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ABSTRACT To enable safe and efficient use ofmulti-robot systems in everyday life, a robust and fast method
for coordinating their actions must be developed. In this paper, we present a distributed task allocation and
scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal
and precedence constraints. The approach is based on representing the problem as a variant of the vehicle
routing problem, and the solution is found using a distributed metaheuristic algorithm based on evolutionary
computation (CBM-pop). Such an approach allows a fast and near-optimal allocation and can therefore be
used for online applications. Simulation results show that the approach has better computational speed and
scalability without loss of optimality compared to the state-of-the-art distributed methods. An application of
the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.

INDEX TERMS Multi-robot systems, multi-robot coordination, task allocation, task scheduling, vehicle
routing problem, distributed optimization.

I. INTRODUCTION
Research on cooperative multi-robot systems (MRS) has
received considerable attention in recent years due to
its compelling advantages over single-robot applications.
The main challenge is to create a robust and intelligent
control system that enables seamless communication and
task coordination between robots so that they can work
efficiently as a team. Therefore, control architecture design,
communication, and mission planning are the main problems
discussed and solved in the literature. In this paper, we discuss
the problems of task allocation (the question of who does
what?) and task scheduling (the question of how to arrange
the tasks in time?) of multi-robot systems, which are often
summarized under the common termmission (task) planning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

In this paper, we propose a distributed solution for task
planning problem in heterogeneous multi-robot teams for
problems within the class XD[ST-SR-TA] defined in the
taxonomy in [1]. These task types require execution by a
single robot (SR, single-robot tasks), and robots are allowed
to execute only one task at a time (ST, single-task robots).
The task allocation and scheduling procedure considers
both current and future assignments (TA, time-extended
assignment). In terms of complexity, these tasks involve
cross-schedule dependencies (XD), where various constraints
relate tasks from plans of different robots. The cross-schedule
dependencies we consider are precedence constraints and
transitional dependencies. The heterogeneity within the
system arises from various factors, including the different
hardware configurations and physical capabilities of each
robot, which include sensor diversity, perceptual capabilities
and different actuation mechanisms. The intended roles
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and behaviors, such as specialization in certain tasks, also
contribute significantly to this diversity.

In our approach, we reinterpret the task planning problem
as a variant of the Vehicle Routing Problem (VRP).
We combine the task planning problem with a variant
of the well-studied Multi-Depot VRP model (MDVRP),
in particular, the MDVRP with a heterogeneous fleet [2],
hereafter referred to as HF-MDVRP. By doing so, we define a
generic model of task planning problems that can be applied
to different domains of multi-robot and multi-agent systems.
Another advantage of the proposedmodeling is that it exposes
the task planning problems to a wide range of optimization
techniques already available in the VRP literature, thus
advancing the state of the art in task planning.

To solve the task planning problem modeled as HF-
MDVRP, we propose a distributed metaheuristic algorithm
based on the Coalition-Based Metaheuristic (CBM)
paradigm [3] (CBM-pop1). We chose a distributed approach
because it offers more reliability, flexibility, adaptability and
robustness. This approach is particularly suitable for dynamic
field applications with resource-constrained robots and can
provide near-optimal solutions to difficult optimization
problems in a reasonable amount of time. To empirically
validate the proposed algorithm, we created a generic set
of multi-robot task planning problems (a new benchmarking
dataset, [4]) with precedence constraints and transitional
dependencies and compared our solution with the following
techniques:

1) Gurobi Optimizer [5]. Gurobi is a centralized solu-
tion that uses exact mathematical methods to solve
Mixed-Integer Linear Programming (MILP) problems.
Gurobi provides an optimality gap for each solution and
can therefore serve as a measure of the optimality of the
proposed solution.

2) State-of-the-art distributed auction-based approach
with a single central agent acting as an auctioneer [6].
We slightly adapt the method to suit our problem class.

Using an extensive series of simulation runs of these
solutions, we have shown that ourmethod is state-of-the-art in
terms of optimality. The advantage of our approach is better
computational speed and scalability, which is essential for
online operation of multi-robot systems. Another important
advantage is that our solution produces results in a distributed
manner. The auction algorithm, on the other hand, assumes a
central auctioneer agent that processes bids from other agents
and makes task assignments. In distributed systems, this may
be regarded as a tactically vulnerable point. Although our
proposed method is suitable for dynamic setups with on-the-
fly mission rescheduling, dynamic applications are beyond
the scope of this paper and are deferred for future work.

To illustrate the effectiveness of the method, we apply
it to a case of multi-robot collaboration in a robotized
greenhouse, as presented in the SPECULARIA project [7].
This contribution is part of a more comprehensive work

1https://github.com/barbara0811/cbm_pop_mdvrp_optimization

presented in the dissertation by Arbanas Ferreira [8]. A more
detailed examination of the results presented here can be
found in the full dissertation.

The paper is organized as follows. In the next section,
we outline approaches to MDVRP problems and justify the
solution we chose to model our problem. In Section III,
we formally define the task planning problem and present
our original contributions. Next, we define the unified
model, which combines task planning and HF-MDVRP.
In Section V, we present CBM-pop to solve the defined
unified model. Section VI contains a detailed evaluation of
the results and a discussion. In the same section, we show how
the proposed approach can be applied to the SPECULARIA
use case. Finally, we draw conclusions and give an outlook
on future work in Section VII.

II. RELATED WORK
To improve readability, this section begins with a description
of the current state of mission planning. We then focus on
solutions specifically targeted at VRP-based models.

A. MISSION PLANNING
Some of the best-known distributed solutions to the
mission planning problem are auction and market-based
approaches [6], [9], [10]. These generally fall into the domain
of task allocation (and omit scheduling of tasks), where
robots use bidding mechanisms for a set of simple tasks
to allocate tasks among themselves. However, the partial
ordering between tasks and tight coupling, which are the
basis for our cooperative missions, are rarely considered.
These constraints concern a class of problems [1] where an
agent’s effective utility for a task depends on other tasks
assigned to that agent (In-Schedule Dependencies, ID) or
additionally on the schedules of other agents (Cross-Schedule
Dependencies, XD). More recently, the authors in [6] and
[11] have addressed the problem of precedence constraints
in iterative auctions. These algorithms can be run offline
or online, and they solve the same class of problems as
those considered in this work. However, all these solutions
still require a central auctioneer node that is in constant
communication with all other nodes, which can be considered
as a weak point of the system.

To alleviate this issue, solutions that use consensus algo-
rithms for bid resolution have been suggested. A pioneering
work in this area is the Consensus Based Bundle Algorithm
(CBBA) [10]. Authors in [12] extended the basic algorithm
to incorporate temporal constraints. However, the objective
function remains rather simple, as it only accounts for a
number of completed tasks without considering the usual
metrics such as cost or duration of the mission.

On the other side of the spectrum, various optimization-
based methods attempt to solve the task planning problem.
They range from exact offline solutions [13] to heuristic
approaches such as evolutionary computation and other AI
optimization methods [14], [15]. In the former, a slightly
broader class of problems is considered than in this
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work, where robots may perform more than one task
simultaneously. The problem is modeled as an instance
of a MILP problem and solved using offline solvers or
well-known optimization methods. Although optimal, the
method involves a high computational burden and lacks
reactivity in dynamic environments.

In our previous work, we proposed the decentralized
framework for multi-robot coordination [16], [17], which
defines the design of particular decision-making modules
and their architecture, as well as coordination mechanisms
that ensure coordinated behavior. In these examples, fairly
simple algorithms are used for task allocation and scheduling.
In [16], tasks are assigned to robots using a greedy function
that allots each task to the robot with the best score for
that task and ignores the effects on other task assignments.
In recent work [17], we extended the assignment function to
a simple market-based task allocation scheme that aims to
minimize the total mission duration.

B. TASK PLANNING AS VRP
The problems considered here (XD[ST-SR-TA]) fit well into
the MDVRP model, particularly the HF-MDVRP variant.
MDVRP is a VRP variation that deals with problems where
customers are served from multiple depots with a given
fleet of vehicles. It is a classic example of an NP-hard [18]
combinatorial optimization problem. Even for relatively
small problem sizes, it is challenging to solve MDVRP
optimally. Given the rapid combinatorial explosion, it quickly
becomes impossible to obtain optimal solutions for this type
of problem.

Similar modeling was proposed in [19], where task
planning refers to the Dial-a-Ride Problem (DARP), a variant
of VRP with pickup and delivery. To solve the problem, the
authors use a centralized bounded optimal branch-and-price
algorithm. Although the idea is similar, the set-partitioning
formulation [19] is mainly suitable for solutions employing
exact methods and cannot be directly used to solve non-trivial
VRP instances due to the large number of possible routes. The
method suffers from a high computational cost, scalability
issues, and the inability to work online in distributed systems.
Therefore, in this paper, we have defined a more manageable
and general representation that can be easily used in various
heuristic approaches.

Many heuristic methods have been proposed for MDVRP
problems, and distributed approaches have been particularly
suitable for multi-robot systems. More recently, Distributed
Artificial Intelligence (DAI) has extended to multi-agent
systems that deal with complex combinatorial problems.
These multi-agent concepts can be readily applied to various
metaheuristics, in particular population-based, hybrid and
distributed metaheuristics. The distributed approach provides
higher computational performance by executing tasks in
parallel and improves robustness and efficiency through agent
collaboration. Our algorithm is inspired by the Coalition-
Based Metaheuristic [3], which applies established DAI
principles to solve VRP problems.

Other approaches include distributed heuristic optimiza-
tion algorithms such as Multi-Point Stochastic Insertion
Cost Gradient Descent (MuPSICGD) [20], a distributed
learning-based evolutionary algorithm [21], and the artificial
bee colony algorithm [22]. In [23], the authors use a
distributed game theoretic model to distribute products to
customers without a central authority. Although each of these
approaches would be suitable for solving our HF-MDVRP
problem, we found that they are either comparatively slower
or have worse optimality on the MDVRP benchmark dataset.
The full comparison was not included in the paper for brevity,
but can be found at [24].

ORIGINAL CONTRIBUTIONS OF THE PAPER
The original contributions presented and discussed in this
paper are:

1) The unified task planning model based on VRP
paradigm. It combines problems of task planning
with a variant of the well-studied Multi-Depot VRP
(MDVRP) model, which generalizes the problem and
makes it domain-agnostic. In particular, we consider
MDVRP with heterogeneous fleet, HF-MDVRP.

2) Distributed metaheuristic algorithm for the defined
problem based on the Coalition-Based Metaheuristic
(CBM) paradigm (CBM-pop).

3) An open benchmark dataset repository of task planning
problems of class XD[ST-SR-TA]. Our proposed
benchmark dataset includes problems with 2n, 2 ≤ n ≤
10, n ∈ N tasks and 2−8 robots, providing a large-scale
test of the efficiency and scalability of task planning
algorithms.

III. TASK PLANNING PROBLEM
In this paper we consider two mathematical formulations.
First, we formally define the task planning problem in this
section, followed by the mathematical representation of the
unified model that represents task planning as a VRP variant.
The solution to the task planning problem proposed in this
paper is based on the unified mathematical model.

We consider a problem where a team of heterogeneous
robots R = {1, . . . ,m} is available to perform a collection
of simple single-agent tasks (actions) A = {1, . . . , n}. One
or more robots can perform each a ∈ A, and we specify the
set of actions that robot i can perform as Ai. Redundancy is
possible, and in general Ai ∩ Aj ̸= ∅, i ̸= j, and i, j ∈ R.
In addition, we define precedence constraints on the set of

actions. If the action a ∈ A must be completed before the
action b ∈ A starts, we can specify a constraint between the
two as prec(a, b). This constraint forces af < bs, where af

and bs indicate the times when the action a finishes and b
starts.

In addition to strict precedence constraints, the task
planning problem also involves transitional dependencies
between actions. The problem involves the transition time
between two actions (setup time), which includes all the
operations required to go from the execution of one action
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to the start of processing the next action. This term represents
an additional temporal dependency on the order of actions,
since direct predecessors and successors of actions strongly
influence the total duration of the mission and the associated
costs (setup costs).

Another naturally occurring constraint inherent in the
physical system itself is the capacity constraint, which is
expressed in the limited battery resources of each robot. Each
action requires a certain amount of energy to be performed,
which depends on the physical properties of the robot and the
current state of the system (i.e., robot position, battery status,
and current payload). For a robot i ∈ R with the capacity Qi,
we define the capacity constraint as

∑
a∈Si qi(a) ≤ Qi, where

Si(Si ⊆ Ai) is the set of actions assigned to the robot i for
execution, and qi(a) is the energy requirement of the action a
to be completed by robot i.

A solution to the described problem is a set of time-related
actions (schedule) for all robots that do not violate the
specified constraints. Formally, the schedule si for each robot
i ∈ R is defined as si = {(a, as, af ) ∀a ∈ Si}, where Si is the
set of actions assigned to the robot i, and as(af ) are the start
(finish) times of the action a.
In the evaluation procedure, each action a ∈ A is assigned

a couple (da(i), ca(i)),∀i ∈ R, where da(i) stands for the
duration of the action a when performed by robot i and ca(i)
for the cost of the action. The robot estimates the duration and
cost of a future task based on the current state of the system.
The planning procedure aims to find a solution that meets all
constraints and maximizes the global reward of the system.
The objective function can be chosen at will, depending on
the system requirements.

All defined sets and variables are later summarized in
Table 1, in direct comparison with HF-MDVRP and the
unified model of task planning as VRP.

IV. UNIFIED TASK PLANNING MODEL FORMULATION
The problem modeling in this section is based on the VRP
paradigm, which is included in Appendix A of this paper for
the convenience of readers. In this section, we describe the
elements of HF-MDVRP through the lens of task planning
and equate all the building blocks of the VRP-based model
with a concept of task planning. Then we define the full
unified mathematical model in terms of a MILP.

A. TASK PLANNING AS HF-MDVRP
In relating the task planning problem to the HF-MDVRP
model, we associate the fundamental VRP concepts directly
with the task planning paradigm. As shown in Figure 1, the
idea of a depot in VRP problems is directly related to the
initial position of the robot, and the vehicle in VRP represents
a robot itself. Next, the concept of customer and customer
demand is applied to the actions in task planning and the
energy demand of each action, respectively. Consequently,
the routes (sequences of customer nodes to be visited) as
solutions to VRP problems represent the sequence of actions
in the final robot schedules in the task planning model. Based

on the metaphor thus specified, we describe the mathematical
model of task planning problems defined as a VRP problem
variant.

In the modeling of task planning as a VRP variant, we use
the term customer for the simple single-robot tasks, actions.
We designate the set N = {1, . . . , n} = A, where A is the
set of actions, and N is the set of customers in the original
VRP modeling. This definition includes only actionable
elements from the robot’s task structure, and all tasks must be
decomposed down to the action level where vehicle routing
is optimized.

In the task planning paradigm, we directly equate the
concept of a vehicle with robots, K = {1, . . . ,m} = R,
where K is the set of vehicles, and R the corresponding robot
set. Typically, the VRP paradigm requires vehicles to start
at the depot, serve assigned customers along the route, and
return to the depot. In our modeling, we equate the term depot
with the initial location of the robot. Unlike the vehicles in
typical VRP problems, the robot is not required to return to
the starting point. Such a variant of VRP is referred to in the
literature as open VRP [25].

The proposed model distinguishes between two different
cost variants. On the one hand, the cost of transitioning
between two tasks, setup cost, is directly related to the travel
cost of HF-MDVRP. This cost can include any movement
between locations and the possible setup cost between two
tasks and is defined as cijr , i, j ∈ {0} ∪ A, i ̸= j, r ∈
R. Closely related to the setup cost is the setup time,
tijr , i, j ∈ {0} ∪ A, i ̸= j, r ∈ R, which defines the
duration of the robot’s setup between two tasks. Next, the
energy requirement of the specific action i ∈ A is defined
as qir , r ∈ R and characterized as the customer demand in
HF-MDVRP.

According to the specified modeling, the robot schedules
are constructed based on the routes in the HF-MDVRP
solution. The parallel is apparent since both constructs
represent temporally ordered sequences of tasks. In the open
VRP paradigm, a route is a sequence r∗ = (i0, i1, . . . , is)
with i0 = 0, where 0 denotes a depot node. In our modeling,
we take the previously defined concept of a schedule and map
the order of tasks in a schedule to the arranged sequence of
tasks s∗r = (i0, i1, . . . , i|Sr |), ij ∈ Sr , j ∈ {1, . . . , |Sr |}, r ∈ R,
where i0 is a zero-cost task associated with the robot’s starting
location, and Sr is a set of scheduled tasks. Temporal elements
of the schedule are the task start time and the task duration,
defined respectively as: ωir := asi , i ∈ Sr , r ∈ R and
σir := di = afi − a

s
i , i ∈ Sr , r ∈ R.

A schedule for a robot r ∈ R is considered feasible if
the capacity constraint qr (Sr ) :=

∑
i∈Sr qir ≤ Qr holds,

no task is scheduled more than once, ij ̸= ik for all 1 ≤
j < k ≤ |A|, and precedence and transitional constraints are
respected. When it is necessary to perform repetitive tasks,
each occurrence of the task should be treated as a separate
entity.

All previously defined relations are summarized in the
Table 1 and additionally illustrated in Figure 1.
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TABLE 1. Task planning elements as HF-MDVRP.

FIGURE 1. An illustration of the relationship of the HF-MDVRP model to the task planning paradigm. The
diagram shows the direct relation between concepts in VRP and task planning problems, where depots
represent initial robot positions, vehicles stand for robots, customers refer to actions, and vehicle routes
represent final robot schedules.

B. UNIFIED MODEL FORMULATION
The mathematical representation of the unified task planning
model as MILP is based on the graph structure. Let V be
the set of vertices (or nodes) consisting of two distinct sets
of nodes, the action nodes Va = A = {1, . . . , n} and the
start position nodes Vs = {1, . . . , l}, where n and l represent
the number of available tasks and robot start positions,
respectively. It holds that V = Va ∪ Vs and Va ∩ Vs = ∅.
The underlying graph G = (V ,E) is complete and directed
with edge set E = {e = (i, j) : i, j ∈ V , i ̸= j, i and j not both
in Vs}.

Wemodel heterogeneity motivated by a mixed fleet variant
of MDVRP, in which the set of customers available to the
vehicle corresponds in the task planning formulation to a
subset of actions Ar that the robot r ∈ R can perform.
To model unavailable tasks j ∈ A \ Ar , we set cijr to a
sufficiently large number M for all (i, j) ∈ E related to
the unreachable task j. Further aspects of heterogeneity of
multi-robot systems are achieved by replacing the general
coefficients of HF-MDVRPwith robot-specific ones, e.g., the
capacity Q by Qr , the energy requirement qi by qir for all
i ∈ Va, and the cost cij by cijr for all (i, j) ∈ E .
For the given precedence constraints prec(ai, aj), ai, aj ∈ A

and assuming that tasks ai(aj) correspond to nodes i(j) ∈ Va,

we represent the precedence constraint in VRP notation by
adding the pair of tasks to the set of constrained tasks 5 =

{(i, j), i, j ∈ Va}. The constraint on the tasks is then

ωi + σi ≤ ωj, (i, j) ∈ 5, (1)

where ωi and ωj mark the beginning of the tasks i and j
respectively, and σi denotes the duration of task i. We also
distinguish particular ωir as the start time of task i when it is
executed by robot r ∈ R, and the corresponding task duration
σir . The expressions for these cases are defined in the full
model representation.

TABLE 2. Defined sets in the unified model.

For convenience, all sets, variables, and constants of the
model are summarized in Tables 2 and 3.

VOLUME 12, 2024 74331



B. Arbanas Ferreira et al.: Distributed Allocation and Scheduling of Tasks With Cross-Schedule Dependencies

TABLE 3. Defined variables and constants in the unified model.

Definition 1 (Unified Task Planning Model Formulation):
Based on the relations defined in this section, we define
the unified task planning model built according to the
HF-MDVRPMILP formulation. The binary decision variable
xijr is defined to indicate whether the robot r ∈ R traverses an
edge (i, j) ∈ E in a given solution. Then, the model is given
as:

min


δ = max(

∑
r∈R

∑
i′∈V

xi′ir (ωir + σir ))

−min(
∑

r∈R

∑
j′∈V

xj′jrωjr )

γ =
∑

r∈R

∑
(i,j)∈E

xijr (cijr + qjr )

(2.1)

Subject to
∑
r∈R

∑
i∈V ,i̸=j

xijr ≤ 1, ∀j ∈ Va, (2.2)

∑
j∈Va

xijr ≤ 1, ∀i ∈ Vs, r ∈ Ri, (2.3)

∑
(i,j)∈E

xijr (ωir + σir + tijr − ωjr ) ≤ 0, ∀r ∈ R

(2.4)∑
r∈R

∑
i′∈V

xi′ir (ωir + σir ) ≤
∑
r∈R

∑
j′∈V

xj′jr

ωjr ,∀(i, j) ∈ 5, (2.5)∑
i∈V

∑
j∈V\{0},j̸=i

qjrxijr ≤ Qr , ∀r ∈ R, (2.6)

∑
r∈R

∑
i∈S

∑
j∈S,j̸=i

xijr ≤ |S| − 1, ∀S ⊆ Va,

(2.7)

xijr ∈ {0, 1}, ∀r ∈ R, (i, j) ∈ E, (2.8)

ωir ∈ R, ∀i ∈ V , r ∈ R. (2.9)

The objectives of the optimization problem are represented by
Equations (2.1). The goal is to find a solution that minimizes
the makespan δ (the difference between the latest action
finish time in the whole mission and the earliest action
start) and the cost γ . Actions i′ and j′ are possible direct
predecessors of actions i and j, respectively, in the schedules
of the same robot. The sum

∑
i′∈V xi′ir is equal to 1 for

exactly one action i′ that precedes i in the schedule of robot r .
Constraints (2.2) require that each task is executed at most

once. Equations (2.3) state that each robot may execute at
most one schedule (only one edge starting at robot’s initial
position can be incorporated in the solution). Note that flow
constraints represented in previously defined versions of VRP
in Equations (7.4) are omitted here. This is because we do
not restrict this model to provide closed-loop solutions, as we
consider the open VRP formulation. Next, constraints (2.4)
guarantee schedule feasibility with respect to considerations
in the schedule of each robot. The tijr represents the setup time
between actions i and j for robot r . The constraints defined
by (2.5) enforce precedence constraints. Equations (2.6)
ensure that the capacity constraints are met by the robots,
while (2.7) eliminate all possible sub-tours in the solution.
Finally, variable domains are provided in (2.8) and (2.9).

V. SOLUTION APPROACH
In this section, we present our algorithm inspired by the
CBM paradigm to solve the problem described in Section IV.
We provide a brief overview of the motivating algorithm that
forms the basis for our approach. We then go into the details
of our implementation, highlighting the novel elements.

A. THE COALITION-BASED METAHEURISTIC (CBM)
In CBM [3], multiple agents organized in a coalition
simultaneously explore the solution space, cooperate, and
self-adapt to solve the given problem collectively. The
novelty introduced in this algorithm was the use of basic DAI
principles, reinforcement, and mimetic learning, which not
only allows agents to learn from their experiences and adapt
their future behaviors accordingly, but also shares knowledge
with other agents in the coalition. In addition to the learned
behaviors, the agents also share the best solutions found,
so that at the end of each iteration of the algorithm, the best
global solution to the problem is obtained.

FIGURE 2. CBM agent structure.

The visual representation of the CBM agents is shown in
Figure 2. During the search process, each agent maintains
three solutions, similarly to particle swarm optimization [26]:
a current solution, the best solution found by the agent, and
the best solution found by the entire coalition. An agent uses
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several operators that are applied to the current solution.
The operators can be intensifiers or diversifiers. Intensifier
operators concern improvement processes such as local
search, and diversifier operators correspond to generation,
mutation, or crossover procedures.

The choice of operators to apply is not completely
stochastic as in Genetic Algorithms (GA). Instead, it is
determined by a decision process that uses perceived state
and past experience to select the most appropriate operators
and coordinate intensification and diversification procedures.
The selection of operators is based on heuristic rules. The
search behavior of an agent is adapted during the optimization
process through an individual reinforcement learning mech-
anism and mimetic learning. These mechanisms modify the
rules of the decision process based on the experience results
of previous explorations. Although all agents in the coalition
use the same set of operators, the learning mechanisms may
ultimately lead to different strategies.

Agents cooperate in two ways. First, an agent can inform
the rest of the coalition about the newly found best coalition
solution. Second, agents share their internal decision rules
to enable mimetic behavior. This fosters search behavior in
which desirable solutions are often found.

In [3], the authors proposed the CBM solution for a case
of VRP. In our case, we consider a HF-MDVRP and thus
need to formulate a suitable set of operators. Moreover,
we modified the basic CBM algorithm to keep more than
one current solution so that a population of solutions is
preserved, similar to GA methods. In the rest of the paper,
we refer to the proposed algorithm as CBM-pop. Details on
the implementation of the algorithm follow in this section.

B. DISTRIBUTED METAHEURISTIC FOR HF-MDVRP
The first feature to consider in the design of the algorithm
is the representation of the solution. Since this metaheuristic
is based on a set of operators commonly used in genetic
algorithms, we use the same encoding of the solutions
in terms of the chromosome. Inspired by an evolutionary
process, each chromosome contains genetic material that
defines a solution (genotype). In the case of HF-MDVRP, this
refers to the assignment of actions to different robots and their
order within a sequence of tasks in the schedule. An indirect
coding, based on permutations of actions, similar to the one
in [27], was used. Each chromosome is associated with a
phenotype that evaluates the genetic material and, in our case,
generates schedules for task sequences based on the temporal
properties of the tasks.

An example of a chromosome and its genotype and
phenotype is shown in Figure 3. On the left is shown
the genetic material of a solution containing specified task
groupings of robots (robot1, robot2, robot3) and order-
ing. The genotype representation is maintained respecting
intra-schedule precedence constraints. On the right is an
example of a phenotype generated from the specified
genotype. The schedule is formed by introducing time

FIGURE 3. Solution representation – chromosome genotype and
phenotype. The tasks presented here are arbitrarily named generic tasks
((A, B, C) × (1, 2, 3)). The idle times introduced in the schedules are a
consequence of precedence constraints prec(A1, A3) and prec(A3, C1),
since task A3 cannot start before task A1 finishes, and task C1 cannot
start before the end of A3.

elements into the ordered tasks (task durations, task setup
times). If necessary, minimal idle times are inserted to
ensure consistency with the defined precedence constraints.
The phenotype represents the so-called semi-active schedule,
where no left shift is possible in the Gantt graph. For any
given sequence of robot operations, there is only one semi-
active schedule [28]. One advantage of storing solutions in
this way is faster exploration of the solution space, since all
operators perform on a simpler genotype representation of the
solution. The evaluation procedure renders the phenotype and
evaluates the solutions found.

The next point to consider is the evaluation of the solution.
The usual approach to solution evaluation is to use a fitness
function that maps each chromosome in a population to
a value of the utility function in R. This usually works
best when the search is limited to a single optimization
objective. For multi-objective optimization problems, it is
best to employ a ranking procedure because these objectives
often interact in complex, nonlinear ways. In this work,
we use a Pareto ranking procedure [29] that assigns ranks
to all solutions based on the non-dominance property (i.e., a
solution with a lower rank is clearly superior to solutions with
a higher rank concerning all objectives). Therefore, solutions
are stratified into multiple ranks based on their ability to meet
the optimization objectives.

An important property of the Pareto front is that it allows
us to determine the trade-offs of each decision, namely the
reduction in the performance of the other objectives if one
is improved along the frontier. Therefore, we can easily
determine the priority of the different criteria for the solutions
that are on the Pareto front. An alternative approach of using
weighted sum function was discarded since the problem of
determining weights is often non-trivial and may not produce
good results, but also it is impossible to obtain points on
non-convex parts of the Pareto-optimal set in the criterion
space.

To evaluate solutions in a population P, we apply the
double-rank strategy, which takes into account both the
density information and the distribution of the solution in
the rank. In the first step, an individual i ∈ P is assigned a
dummy rank value R′(i) representing the number of solutions
that dominate it in the current population P:

R′(i) = |{j, j ∈ P, i ≺ j}|, ∀i ∈ P, (3)
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where the symbol ≺ corresponds to the Pareto dominance
relation, i.e., i ≺ j if the solution j performs better than i given
all optimization criteria. The final rank of solution R(i) is then
defined as the sum of its own dummy rank value and that of
its dominators:

R(i) = R′(i)+
∑

j∈P,i≺j

R′(j), ∀i ∈ P. (4)

The second part of the fitness function is the density
function, which determines how similar the solution is to
the other individuals in the population. Here we use a fairly
simple solution where the density of an individual is inversely
proportional to the distance to the nearest solution in the
population and is calculated as follows:

dens(i) =
1

min(d(i, j), ∀j ∈ P)+ 2
, ∀i ∈ P, (5)

where d(i, j) represents the Euclidean distance between two
individuals in the criteria space. Finally, the fitness of the
solution is obtained as:

fitness(i) =
1

R(i)+ dens(i)+ 1
, ∀i ∈ P. (6)

In this setup, the rank of the solution has a much greater
weight in the fitness function, since it is a natural number
denoting a subset of solutions from the population, and
the rank is a positive number smaller than 1/2. The role
of the density function is to discriminate between solutions
of the same rank and to favour the more diverse solutions,
as they are deemed more likely to explore new regions of the
solution space.

Next, we briefly discuss the operators that form the core of
the algorithm. We distinguish between generation, diversifi-
cation (crossover and mutation operators), and intensification
operators (local search algorithms). In our application, the
generation operator is not used as a diversifier because it is
applied during initial population creation. In the proposed
solution, we use a single generation operator, a greedy
insertion method that randomly takes an unassigned task
and inserts it into existing routes at minimal cost, taking
into account capacity constraints. Other operators are listed
and described in Table 4. Diversification operators are first
introduced in [30], and we implemented them for our specific
problem. In the crossover procedure, we distinguish two cases
of Best-Cost Route Crossover (BCRC), depending on the
choice of parent chromosomes. One of the parents is always
the current solution of the agent and the second parent is
either the best solution found within the whole coalition
or selected from the population. Similarly, we adapted the
local search algorithms developed in [3] for a VRP problem
class. In all these operators, the logic remains the same,
but the additional ordering constraints arising from the
precedence relation have been taken into account, which
is a non-trivial task. For each chromosome, we maintain a
directed graph with precedence constraints derived from the
original constraints and the order of precedence-constrained
nodes within the route. For each operator, we consider

the precedence graph and allow insertion of nodes only in
places that do not break the consistency of this graph (cyclic
dependencies and breaking of precedence dependencies are
not allowed).

TABLE 4. Genetic operators used in our proposed solution.

The behavior of a single CBM-pop agent is described
in Algorithm 1. Before starting the algorithm, the agents
exchange their specific problem parameters – task durations
σir , setup times tijr , setup costs cijr , energy demands qir , and
energy capacitiesQr . During the runtime of the algorithm, the
best solutions found and the weight matrices are exchanged
among the agents, as noted in Algorithm 1. The procedure
itself consists of Diversification-Intensification cycles (D-I
cycles), where a diversification operator is first applied to
the solution to guide the search out of the local optimum.
After this perturbation, a series of local search procedures are
applied to the solution to arrive at a new (local) optimum. The
process is repeated until a termination criterion is reached.
Further details on the definition of states, experience updates
and learning mechanisms can originally be found in [3].

As mentioned, another novelty introduced here is that an
agent stores a population of solutions instead of just one
solution. The idea is to diversify the search further and allow
for broader exploration. The role of the population is a dual
one. First, after each n_cycles cycles without improvement
over the best solution found, a new starting solution is
randomly selected from the population. Second, solutions
from the population participate as a second parent in the
crossover operator, thereby introducing novelty from the
genetic pool.

VI. EVALUATION AND DISCUSSION
The assessment involves large-scale testing on randomly gen-
erated task planning problems with precedence constraints
and transitional dependencies [4]. Additionally, we apply the
evaluation in a practical setting, specifically routing mobile
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Algorithm 1 Population-Based CBM Algorithm
(CBM-Pop)
input : pop_size – number of solutions in

population
input : η – reinforcement learning factors
input : ρ – mimetism rate
input : n_cycles – number of cycles before

changing exploration origin
input : ϵ – minimal solution improvement
variable: cbest ag – best solution found by the agent
output : cbest coalition – best found solution
/* initialization */
P← generate_population(pop_size)
evaluate_population(P)
ccurrent ← select_solution(P)
W ← init_weight_matrix()
H ← init_experience_memory()
while stopping criterion is not reached do

/* calculate current state */
s← perceive_state(H )
if no change in best solution > ϵ for n_cycles
cycles then

evaluate_population(P)
ccurrent ← select_solution(P)

end
o← choose_operator(W , s)
cnew← apply_op(o, ccurrent , P, [cbest coalition])
/* update experience history */
gain← f (ccurrent )− f (cnew)
update_experience(H , s, o, gain) /* update

solutions */
if cbest coalition improved then

broadcast_solution(cnew)
end
/* learning mechanisms */
if end of D-I cycle then

if cbest coalition improved in the cycle then
W ← individual_learning(W , H , η)

else if cbest ag improved in the cycle then
W ← individual_learning(W , H , η)
broadcast_weight_matrix(W )

end
end
if weight matrix received from a neighbor then

W ← mimetism_learning(W , Wreceived , ρ)
end

end

robots in a greenhouse scenario. Our focus lies on evaluating
optimality, computational speed, and scalability.

The proposed solution is implemented in the Robot Oper-
ating System (ROS) [31] environment to enable vehicle-in-
the-loop development of planning algorithms. This facilitates
the rapid transition from the simulated environment to a
real-world experiment. ROS also provides the underlying

communication infrastructure through its message and
service protocols. All simulations were run on Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz x 8, 32 GB RAM
running Ubuntu 18.04 LTS operating system.

One of the important factors affecting the algorithm
performance is the selection and tuning of the parameters.
In this paper, we define the parameters empirically, following
some common practices in evolutionary computing. First,
the population size defines the diversity of the algorithm’s
solution pool. While a large diversity is good, larger
populations lead to slower algorithm convergence. This
parameter should be set considering the known properties
of the problem to be solved. In our simulations, we set
the pop_size to 50. Next, the reinforcement learning factors
η define the learning rate applied to the weight matrix
after finding the best agent (coalition) solution. We set this
parameter to [0, 5, 1], which determines a 50% larger weight
increase for the case where the best coalition solution has
improved compared to the only locally best solution. The
mimetism rate ρ, which determines the rate of an agent’s
mimetic behavior, is set to 0.3, where an agent mimics
another agent’s weight matrix by 30% and retains 70% of
its own learned behavior. Finally, the termination parameters
n_cycles and ϵ are set specifically for each of the application
scenarios. A typical value for n_cycles would be no less than
10000 to obtain high-quality solutions, while ϵ represents the
smallest allowable improvement in the solution and we used
the value of 0.01 to run the algorithm as long as there is
progress.

In Appendix B, we conduct a comparative analysis
between the proposed population-based CBM and the
original single-solution version of the CBM algorithm.

A. COMPARATIVE ANALYSIS ON TASKS WITH
CROSS-SCHEDULE PRECEDENCE CONSTRAINTS
Despite the considerable complexity of benchmark problems
available in the VRP literature, they do not include some
important elements of the problem that our approach solves,
namely cross-schedule dependencies. Therefore, we have
developed a separate set of benchmark examples to evaluate
problems with precedence constraints. The problems are
solved for a team of two and eight robots. The problem
instances include 4, 8, 16, 32, 64, 128, 256, 512, and
1024 tasks, and we generated 50 randomized examples
for each setting. In each example, 20% of the tasks
are precedence-constrained. Task durations and costs are
generated using assumed robot characteristics (speed, energy
requirements). Setup times and costs are calculated using the
above-mentioned agent properties and the Euclidean distance
between tasks associated with random positions in 3D space.
The full benchmark set and results can be found at [4].
In analyzing the results, we compare the proposed dis-

tributed metaheuristic CBM-pop with an exact MILP-based
solution provided by the Gurobi solver [5] and a state-of-
the-art distributed auction-based algorithm presented in [6].
We opted for the Gurobi optimizer because of its precise
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FIGURE 4. Comparison of the performance of the proposed distributed metaheuristic algorithm CBM-pop (green), the Gurobi optimal solver (red), and
the state-of-the-art auction-based distributed algorithm [6] (blue). The top row shows the results for 2 robots, and the performance for 8 robots is shown
in the bottom row. The plot displays a graph for the mean of each of the observed values and the distribution highlighted by a transparent ray around the
graph line. A time limit of 20min was introduced in the simulations, and only the results obtained in this runtime are presented. CPU time represents the
total computational effort (time needed) to compute the solution, while makespan and cost refer to the duration and cost of the computed schedule,
respectively. Figures (a) and (d) clearly show that our algorithm scales better than current methods, as it can solve more complex problems in the given
time.

mathematical approach. However, it is limited to simpler
problems in our dataset as it struggles with higher dimen-
sionality (more tasks). From a small pool of distributed
approaches, we chose the auction-based method [6] because
it directly applies to our problem, covers all relevant
constraints, and can be easily implemented based on the
provided paper. The performance results of the algorithms for
the defined benchmark set are shown in Figure 4.
Two rows of the figure represent the performance of the

algorithms for teams of 2 and 8 robots, respectively. In
the simulations, we introduced a computation time limit of
20 minutes. The optimal solver is able to obtain solutions
for up to 8 tasks, the auction-based algorithm, for up to
128 tasks for the case of 2 robots, and 256 tasks for 8 robots,
while the proposed algorithm can handle all examples in
the benchmark. For the case of 2 robots and 256 tasks, and
8 robots and 512 tasks, the auction algorithm takes about
25 minutes to produce solutions.

The first property to be observed is the algorithm runtime
and scalability of the above approaches. From the first
column of the grid in Figure 4, it is clear how fast
the combinatorial explosion manifests in the auction-based
algorithm. It is even clearer for the optimal solver. TheGurobi
solver succeeds on problems with up to 8 tasks for both sets
of benchmarks. The auction method is able to solve problems

with at most 256 tasks in the given time. An exponential
increase in computation time can be observed. On the other
hand, CBM-pop copes very well with an increase in the
number of robots and tasks. Also, a larger scatter in the
CPU time in CBM-pop is observed for larger task examples.
This is due to the stochastic nature of the protocol and
the quality-based stopping criterion, which terminates the
computation if no improvement in the solution has been
achieved for a certain number of steps.

In Table 5, we can observe the average improvement of the
CPU time of the proposed algorithm compared to the auction-
based method. We provide information for more extensive
problems where the qualities of the proposed method
are highlighted. For simpler examples, the auction-based
algorithm renders solutions faster (about 2-3 times). CBM-
pop computes solutions in about 1.5s for the simplest cases
(5s for more complex problems), and the auction manages to
solve the problem in approximately 0.5s and 2s, respectively.
This is the consequence of the constructive nature of auction-
based algorithm, which generates only one solution, instead
of performing a search of the solution space. For smaller
examples, naturally, this renders less runtime.

We also investigate the performance of the algorithms
in terms of optimality. As explained above, we model
the optimization function in terms of Pareto optimality
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TABLE 5. Summary of average improvements of the proposed algorithm (CBM-pop) compared to the state-of-the-art auction-based algorithm [6] on a
basis of 50 randomized examples for each problem setting. For simpler examples, the auction-based algorithm obtains solutions faster. CBM-pop finds
solutions in 1.5s for the simplest cases ( 5s for more complex problems), and the auction solves the problem in 0.5s and 2s, respectively.

(as defined in Eq. 6) for two criteria, namely the makespan
of the schedule and the total cost (Eq. 2.1). For the limited
number of examples with computed optimal solutions, both
the auction and our method follow the optimal solutions very
closely (with a deviation of up to 0.5% from the optimum).
In Figure 4, the last two columns represent the duration
and the cost of the solution found, but the results are quite
similar, so no significant difference can be seen in the graph.
Therefore, we refer the reader to Table 5, which summarizes
the performance of our algorithm. In all examples presented
here, the CBM-pop algorithm outperforms the auction for
both given criteria. For the case of 2 robots, the improvements
range in makespan from 2% to 7% and in cost up to 3.12%.
For 8 robots, the improvements range in makespan from
2-16% and in cost up to 2.6%.

By running these simulations, we have shown that our
approach can keep up with the current state of the art in task
planning in terms of optimality, while generating solutions in
significantly less time, which is essential for all real-world
applications.

B. APPLICATION TO THE USE-CASE IN AGRICULTURAL
ENVIRONMENT
The SPECULARIA project [7] aims to advance robotics in
agriculture beyond conventional approaches, which usually
focus on large machines for specific crops. Unlike tradi-
tional methods where a mobile robot with a manipulator
is programmed to adapt to the farm environment [32],
SPECULARIA seeks to embrace innovation in this rapidly
growing industry. In SPECULARIA, the farm is built
around a stationary robotic manipulator. This structures
the manipulator’s workspace and allows the robots to
perform sophisticated manipulation tasks such as pruning
or pollination. In turn, they rely on mobile robots to work
as in a warehouse, moving plants grown in containers to
ensure that each plant receives optimal care under ideal
growing conditions. Ideally, the multi-robot system can plan
and execute sequences to control the growth and hygiene of
each plant from seed to harvest.

The mission given to our robotic team is to perform daily
maintenance tasks in a robotized greenhouse. In this paper,
we consider a team that consists of two types of robots –
three unmanned ground vehicles (UGVs) equipped with a
mechanism to transport plant containers to and from the
workspace and a single robotic manipulator that performs
actions on plants. Each UGV can pick up and transport one
plant at a time and place them on specific tray holders in the
greenhouse.We assume that missions to the system are issued
in time frames greater than the time required to complete a
single mission, i.e., the team has enough time to complete
one mission before the next one arrives.

FIGURE 5. SPECULARIA use case greenhouse layout.

The layout of a greenhouse in a mission we analyze in this
paper is shown in Figure 5. The greenhouse consists of two
tables with plants placed along the walls of the greenhouse.
Each table is organized into five rows and two columns. The
tables are enumerated, as are the specific positions within the
table. The convention for addressing the tray holders within
the table is (row, column) and the indices begin with 0. The
full address of each plant is defined by the triplet (table, row,
column). Plants within the table can only be accessed by row,
startingwith the positions along the aisle. Thus, plants located
by the wall of the structure can only be accessed by removing
previous plants in the same row of the table. For example,
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in Figure 5, the plant at position (1, 0) in table 1 can only be
accessed after removing the plant at position (1, 1) from the
table. A similar precedence relationship applies to table 2,
except that plants are accessed from left to right.

In addition to the two tables, there is a buffer table structure
in the middle of the greenhouse. The structure of a buffer
is very similar to the structure of the tables, but the plants
can be reached from either side, so there is no precedence
relationship between the plant access tasks. The buffer is used
to store plants that need to be put aside before the required
plants are transported to the processing station (work station
of the robot manipulator). Plants that are finished with the
maintenance task are also put back into the buffer.

Finally, at the bottom of the greenhouse structure is a
workspace table with four plant tray holders. The idea of the
four positions is to allow for batch processing of the plants,
which is especially advantageous for simpler tasks such as
watering or spraying the plants.

Inputs to the planning procedure include the greenhouse
layout, the groups of plants to be tended that day, and the
procedures to be performed. In the given example from
Figure 5, the specific groups are A = {(1, 0, 1), (1, 2, 0),
(1, 3, 0)}, marked in purple in the figure, B = {(1, 1, 0),
(2, 1, 1)} marked in green, and C = {(1, 4, 1), (2, 0, 1),
(2, 2, 0)}marked in red. This means that to execute operation
A, all three defined plants must be present in the workspace
table. The same is true for the other two tasks.

In problem modeling, we distinguish between two actions
that the UGV can perform on plants, namely transporting
plants to the buffer and moving plants to the workspace.
Based on these two actions and the defined inputs, we gen-
erate a set of actions to be planned for. For plants that are
not scheduled for care on a given day and that interfere
with the plants to be processed, the action of moving them
to the buffer is generated. For example, we can identify
the task to_buffer(1,1,1). For plants that are scheduled for
care, we define two precedence-constrained actions, moving
them to the workspace and placing them in the buffer when
processing is complete. For example, we define the tasks
to_workspace(1,1,0) and to_buffer(1,1,0), with a precedence
constraint in between. Additionally, there is a precedence for
the tasks of accessing two adjacent plants, in this example the
tasks to_buffer(1,1,1) and to_workspace(1,1,0). To estimate
the duration and cost of each action, a path is calculated on a
static map of the greenhouse and the length of the path is used
to calculate the duration based on the speed of each vehicle.

On the side of the manipulator that tends the plants,
we define three different actions. This was necessary to
ensure the desired system behavior while keeping the
problem within the scope of the defined modeling. For the
maintenance task A example, the defined tasks are A_ready,
A_perform, and A_setup, all of which take precedence in
the defined order. Task A_ready signals that the workspace
is empty and ready to receive the next batch of plants. This
task precedes all tasks to_workspace for the given procedure.
After all plants are placed on the workspace, the task to

perform the procedure (A_perform) begins. This relationship
is also modeled by precedence constraints. Next, after the
procedure is completed, the tasks of transporting the plants
from the workspace to the buffer are activated. After all
plants are removed from the workspace, the task A_setup is
executed. This task represents the tool change of a robot arm.
When it is finished, new plants can be brought into the work
area and the whole process starts again.

FIGURE 6. Comparison of the performance of the proposed CBM-pop
(red) with the auction-based algorithm (blue). We observe the algorithm
CPU time, solution makespan, and total cost for 10 runs of each algorithm.

The proposed system was implemented using the ROS
Melodic distribution and the Gazebo simulator for envi-
ronment modeling. Several simulations were conducted for
the specified use case. As for the benchmark problem set,
we compared the performance of the proposed algorithmwith
the auction-based state-of-the-art solution for task planning
problems [6]. We ran 10 simulations for each algorithm,
and the results are consonant with the conclusions drawn
earlier. In Figure 6 we can observe CPU time, makespan,
and cost distribution for the obtained solutions. Due to
the stochastic nature of the CBM-pop algorithm and a
quality-based stopping criterion, we can observe a large
scatter in the runtime for each simulation run. There is also
some standard deviation in the objective graph for each
criterion, which is a feature of the Pareto-based objective
function (for equally good solutions there can be a large
dispersion in criteria values) and the properties of both
algorithms (auction’s constructive approach, while CBM-pop
performs a stochastic search). For this example, the average
reduction in CPU time of the proposed algorithm compared
to the auction protocol is 13.23%. Regarding makespan and
cost, a slight average improvement of 0.59% and 0.76%,
respectively, is observed.

For this relatively small problem, the qualities of the
obtained solutions are very similar for both algorithms.
However, we have previously shown that our algorithm
adapts better to the problem complexity. Another important
advantage is that our solution produces results in a distributed
manner. The auction algorithm, on the other hand, assumes a
central auctioneer agent that processes bids from other agents
and makes task assignments. In distributed systems, this may
be regarded as a tactically vulnerable point.
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Glossary of acronyms.

The final generated schedule for the SPECULARIA use
case is displayed in Appendix C for convenience. Tasks are
color-coded according to the convention defined in Figure 5.
Tasks of moving plants that do not require maintenance
into the buffer are marked in gray. Precedence relations are
indicated by arrows. Setup times are not displayed in this
illustration to preserve a more compact representation of the
schedule. Based on the generated schedule, we can conclude
that the proposed method successfully handles the problem
of planning tasks for this type of operations. The animated
visualization of the execution of the obtained schedule is
available at [24].

VII. CONCLUSION AND FUTURE WORK
In summary, in this paper we have developed a robust
and fast task planning method for heterogeneous multi-
robot systems. The planning method addresses problems
with cross-schedule dependencies, in particular precedence
constraints. We synthesized a general model that relates task
planning (allocation and scheduling) to the well-studied VRP.
This exposes task planning problems to various optimization
techniques available in vehicle routing, which could lead to
many compelling solutions for task planning in the future.

In this work, we have found a solution to the problem in
a distributed manner by applying a metaheuristic approach
based on evolutionary computation with knowledge sharing
and mimetism. We have extensively tested the performance
of the proposed algorithm. We established a benchmark
dataset repository for planning for tasks of class XD[ST-SR-
TA] and tested the proposed algorithm against existing task
planning methods. Simulation results show that the approach
has better computational speed and scalability without loss of
optimality compared to state-of-the-art distributed methods.
We have also provided a novel application of the planning
procedure to a real-world use case of a greenhousemaintained
by a multi-robot system.

As future work, we are interested in testing the proposed
approach in a more dynamic setting and introducing pro-
tocols for handling disturbances in the system, including
asynchronous and stochastic arrival of new tasks. Given
the distributed nature of the proposed algorithm, we plan
to investigate the robustness with respect to delays or
information loss in the communication channel. Another
interesting point to explore is the long-term operation of the
system, where robot recharging would need to be considered
and included in the problem model. The application of the

entire system in a real-life scenario is another promising topic
for future development.

APPENDIX A
VEHICLE ROUTING PROBLEM
VRP is widely used in transportation, distribution, and logis-
tics because of its many practical applications. In essence,
VRP is a problem in which vehicles with limited payloads
must pick up or deliver items at various locations. The items
have a certain quantity, such as weight or volume, and the
vehicles have a maximum capacity that they can carry. The
problem is to pick up or deliver the items at the lowest cost
without exceeding the vehicle capacity.

The basic VRP [33] regards a set of nodes N = {1, . . . , n}
representing n customers at different locations and a central
depot (warehouse), which is usually denoted by 0. Customers
are served from one depot by a homogeneous and limited fleet
of vehicles. A vehicle serving a customer subset S ⊆ N starts
at the depot, travels once to each customer in S, and finally
returns to the depot. Each pair of locations (i, j), where i, j ∈
N ∪ {0}, and i ̸= j, is associated with a travel cost cij that is
symmetric, cij = cji.

In VRP, each customer is assigned a demand qi, i ∈ N that
corresponds to the quantity (e.g., weight or volume) of goods
to be delivered from the depot to the customer. There is a set
of vehicles, K = {1, . . . ,m}, with capacity Q > 0, operating
at identical cost. In the case of a heterogeneous fleet, the
capacity Q is specifically defined for each vehicle (or type
of vehicle).

A route is a sequence r∗ = (i0, i1, . . . , is, is+1) with
i0 = is+1 = 0, and S = {i1, . . . , is} ⊆ N is the set of visited
customers. The route r∗ has cost c(r∗) =

∑s
p=0 cipip+1 .

A route is considered feasible if the capacity constraint
q(S) :=

∑
i∈S qi ≤ Q holds and no customer is visited more

than once, ij ̸= ik for all 1 ≤ j < k ≤ s. In this case, the set
S ⊆ N is considered a feasible cluster.
A solution of a VRP consists of m = |K | feasible routes,

one for each vehicle k ∈ K . |K | represents the cardinality of
the set K . Therefore, the routes r∗1 , r∗2 , . . . , r∗m corresponding
to the specific clusters S1, S2, . . . , Sm represent a feasible
solution of VRP if all routes are feasible and the clusters form
a partition of N .

The given model can be represented by an undirected or
directed graph. Let V = {0} ∪ N be the set of vertices (or
nodes). In the symmetric case, i.e., if the cost of moving
between i and j does not depend on the direction, the
underlying graph G = (V ,E) is complete and undirected
with edge set E = {e = (i, j) = (j, i) : i, j ∈ V , i ̸= j}
and edge cost cij for (i, j) ∈ E . Otherwise, if at least one pair
of vertices i, j ∈ V has asymmetric cost cij ̸= cji, then the
underlying graph is a complete digraph. We are concerned
with the former.
Definition 2 (VRP Model Formulation): One of the most

common mathematical representations of the VRP model is
the MILP formulation [33]. The binary decision variable xijk
is defined to indicate whether the vehicle k, k ∈ K traverses
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FIGURE 7. Illustration of typical trajectories of the current (blue) and the
best found solution (red) for the two variants of the CBM algorithm.
We analyze the convergence speed of single-solution CBM and the
proposed CBM-pop. The best known solution is shown in the graph with
a green line.

an edge (i, j) ∈ E in a given solution. Therefore, the integer
linear programming model for VRP can be considered as
written:

(VRP)min
∑
k∈K

∑
(i,j)∈E

cijxijk (7.1)

Subject to
∑
k∈K

∑
i∈V ,i̸=j

xijk = 1, ∀j ∈ V \ {0},

(7.2)∑
j∈V\{0}

x0jk = 1, ∀k ∈ K , (7.3)

∑
i∈V ,i̸=j

xijk =
∑
i∈V

xjik , ∀j ∈ V , k ∈ K ,

(7.4)∑
i∈V

∑
j∈V\{0},j̸=i

qjxijk ≤ Q, ∀k ∈ K ,

(7.5)∑
k∈K

∑
i∈S

∑
j∈S,j̸=i

xijk ≤ |S| − 1, ∀S ⊆ N ,

(7.6)

xijk ∈ {0, 1}, ∀k ∈ K , (i, j) ∈ E . (7.7)

The objective function (7.1) minimizes the total travel
cost. The constraints (7.2) are the degree constraints that
ensure that exactly one vehicle visits each customer. The
constraints (7.3) and (7.4) guarantee that each vehicle leaves
the depot only once, and that the number of vehicles arriving

FIGURE 8. Final schedule for the SPECULARIA use case, with tasks
color-coded as per Figure 5. Tasks involving the movement of plants that
do not require maintenance into the buffer are marked in gray.
Precedence relations are indicated by arrows.

at each customer and returning to the depot is equal to
the number of vehicles departing from that node. Capacity
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constraints are expressed in (7.5), and ensure that the sum of
the demands of the customers visited on a route is less than or
equal to the capacity of the vehicle providing the service. The
sub-tour elimination constraints (7.6) ensure that the solution
does not contain cycles disconnected from the depot. The
constraints (7.7) specify the domains of the variables. This
model is known as a three-index vehicle flow formulation.

APPENDIX B
PERFORMANCE OF THE POPULATION-BASED CBM
First, we evaluate the performance of the proposed CBM-pop
compared to the single-solution variant of CBM [3].
In Figure 7 is the visual representation of the current
(blue) and best solution (red) trajectories for the two
variants of the CBM algorithm on a benchmark problem
for MDVRP. The two plots illustrate the contrast of the
two approaches in the early search of the solution space.
The CBM-pop manages to quickly jump through various
solution configurations and explore different local optima,
leading to faster convergence towards the optimal region.
In Figure 7b, we can observe a rapid convergence (within the
first 200 iterations of the algorithm) of the found solutions
towards the green line, which is the best known solution for
the given problem. In contrast, the solution trajectories in
Figure 7a show a noticeably slower progress towards better
solutions. This difference is the direct result of the genetic
diversity of the obtained solution pool of CBM-pop and is
consistent with the intended algorithm design.

APPENDIX C
SPECULARIA USE CASE SCHEDULE
See Figure 8.
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