acceptable 

answers (Brønn & Vidaver-Cohen, 2009; Podsakoff & Organ, 1986; Worthington, Ram 

& Jones, 2006), even when respondents have been assured confidentiality and anonymity. 

Second, the self-report measures may involve cognitive bias basically due to the 

respondents’ conscious awareness of emotions (Clore & Ortony, 1988; Frijda et al., 1995; 

Kolodyazhniy, Kreibig, Gross, Roth & Wilhelm, 2011; Poels & Dewitte, 2006; 

Winkielman & Berridge, 2004; Wilhelm, Grossman & Mueller, 2012) and the ability to 

remember or explain the emotions they have experienced throughout the visit (Paulhus & 

Vazire, 2007; Poels & Dewitte, 2006; Wilhelm & Grossman, 2010). Third, a significant 

bias when measuring emotions involves the time elapsed between the moment travellers 

experience the emotion to the time those emotions are reported (Micu & Plummer, 2010; 

Urry, 2009). Mostly, in the tourism sector, emotions are considered as simple cognitive 

appraisals by being measured at a specific point in time and therefore represent the overall 

emotional assessments of the visit or trip (De Rojas & Camarero, 2008; Hosany & Gilbert, 

2010). Furthermore, emotions are dynamic (Forlizzi & Ford, 2000) and a user can 
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experience a variety of emotions while the service or product is being provided. Only a 

few studies  measure emotions by asking respondents the same questions at regular 

intervals throughout the visit (Graham et al., 2008; Tussyadiah & Fesenmaier, 2009), 

although, for these studies, there is still a time lapse between the moment the emotion is 

experienced and the moment said emotion is reported (Kim & Fesenmaier, 2015). Fourth, 

other limitations have also been recognized as being related to the items utilised to 

identify emotions (Chamberlain & Broderick, 2007): certain measures grounded in 

emotions either contain terms which are not familiar to the respondents or ignore 

emotions which are part of people’s daily lives. Furthermore, those measurements related 

to semantically differential items where the two anchor points are not clear opposites 

(e.g., bored and relaxed) are particularly confusing for respondents.   

A growing interest in the collection of information on emotions through 

psychophysiological indicators has been stressed in the literature on tourism to overcome 

the limitations of the self-report measures (Bagozzi et al., 1999; Chamberlain and 

Broderick, 2007; Li, Shanshi, Scott, Noel, Walters & Gabbi, 2014; Li, Walters, Packer & 

Scott, 2018; Li, Walters, Packer & Scott, 2016; Shanshi, Scott & Walters, 2014). 

Psychophysiological measurements can be conducted continuously, thereby providing a 

vast number of measurements for the detection of the dynamism of emotions (Wang & 

Minor, 2008). Furthermore, since these measurements do not depend on verbal scales, 

they prevent users from experiencing any confusion with message processing (Ravaja, 

2004) and require no cognitive effort or memory. The psychophysiological instruments 

available for the collection of data on emotions are essentially those that measure 

physiological reactions, such as sweating, and pupil dilation (Kreibig, 2010; Partala et al., 

2000), or that measure expressions mainly based on facial or vocal expressions (Ekman 

& Friesen, 1978; Kaiser & Wehrle, 1994; Litman & Forbes, 2003).  

Eye tracking captures gaze direction (reflecting attention) and blink frequency 

(associated with mental load). Scan paths of the eyes reveals how people look at websites 

and advertisements: which parts of a web, an advertisement, or picture are actually 

noticed and how long people look at various items. Modern eye-tracking technology can 

easily collect this data, which makes it increasingly popular in behavioural studies. 

Recently, studies in tourism have used eye-tracking methodologies in a laboratory setting 

to explore visual attention distribution of consumers while navigating on an online 

interface (Espigares-Jurado et al., 2020), while looking at evocatively beautiful and 

emotional pictures, tourism advertisements, or hotel marketing images (Li, Huang and 
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Christianson, 2016; Scott, Green and Fairley, 2016; Scott et al., 2019; Wang et al.,  2018). 

However, eye tracking is not without limitations: eye movements can be influenced by 

excessive blinking or tears and also by biases when participants have previous experience 

with eye-tracking applications. In this vein, the combination of eye tracking and facial-

expression analysis with other physiological data to collect tourist emotional responses 

can take research to a higher level (Li, Scott and Walters, 2015). 

Electrodermal activity analysis (EDA) measures the activation of the Autonomic 

Nervous System (ANS), which controls most of the organs and muscles and is responsible 

for arousal such as excitement and anticipation. When people are exposed to a stimulus, 

the ANS is activated leading to a change in skin conductivity. Skin conductance (SC) is 

a tool to measure EDA and therefore to capture emotion responses. EDA has also been 

used in tourism research to assess the emotional arousal experienced by participants in 

laboratory settings whilst observing stumuli (Babakhani, Ritchie & Dolnicar, 2017; 

Brodien Haparai, Walters & Li, 2018; Hadinejad, Moyle & Scott, 2019). The progress in 

technology regarding the availability of wearable and mobile physiological sensors offers 

researchers the opportunity to obtain tourists’ physiological responses, such as 

electrodermal activity when exposed to a variety of cognitive, physical, and emotional 

experiences, in real time and throughout the entire experience (Kim & Fesemmaier, 2015; 

Shoval, Schvimer & Tamir, 2018). The major limitations of EDA are related to the 

sensitivity of the equipment used and the demand for accurate analysis since skin 

conductance levels (SCLs) differ across individuals (Li, Scott & Walters, 2015).   

Facial-expression recognition techniques analyse the shapes and patterns of facial 

features as result of emotional responses when individuals are exposed to external and 

internal stimuli. Hence, the impact of any content, product, or service on how humans 

respond can be assessed by continuously observing the changes elicited in their emotional 

states as reflected in their facial features. Coding facial expressions during the time the 

individual is exposed to the stimuli can be employed to complement and enrich self-

reports with quantified measures of emotional responses towards products or services that 

are of a more unconscious nature. 

The majority of facial-expression recognition devices or applications that gather facial 

images using video or thermal imaging (Huopio, 1998) involve the following steps 

(Figure 1): face detection, that is, the position of a face in a video frame, which can be 

achieved by applying classifier algorithms; detection of facial landmarks or facial features 
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(e.g., mouth corners, eyebrow corners). An internal face model, similar to an invisible 

virtual mesh, is placed onto the respondent’s face and is adapted as the respondent’s face 

moves or changes expression.  The face model contains fewer facial features than those 

for the actual respondent’s face but is sufficiently detailed to capture the shape of an 

emotionally indicative facial area. It detects both single landmark points (e.g., mouth 

corners, eyebrow corners, and eyebrows) and feature groups (entire mouth, entire 

eyebrows), and registers facial expressions and classifies emotions. Once the features are 

detected, they are used as inputs into the classification algorithms and translated into 

emotional states or affective metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Procedure for facial-expression engines 

 

Three methods have been used to measure facial expressions of emotion (Wolf, 2015): 

the facial electromyography (fEMG) method; the facial action coding system (FACS); 

and automated-based face recognition.  

The facial electromyography method has been developed to recognize activation of 

facial muscles by using electrodes attached to the surface of the skin (Chamberlain & 

Broderick, 2007; Fridlund & Cacioppo, 1986; Mauss & Robinson, 2009; Tassinary, 
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Cacioppo, & Vanman, 2007; Wang & Minor, 2008). Two major groups of facial muscles 

have been investigated: right/left corrugator supercilii (“eyebrow wrinkler”) and right/left 

zygomaticus (major). The corrugator supercilii is a pyramidal muscle near the eyebrow 

that usually produces a vertical wrinkling of the forehead, and is associated with negative 

emotions such as disgust. The zygomaticus muscle extends from each cheekbone to the 

corners of the mouth and draws the angle of the mouth up and out, and is generally 

associated with smiling (Lang, Greenwald, Bradley & Hamm, 1993). Studies examining 

the effectiveness of using physiological emotion responses recorded by facial 

electromyography methods are rarely used in tourism research to detect consumers’ 

spontaneous emotional responses. Li et al. (2018a) demonstrate the advantages of skin 

conductance and facial electromyography methods in tracking emotional responses over 

self-report emotions to destination advertisements.  Studies carried out by Li et al. (2018b) 

and Li (2019) move beyond the methodological debate and analyse whether the influence 

of the emotional responses evoked by destination television advertisements on “attitude 

towards the advertisement”, “attitude towards a destination”, and visit intention may vary 

when collecting data from psychophysiological (facial electromyography (fEMG) and 

skin conductance (SC)) and self-report measures. According to this study, both measures 

reveal that emotions elicited by advertisements are relevant for subsequent cognitive and 

behavioural responses. The main disadvantage of the electromyography method is related 

to its technical complexity since it requires not only electrodes, cables, and amplifiers, 

but also expert biosensor processing skills. Furthermore, this method fails to allow the 

examination of facial expressions from real-life situations since the data is collected in 

laboratory settings (Wolf, 2015).  

The Facial Action Coding System enables identification of emotions by analysing the 

changes in expression on a person’s face. These changes can be observed either from real-

life observations of a person or under laboratory conditions. This method is based on 

Ekman’s’ theory of six basic emotions (1992, 1999). Based on this approach, experts 

examine videotaped faces for image analysis and describe specific expression changes 

called “Action Units” (AUs). Thus, this method allows the identification of basic 

emotions over time (Wolf, 2015). While this is useful since FACS scores have high 

validity, the main disadvantage of this method is the time required for the analysis of the 

fixed images and therefore for its codification.  

In order to overcome the limitations of the fEMG and FACS methods, fully automated 

technologies based on computer-vision algorithms have been developed and improved in 
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quality over the years. The progress of automated technologies has been accompanied by 

developments in computer science, which has granted automated facial expressions more 

reliability and accessibility (Lewinski, den Uyl, & Butler, 2014). Examples of 

commercially available software largely used by researchers to classify emotions of facial 

expressions include FaceReader from Noldus, FACET, and AFFDEX from Affectiva. 

These algorithms differ in “the statistical procedures, facial databases, and facial 

landmarks to train the machine learning procedures and ultimately classify emotions” 

(Stöckli et al., 2017, p.5).  FaceReader, software marketed by Noldus (www.noldus.com) 

automatically analyses facial expressions in terms of Ekman’s six basic emotions plus the 

neutral state. The analysis by FaceReader is based on FACS principles. FaceReader can 

recognize all changes in facial expressions based only on the basic emotions, although 

those emotions that are more complex cannot be analysed (Yu & Ko, 2017). Furthermore, 

FaceReader has evolved through the development of multiple face models, which work 

well under cultural and age differences (East-Asian Model, Baby Face Reader). FACET 

and AFFDEX are commercial toolkits that form part of a suite of software by iMotions 

(www.imotions.com). This iMotions’ software uses three databases of facial-expression 

pictures: WSEFEP, ADFES, and RaFD, which are validated to show FACS-consistent 

facial expressions of basic emotions. The FACET and AFFDEX algorithms categorize 

the facial expressions without integrating any contextual information and fail to detect 

non-prototypical emotions (Stöckli et al., 2017).  While AFFDEX is currently one of the 

most widely used software development kits (SDKs) for classifying emotional states 

(Magdin, Benlo & Koprda, 2019), this is not the case in tourism research. 

Recent studies in laboratory settings have shown that FaceReader is an efficient tool 

for the analysis of emotions with a range of accuracy rate between 88% (Lewinski et al., 

2014) and 90% (Loijens & Krip, 2013). Stöckli et al. (2017) found similar results for 

iMotions automated facial-expression analysis modules: an accuracy rate of 70% and 

96% for AFFDEX and FACET were obtained, respectively. Furthermore, technologies 

allow the examination of facial expressions of a person without the interference of 

technical recording equipment, such as electrodes, wires, and amplifiers. These 

technologies are consequently less intrusive for the subject, who therefore remains less 

aware of the measurements being taken.  

In the analysis of facial expressions of emotions in the tourism literature, the studies 

obtain data from two different sources: FaceReader SDK, which is often complemented 

with other psychophysiological measurements; and a questionnaire that assesses the post 

http://www.imotions.com/
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hoc emotional states (Hetland, Vittersø, Fagermo, Øvervoll & Dahl, 2016; Kaiser, 2017; 

Söderlund & Sagfossen, 2017; Yu & Ko, 2017; Hadinejad, Moyle, Scott & Krali, 2018; 

Hadinejad, Moyle, Kralj & Scott, 2019). The main aims of these studies are twofold: to 

observe whether a stimulus triggers specific emotional responses and therefore whether 

these responses facilitate the prediction of tourist behaviour; and to uncover any 

differences or similarities between emotions derived from using FaceReader and post hoc 

self-reported emotional states. The studies all had similar findings: the physiological 

techniques provide objective measurements of emotion; the stimuli can be a powerful 

elicitor of emotions; and a combination of psychophysiological measurements and a self-

report approach should be employed for a better and accurate understanding of emotional 

responses. However, these studies using FaceReader have been conducted in laboratory 

settings and therefore fail to capture emotions in real time and in real-world settings. With 

the development of mobile applications that support facial-expression algorithms, it has 

become possible to collect emotional responses under these circumstances, which 

constitutes a challenge for tourism research. In this vein, the following hypotheses are 

tested to confirm whether facial-expression recognition by using a mobile application 

constitutes a suitable instrument for the measurement of satisfaction: 

H1: The expression of positive emotions measured through a facial-expression 

recognition method is positively related to Customer satisfaction measured through a 

questionnaire.  

H1a: The influence of positive emotions on satisfaction is moderated by visitors’ 

gender 

H1b: The influence of positive emotions on satisfaction is moderated by visitors’ 

age. 

H2: The expression of negative emotions measured through a facial-expression 

recognition method is negatively related to Customer satisfaction measured through a 

questionnaire.  

H2a: The influence of negative emotions on satisfaction is moderated by visitors’ 

gender 

H2b: The influence of negative emotions on satisfaction is moderated by visitors’ 

age. 

 

3. Methodology 
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The experiment took place on a UNESCO World Heritage Site that hosts guided tours, 

with the aim of determining customer satisfaction by means of the digital analysis of 

facial expressions. Over the course of the year 2018, 5 people from every tour group were 

photographed in various situations, throughout the entire length of each tour, by 5 

different staff members. As a result, a wide range of facial expressions and emotions were 

captured and categorised according to age, gender, and nationality. Since we are 

interested in analysing the overall effect of emotions on overall satisfaction after the tour-

guide service provided, aggregate scores (averages) per emotion and per tourist have been 

used. The average of each basic emotion has been employed as an indicator of the 

constructs involved in PLS-SEM. In order to comply with the Data Protection Act, all 

visitors were informed that facial photographs were being taken on the site with the sole 

purpose of complementing an ongoing academic study. In an attempt to minimise sample 

bias and maximise the likelihood of capturing spontaneous facial expressions, the 

consenting individuals were made aware that, at any point of their tour, only a few of the 

participants may or may not be photographed. In addition, they understood that only a 

small, randomised sample of the photographs obtained would eventually be taken into 

account. To moderate the enthusiasm to the greatest degree, the participants agreed not to 

be informed about whether their photographs were selected or not, which implied that 

there were zero personal benefits or losses involved in participating in the experiment. 

At the end of the visit, the photographed individuals were also invited to rate the 

satisfaction with the service received. The concept of satisfaction used refers to the 

judgment of a cognitive or affective nature that derives from the experience of the tourists 

after their guided visit (San Martín, 2005). Thus, tourists’ satisfaction refers to the 

subsequent assessment of the tourist experience. In the academic literature on tourism, 

there are valid measuring instruments for satisfaction formed by a single item to collect 

the overall dimension of satisfaction with the provision of a service (Petrick et al., 2001; 

Bigné et al., 2001; Chi & Qu, 2008). The authors have adopted a single question to 

measure satisfaction since it is suitable for the research aim: Overall, how satisfied were 
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you with the tour guide service provided? Please rate from 1 (Not at all satisfied), to 7 

(Very satisfied). Those who were not in favour of being photographed refused to give 

their consent and were therefore exempt from all stages of the experiment. 

Readily available commercial methods, especially mobile devices, have greatly 

improved in quality in recent years, thereby enabling the emotions of facial expressions 

to be analysed in real-life settings. This opens a spectrum of possibilities for the analysis 

of the emotions of facial expressions while people are enjoying themselves in a natural 

social environment.  

While the Emotion API algorithm is available only for Smartphones (Emotionalyser 

App) and FaceReader toolkit is available only for desktop platforms, AFFDEX SDK is 

available across both major mobile (e.g., AFFDEXme) and desktop platforms (Windows, 

oIS). The three algorithms differ in their statistical procedures, facial databases, and facial 

landmarks for the classification of emotions. However, all three algorithms rely on the 

Discrete Emotion Theory which focuses on Ekman’s six basic emotions.  

For the purpose of the study, the freely available, user-friendly Emotionalyser App has 

been used. This application was developed by SN Creations and programmed with the 

Emotion API algorithm. The algorithm of the Emotionalyser App is also capable of 

identifying the gender, whether the person has facial hair, and/or whether he or she is 

smiling. This application detects ANGER (Anger), CONTEMPT (Disappointment), 

DISGUST (Aversion), FEAR (Fear), HAPPINESS (Happiness), NEUTRAL (Neutral), 

SADNESS (Sadness), and SURPRISE (Surprise). The most significant features of this 

application include its ability to recognize up to 64 faces in one single photo; there is also 

a wide dimensional range of facial-expression recognition, ranging from 36x36 pixels to 

4096x4096 pixels, whereby faces outside those limits remain undetected. The results are 

enhanced with higher quality images; close-ups of faces photographed from the front 

improve the accuracy of the assessments (Figure 2). The ratings of each emotion are 

provided as percentages ranging from 0 to 100 that express the probability  that the 
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detected face expresses a certain basic emotion (Stöckil et al., 2019), whereby the sum of 

all the detected emotions for an individual is 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Facial-recognition expressions: mobile device application 

All the images obtained during the visit were edited and fed into the application to 

obtain the data. Photographs were taken of 250 individuals. However, the final sample 

consisted of 230 individuals whose images were of a sufficiently high quality to be valid 

for their analysis by the software. For the final sample, 56% of the participants were 

Gender: Female 
Moustache: 0.00 
Beard: 0.00 
Smile: 0.00 

Anger: 0.00% 
Contempt: 0.00% 
Disgust: 0.00% 
Fear: 0.00% 

Happiness: 95% 
Neutral: 5% 
Sadness: 0.00% 
Surprise: 0.00% 
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female and 44% male. Of the participants, 30% were between the ages of 20 and 35, 48% 

were 35 to 55, and 22% were over 55 years old, while 42% were international tourists 

and a large percentage had higher or secondary education (67%). The data obtained was 

analysed to understand the pattern the sample in terms of emotions. In order to go into 

further depth in the analysis to confirm the validity of the facial-expression recognition 

application in its ability to measure satisfaction with the service provided, a structural 

equation model (SEM) was estimated by using Partial Least Squares (PLS-SEM). From 

the SEM model, the relevance of the emotions in the explanation of customer satisfaction 

was tested. To this end, the SmartPLS v3 software was used.  

 

4. Results 

4.1. First-Stage Analysis 

A first analysis has been carried out in order to observe how the sample behaves in terms 

of emotions. For all respondents, different scores were given to the emotions (ANGER 

(Anger), CONTEMPT (Disappointment), DISGUST (Aversion), FEAR (Fear), 

HAPPINESS (Happiness), NEUTRAL (Neutral), SADNESS (Sadness), and SURPRISE 

(Surprise)). A person can present different emotions at the same time if these are similar 

emotions, such as Happiness and Surprise. A respondent with a high score in Happiness 

presents low scores in the negative emotions. Thus, the scores higher than 50% are the 

threshold for deciding the most predominant emotion in the individual. The descriptive 

statistics for the emotions are displayed in Table 1. 

Table 1. Descriptive statistics  

  Surprise Neutral Fear  Sadness Disgust Anger Contempt Happiness 

Average 1.937 10.630 0.230 2.010 0.7836 0.951 0.592 77.272 

Std. Deviation 3.920 23.874 1.033 3.389 3.001 3.021 1.695 20.394 

Pearson’s coeff. 2.024 2.246 4.492 1.686 3.829 3.176 2.863 0.264 

 

From Table 1, it can be observed that Happiness is the emotion which has been 

detected as the most frequent emotion on the faces of participants while Fear was detected 
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with the lowest frequency by the Emotionalyser App. Moreover, most of the emotions 

present high variability based on Pearson’s Coefficient of variation (Fear, Disgust, Anger, 

Contempt, Neutral, Surprise), whereby the emotion Fear followed by Disgust and Anger 

are those with the highest variability, in contrast with Happiness which has the lowest 

variability.   

The distribution of the emotion scores for each respondent is also observed in Figure 

3. While most of their scores for Happiness remained above 80%, for neutral emotions 

most fell below 20%. With only a few exceptions, as observed in Figure 3, all the negative 

emotions plus that of Surprise most frequently present scores below 5%.   
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Figure 3. Participants’ Emotion distribution  0 
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4.2 PLS-SEM results 

Partial Least Squares structural equation modelling (PLS-SEM) was employed to test 

the hypotheses. While PLS-SEM can be described as a composite-based approach that 

uses linear combinations of the indicator variables as proxies of the conceptual variables 

with a potential to explain the variance of the dependent variables, Covariance-Based 

SEM (CB-SEM) defines constructs as common factors that explain covariation between 

their indicators  (Rigdon et al., 2017). Hence, the decision to use PLS-SEM is mainly 

made by setting the constructs for emotions in the model as composites defined as linear 

combinations of their indicators or dimensions (Becker, Rai & Rigdon, 2013; Henseler et 

al., 2014; Rigdon, 2012; Sarsted et al., 2016). The constructs for positive emotions 

(Happiness and Surprise) and for negative emotions (Disgust, Contempt, Fear, Anger, 

and Sadness) have been modelled as composites and estimated in Mode B (regression 

weights) since the existence of correlated items or internal consistency is not assumed for 

these latent variables. The weights provide evidence of the relative contribution of each 

indicator to their respective composite.  

4.3. Measurement Model 

In order to evaluate the measurement models in PLS-path modelling, it is necessary to 

distinguish between Mode A composites and Mode B composites. The Mode B 

composites (EC) for negative and positive emotion constructs were evaluated at the 

indicator level by assessing multicollinearity and regression weights (Hair et al., 2017). 

Unlike composites in Mode A, discriminant validity, composite reliability, and Average 

Variance Extracted are not applicable. First, to test the potential multicollinearity between 

items, the statistics of the variance inflation factor (VIF) were calculated for the two 

constructs. The VIF values obtained for the indicators were below the 3.3 threshold 

(Petter, Straub and Rai, 2007). Hence, no multicollinearity was observed between the 

items for the two B composites. Second, the significance of regression weights was 

addressed via the bootstrapping technique based on n=5,000 subsamples. Table 2 shows 

the VIF values and the statistical significance of the regression weights.  
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Table 2. Measurement model for Mode B composites: regression weights and VIFs 

 

Mode B 

Composites  
Weights 

VIF Bootstrapping 95% 

Confidence Intervals BC 

   Lower Upper 

Negative 

Emotions 
 

 
  

Contempt 0.227* 1.124 0.101 0.325 

Disgust 0.427* 1.176 0.214 0.651 

Fear 0.195* 1.280 0.092 0.320 

Sadness 0.114* 1.037 0.05 0.321 

Anger 0.109* 1.109 0.08 0.221 

Positive 

Emotions  
 

 
  

Happiness 0.587* 1.563 0.285 0.653 

Surprise 0.483* 1.734 0.258       0.514 

Notes: BC: Bias-Corrected. 5,000 bootstrap samples; * p<0.05 (two-tailed t-distribution) 

 

4.4. Structural Model 

In order to assess the structural model, potential multicollinearity between constructs 

has been checked. The VIF values for the exogenous constructs indicate that 

multicollinearity is not an issue in our research model since the VIFs remain below 3.3. 

Table 3 shows the main effects of the negative, positive, and neutral emotion constructs 

on satisfaction. To test for the significance of the path coefficients, the Bootstrapping 

procedure has been applied with 5,000 samples. It provides t-values and confidence-

interval bias corrected at a 95% confidence level for the assessment of the statistical 

significance of the path coefficients (Hayes & Scharkow, 2013; Roldán & Sánchez-

Franco, 2012). From Table 3, it is observed that positive emotions have positive and 

significant effects on satisfaction (β=0.557), whereas a negative relationship between 

negative emotions and satisfaction has been found (β=-0.322) as expected. Hence, 

hypotheses H1 and H2 are confirmed. It is also interesting to notice that the contribution 

of positive emotions is greater than that of negative emotions on satisfaction. 
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A high value for the coefficient of determination (R-square) has been obtained, which 

reveals the great explanatory power of emotions regarding satisfaction (Hair et al., 2011; 

Henseler et al., 2009). Thus, 68.89% of the variability of satisfaction is explained by the 

respondents’ emotions. The model has also been assessed through the analysis of the 

cross-validated redundancy index (Q2) for the dependent variable of satisfaction. A Q2 

value of 0.348 (greater than 0) implies that the model shows satisfactory predictive 

relevance. The high explanatory power and predictive relevance achieved in the research 

model might indicate that the algorithm of the Emotionalyser App is a very powerful tool 

for the explanation of satisfaction through facial-expression recognition. Finally, to 

evaluate the goodness of fit of the research model, the standardized root mean square 

residual (SRMR) (Henseler et al., 2014) has been obtained. The SRMR is of 0.067, which 

lies below the thresholds of 0.10, and the more conservative threshold of 0.08 (Hu & 

Bentler, 1999). 

Table 3. Hypotheses testing, path, and confidence interval 

  Bootstrapping 95% 

confidence interval BCa 

 
  

    

  

Path coefficients 

 

Lower 

 

Upper  

H1: Positive Emotions Satisfaction 0.557** *(8.891) 0.297 0.672 

H1a: Positive Emotions*gender Satisfaction 0.073* (2.256) 0.004 0.187 

H1b: Positive Emotions*agegroup1Satisfaction 0.004 (0.978) -0.031 0.978 

H1b: Positive Emotions*agegroup2Satisfaction 0.0061 (0.1553) -0.0825 0.0748 

H2: Negative Emotions  Satisfaction -0.322***(4.133) -0.523 -0.185 

H2a: Negative Emotions*genderSatisfaction 0.087 *(2.246) -0.007 -2.011 

H2b: Negative Emotions*agegroup1Satisfaction 0.0032 (0.098) -0.0004 0.147 

H2b: Negative Emotions*agegroup2 Satisfaction 0.007(0.831) -0.0023 0.876 

Notes:  BCa, Bias-Corrected and accelerated. 5,000 bootstrap samples. *p<0.05;**p<0.01, ***p<0.001 

(based on t-statistics, one-tailed test).   

+Gender=1 for female and Gender=0 for male;  

+agegroup1=1 for age between 20 and 35, and agegroup1=0 for age between 35 and 55 (this being the 

reference group); 

+agegroup2=1 for age over 55, and agegroup2=0 for age  between 35 and 55.  
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Having considered the possibility of heterogeneity being caused by demographic 

variables such as age and gender in the relationships analysed by hypotheses H1 and H2, 

the article employs those variables as moderating factors. The results shown in Table 3 

demonstrate that there are no significant differences expressed by different age groups 

regarding the relation between positive emotions and satisfaction and the relation between 

negative emotions and satisfaction. Hypotheses H1b and H2b are therefore not supported. 

However, by considering gender as a moderating variable, the relation between positive 

emotions and overall satisfaction is shown to be stronger for female participants, whereas 

the relation between negative emotions and overall satisfaction is stronger for male 

visitors. Hypotheses H1a and H2a are consequently confirmed. 

5. Discussion and Conclusion 

The aim of the study is to analyse individuals’ immediate emotional responses when an 

on-site tour-guide service is provided in a heritage place. We assume that the emotional 

responses are good indicators of the perception of the quality of the service provided. To 

support this assumption, the paper provides a literature review on research which focuses 

on the role of emotions in the measurement of tourist satisfaction.  

In order to test the hypotheses that emotions detected via individuals’ facial 

expressions influence satisfaction, participants were also invited to comment on their 

overall satisfaction with the service at the end of the guided visit, and structural equation 

modelling was used that was estimated by means of PLS. The study found that Happiness, 

with its scores higher than those of other emotions, was the most frequent emotion 

response. Happiness and Neutral emotions present more variability in comparison to 

negative emotions.  Positive and neutral emotions exert a positive and significant 

influence on overall satisfaction, whereas negative emotions have a negative and 

significant influence on overall satisfaction. This study concludes that emotional 

responses as coded by the facial-expression recognition device, Emotionalyser, constitute 

a good indicator for overall satisfaction derived from the service provided on a tourist 

heritage site. The findings achieved are supported by the academic literature that shows 
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empirical evidence of emotions playing a relevant role in the customer experience in 

tourism (Lee & Kyle, 2012; Mcintosh & Siggs, 2005; Prayag, Hosany & Odeh, 2013; 

Yuksel, Yuksel & Bilim, 2010) and therefore in behaviour intention (Bigné et al., 2005; 

Prayag, Hosany & Odeh, 2013; Tsaur, Chiu & Wang, 2007). The moderating influence 

of gender on the relation between emotions overall satisfaction is also supported by 

previous studies in the tourism literature (Wu et al., 2016; Yan & Wu, 2018), since 

positive emotions are more commonly associated with women and neutral and negative 

emotions are more frequent in men.  

5.1. Theoretical Implications 

In the last decade, scholars have claimed the need to employ real-time and real-world 

settings to attain physiological measurements (Hunziker, Buchecker & Hartig, 2007; 

Walls et al., 2011). However, a few studies applying psychophysiological metrics have 

been found in the literature and the most frequent methodology to measure emotions in 

tourism is through surveys via either open-ended questions (Prayag, Hosany & Odeh, 

2013; Walters, Sparks & Herington, 2012) or self-report methods (Chamberlein & 

Broderick, 2007; Jacobs, Feheres & Campell, 2012; Wang & Minor, 2008). However, 

self-report questionnaires are not exempt from limitations since they are subject to a bias 

towards social desirability, the scale of measurement employed, or seek responses 

regarding emotional experiences of which respondents remain unaware. Measuring 

emotions through facial-expression recognition is still in its infancy in the tourism sector 

(Kim & Fesenmaier, 2015; Mills, Meyers & Byun, 2010), and has largely been applied 

in the fields of marketing and publicity (Lee, Broderick & Chamberlein, 2007; Micu & 

Plummer, 2010) and salient organizations and large-scale governmental programs (Mills, 

Meyers & Byun, 2010). It is broadly recognized that researchers and managers should 

understand the major role of emotions in customer experiences in the tourism destination 

and in the hospitality industries (Li, Ashkanasy, & Ahlstrom, 2014). Our study responds 

to a claim in the literature on tourism with respect to recording facial-expression 

recognition spontaneously rather than in a laboratory (Matsumoto & Hwang, 2015). 
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Furthermore, this paper combines both psychophysiological measures and self-report 

questionnaires as a hybrid approach towards confirming the potentiality of the application 

of AI in the tourist sector. The combination of these methods provides a potential 

direction for future research in the tourism industry at a time when artificial intelligence 

instruments (facial-expression recognition, eye tracking, etc.) are continuously improving 

in their ability to detect emotions while the subjects remain unaware of the spontaneous 

measurements being taken. 

5.2. Managerial Implications 

In recent decades, major efforts have been made in information technology that enable a 

better understanding of people’s emotions and their influence on behaviour (Blaters & 

Steirnert, 2015; Campellone, & Kring, 2013; Firmin, Luther, Lysaker, Minor & Salyers, 

2016; Lerner, Li, Valdesolo, & Kassam, 2015). For over forty years, the facial-expression 

recognition method has been under development for the collection of accurate 

information regarding emotional responses to a stimulus (Wilhelm & Grossman, 2010). 

However, artificial intelligence is starting to be more widely appreciated in the tourism 

industry since it can improve business by measuring customer experience through the 

codification of emotional experiences (Kim & Fesenmaier, 2015). Since the user 

experience is dynamic (Forlizzi & Ford, 2000), the accurate measurement of emotions 

provides Destination Marketing Organizations (DMOs) and practitioners with valuable 

insights regarding the perception of the experience by the customers in real time. In 

general, tourist destinations and the hospitality industry strive to provide tourists with 

memorable experiences that go beyond mere satisfaction. Emotional responses might 

therefore be used not only to improve the quality of the services in tourist destinations 

and in the hospitality industry, but also to design attractions, activities, and hotels, and to 

allocate resources more efficiently. The facial-coding approach provides the tourism 

industry with a means to measure the impact of the service regarding retaining customers, 

and to attract new customers by creating a differential value based on the customers’ 

emotional experiences, and therefore to improve its ability to provide customers with a 
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personal guest experience. Thus, the provision of high-quality service would lead to an 

increase in customer satisfaction and loyalty (Berry & Parasunaman, 1991). Furthermore, 

unlike surveys, facial-expression recognition as a customer-experience measurement 

system might have the capacity to detect any problem while the service is provided and 

to measure satisfaction continuously and in a non-intrusive way. At the same time, 

obtaining information continuously in real time would allow companies and DMOs to 

make changes in their business strategies in order to continue improving and to achieve a 

sustainable competitive advantage. In fact, psychophysiological methods can capture 

“emotional peaks” during the customer’s exposure to a stimulus when visiting a 

destination, thereby offering valuable information to DMOs and hospitality managers to 

make improvements in the image of the destination. 

The growing interest in measuring customer satisfaction with AI is evident in the 

tourism sector, especially in the hotel sector, due to the implantation of facial-expression 

recognition sensors. Thus, a pioneering initiative in this regard is found in the Campanile 

chain, which, through an agreement with the start-up iMotion Analytics, has installed a 

sensor that combines video with infrared to detect the emotional reaction of its guests. 

Subsequently, the information is processed and an assessment of the customer experience 

in the hotel is obtained. This allows the company to evaluate and improve its customer 

service protocols (imotionanalytics.com). Expedia has also applied a similar experience 

by analysing the facial emotions of its users through a series of sensors to improve their 

portals and services. 

One type of visual monitoring to detect emotions in contrast to other devices such as 

Emotionalyser, is the iMotions Facial-Expression Analysis Module, which integrates 

automated facial-coding engines, such as AFFDEX. This module, by using a webcam, 

directly synchronizes facial emotions expressed with stimuli in real-time in the iMotions 

software. It displays 20 facial-expression measures (action units): 7 core emotions (joy, 

anger, fear, disgust, contempt, sadness, and surprise) and provides values on the expected 

emotion (imotionanalytics.com). 
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In recent years, controversy has grown over whether facial expressions faithfully 

reveal an individual’s emotions. While accurate identification of emotional facial 

expressions is essential for practitioners, the limitations of the algorithms employed for 

the detection of emotions with accuracy has been subject to certain debate over the last 

two decades. Kim et al. (2005) recognized a skin-colour bias due to the illumination 

conditions when an image is extracted. To overcome this limitation, a fuzzy classifier 

algorithm was proposed for the detection of the skin colour by using a fuzzy colour filter 

to extract the face region. The fuzzy classifier was adopted to recognize emotions from 

extracted features. The experiment results show that the proposed algorithm detects 

emotion well, specifically with an accuracy of emotion detection of 74%. The recognition 

accuracy of the five emotions (Happy, Sad, Angry, Disgust, and Surprise) ranges between 

69.9% (Sad and Disgust) to 78.5% (Happy). Barrret et al. (2019) investigated how people 

move their faces to certain emotions, concluding that it is very difficult to say precisely 

how someone feels only from their facial expression. According to this study, people do 

many other things with their faces when they are happy or sad. A smile can be mocking 

or ironic. Behaviours vary greatly depending on cultures and situations, and context plays 

a major role in the way expressions are interpreted. In addition, facial-recognition systems 

might generate extremely inaccurate results, especially for races other than the white race 

as noted by the National Institute of Standards and Technology (NIST, 2019) 

(https://www.nist.gov/). These biases make it necessary to train artificial intelligence 

algorithms that incorporate details of images that include other aspects, such as skin tone, 

culture, race, and improved facial geometry. Barret et al. (2019) concluded that it is even 

more important than technology development for scientists to consider emotions in a 

more complex fashion. The expressions of emotions are varied, complex, and situational, 

and therefore “simply ‘reading out’ people’s internal states from an analysis of their facial 

movements alone, without considering various aspects of context, is at best incomplete 

and at worst entirely lacking in validity, no matter how sophisticated the computational 

algorithms”. 

https://www.nist.gov/
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With the advent of disruptive technologies, concerns regarding security and privacy 

issues have emerged and appear to be more pronounced over the past decade by being 

widely discussed in academia, the media, and the courts.  However, the legal systems, in 

most countries, have failed to address these concerns properly and fully (Shoval, 

Schvimer and Tamir, 2018). The EU General Data Protection Regulation (GDPR) 

considered “biometric data” as a special category of personal data that cannot be 

processed without first satisfying established permission and/or exceptions. However, 

broader regulation of emotional information is required since the EU GDPR provides no 

specific regulation for emotion tracking under those situations in which the emotion 

analytics prohibit identification of the individuals. However, Privacy laws should be 

revised to regulate not only issues related to biosensed data that is not considered 

biometric, but also those issues related to group privacy (Sedenberg and Chuang, 2017).  

Emotion AI technology is a helpful tool to obtain competitive advantages for a firm 

when used correctly, thus avoiding harm related to consumer privacy and security issues. 

With the growing interest in implementing emotion AI technology in hospitality and 

tourism businesses, customers could evolve social norms or behavioural adaption to 

address certain risks associated to this use (Senderber & Chuang, 2017) which would 

render emotion analytics unreliable. Thus, practitioners, rather than waiting for revised 

and highly developed laws, should move one step ahead by developing mechanisms to 

maintain the highest standards of security and privacy to ensure transparency. 

Practitioners could use a Privacy Impact Assessment (PIA) prior to the processing of 

personal data so that they may attain an insight on the privacy risks, thereby enabling the 

organization to take suitable measures to prevent any impact on consumers’ privacy. The 

hotel could make this document visible to guests so that they are informed about the risks 

to privacy when they stay at the hotel.  

 

5.3. Limitations of the Study and Future Research 
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This paper presents certain limitations that indicate future avenues of research. 

Although this paper has striven to encourage research into measuring emotions through 

facial-expression recognition codification as an alternative in the measurement of 

customer-experience satisfaction, further research into this topic is needed. At present, 

facial-expression recognition applications are not exempt from limitations, as they 

depend on the specific dimensions of the emotions considered. In particular, the mobile 

application device employed in this paper uses the basic emotions by Ekman (1999) to 

detect emotions through facial-expression recognition software. Other scenarios and 

software of a more sophisticated nature implemented in the tourism and hospitality 

industry are necessary to fully comprehend the significant role played by emotions in the 

improvement of service quality. It is expected that further research work will be 

performed in the future in this direction, which in turn will benefit from the growing 

improvement in the facial-expression recognition software. In the case of this particular 

research, the respondents’ images were inherently subject to self-reported biases, since 

the participants were made aware that staff were taking pictures during their visit, which 

may have influenced their behaviour and the validity of their emotional expression under 

the given circumstances. Since visitors have to be informed about such activities due to 

the Data Protection Act being in place, this drawback is inevitable. However, in order to 

reduce self-reported biases, this experiment was designed to collect photos of only a small 

number of participants. Those involved were aware of the randomness and the absence 

of personal benefit for the participants; this potentially normalised the unnatural 

atmosphere of the experiment and reduced the possible bias issues with the obtained 

images. Moreover, repeated photos of each person were taken because the aim of the 

study was to capture how overall emotions during the visit influenced overall satisfaction. 

In this vein, aggregate data (averages) of each emotion and per person were used in the 

empirical analysis. As future avenues of research, the study could be extended to also 

analyse the dynamic changes in emotions during the visit as well their influence on each 

dimension of satisfaction related to the various attributes of the services offered. To this 
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end, the study might be completed by also using wearable and mobile physiological 

sensors to obtain tourists’ emotional responses throughout the entire experience in real 

time.  
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