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Universidad Carlos III de Madrid
Madrid, Spain

florina@it.uc3m.es

Daniel Dı́az-Sánchez
Departamento de Ingenierı́a Telemática
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Abstract—Leading cybersecurity agencies and standardization
bodies have globally emphasized the critical need to transition
towards Post-Quantum Cryptography (PQC) to defend against
emerging quantum computing threats. They advocate PQC
as a practical and cost-effective solution for security systems
nowadays. Nevertheless, emerging technologies such as industrial
systems, e.g., autonomous vehicles, air traffic management, diag-
nostic imaging machines, etc., and robotics systems, e.g., ROS2
(Robotic Operating System), have not started their evolution to
enhance crypto-agility and security robustness. Some of these
emerging technologies use the Data Distribution Service (DDS)
standard as the underlying communication middleware protocol.
DDS is a distributed publish-subscribe system that allows send-
ing and receiving data by publishing and subscribing to topics
across a network of connected nodes. However, DDS’s security is
based on traditional symmetric and asymmetric cryptography,
which is vulnerable to quantum computing attacks. To address
this issue, we propose the integration of PQC into DDS, through
the development of a C/C++ library, called pqsec-dds, which
can be integrated across different DDS implementations such as
CycloneDDS or OpenDDS. A proof-of-concept demonstrates the
viability of our approach in enhancing the security and crypto-
agility of DDS-based systems.

Index Terms—PQ, ROS2, Robotic Systems, IIoT, DDS
Tipo de contribución: Investigación original (lı́mite 8

páginas)

I. INTRODUCTION

Since the seminal work by Shor and Grover [1], [2],
advancements in quantum computing are estimated to pose
a threat to current cryptographic methods within the next 10
to 20 years [3]. This timeline suggests that without adaptation,
traditional asymmetric encryption protocols will become inef-
fective against quantum computing capabilities. To overcome
this threat the usage of post-quantum cryptography (PQC)
or quantum-resistant algorithms is proposed and is being
implemented [4].

Leading cybersecurity agencies globally, including the
American NCSC (National Cybersecurity and Communi-
cations Integration Center) [5], NSA (National Security
Agency) [6], CISA (Cybersecurity and Infrastructure Security

Agency), NIST (National Institute of Standards and Technol-
ogy) [7], and European bodies such as ENISA (European
Union Agency for Network and Information Security), or
national agencies in European countries such as CCN (”Cen-
tro Criptológico Nacional”, Spanish National Cybersecurity
Center) [8], ANSSI (“Agence Nationale de la Sécurité des
Systèmes d’Information”, National Agency for the Security
of Information Systems), BSI (“Bundesamt für Sicherheit
in der Informationstechnik”, Federal Office for Information
Security), NLNCSA (National Cyber Security Centre), and the
Swedish NCS (National Computer Security) Centre [9], have
collectively emphasized the critical need to transition towards
PQC to defend against the emerging quantum computing
threat. These bodies and agencies advocate for quantum-
resistant cryptography as a more practical, cost-effective so-
lution, emphasizing the need for further research and devel-
opment to address the current shortcomings of QKD [6][9].
Thus, a proactive approach in preparing for the PQC transition
involves the development of quantum-readiness roadmaps,
collaboration with vendors, prioritization of key assets in
migration plans, and integration of PQ algorithms into exist-
ing cryptographic frameworks and security protocols, among
others [7].

The integration of post-quantum cryptography into com-
munication security protocols such as TLS (Transport Layer
Security) and DTLS (Datagram TLS) is a key area of develop-
ment, aimed at bolstering protocol security. For that, the IETF
(Internet Engineering Task Force) is working on integrating
PQ in TLS 1.3 [10]. This effort extends the potential for
enhanced security measures to any protocol relying on TLS or
DTLS foundations. Adoption of post-quantum security mea-
sures is being facilitated through both open-source [11] and
commercial [12] initiatives, reflecting a broad commitment
to evolving TLS and DTLS against quantum threats. This is
being mainly tested and used for Internet applications, but
its integration in emerging and important fields such as IoT
(Internet of Things) or IIoT (Industrial IoT) is absent or still in
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its early stages. These fields involve applications and systems
such as robotics, healthcare, energy, defense, transportation,
and industrial automation, e.g., SCADA systems [13]. The
impact of unauthorized access or data modification within
these applications could be quite severe [14].

In recent years, the field of robotics has witnessed signif-
icant advancements, leading to the widespread adoption of
robotic systems in various domains. However, as these sys-
tems become more interconnected and autonomous, the need
for robust cybersecurity measures has become increasingly
apparent. The potential vulnerabilities in robotic systems,
such as insecure communication channels, weak authentica-
tion mechanisms, and outdated software components, have
raised concerns among researchers and industry professionals
alike [15], [16], [17]. Numerous studies have emphasized
the importance of improving encryption, authorization, and
authentication techniques to mitigate cyber security risks [18],
[19], [20]. Researchers have explored various approaches to
enhance the security of robotic systems, such as hardening the
Robot Operating System (ROS), using symmetric encryption
algorithms and semantic rules [21], adopting standardized op-
erating systems and formalizing authentication methods [18],
and addressing issues related to outdated software components
and weak authentication schemes [19], [22].

Despite these growing concerns and efforts, little attention
has been paid to the specific threat posed by quantum com-
puting. In this context, we focus on the Data Distribution
Service protocol (DDS), as a standardized and fundamental
middleware protocol for IIoT, that faces parallel challenges.
DDS facilitates real-time data exchange in distributed systems
through a data-centric publish-subscribe model, supporting
both UDP and TCP transports for network communication. Its
importance is further highlighted by its recent integration as
the communication middleware in ROS 2, addressing the limi-
tations of ROS 1 in terms of real-time operations, timely com-
munication, and scalability in large-scale distributed systems.
Nevertheless, DDS architecture requires a tailored approach to
integrate quantum-resistant security. Its security specification
defines a Service Plugin Interface (SPI) framework, covering
aspects such as authentication, encryption, and access control
to ensure secure data exchange [23].

To address the need for post-quantum security in DDS-
based systems, we develop a plugin, PQSec-DDS [24], that
integrates post-quantum cryptography into the DDS security
framework. By leveraging the SPI provided by DDS, our
plugin enhances the authentication mechanism with quantum-
resistant algorithms. The PQSec-DDS plugin is designed to
be compatible with C and C++ implementations such as
CycloneDDS and OpenDDS.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basis and main concepts about DDS
and PQC, as well as describing briefly related work. In
section III, we provide details on how to integrate post-
quantum cryptography into the DDS authentication handshake
and an overview of our proposed PQSec-DDS framework.
Finally, Section IV concludes the paper and outlines future
research directions.

II. BACKGROUND & RELATED WORK

This section introduces the main concepts and technical
issues of DDS and PQC.

A. Data Distribution Service (DDS)
1) DDS Overview: The Data Distribution Service is a

middleware protocol developed by the Object Management
Group (OMG) for data-centric publish-subscribe communi-
cation in distributed systems. It facilitates the exchange of
data among software components distributed across networked
computers to act as a unified system. DDS aims for interoper-
ability across different vendors’ implementations through the
DDS Interoperability Wire Protocol (DDSI-RTPS, Real-Time
Publish-Subscribe Protocol), ensuring applications based on
DDS can work together using IP multicast. This standard
supports real-time, scalable, and reliable data distribution,
essential for systems requiring robust data exchange mech-
anisms [25][26]. So this middleware protocol is being used
by robotic systems such as ROS2, and other IoT systems.

RTPS, as a standard protocol approved by the IEC within
the Real-Time Industrial Ethernet Suite (IEC-PAS-62030),
aligns with DDS’s requirements for discovery, fault tolerance,
reliability, and timeliness, without central points of failure.
Originally specified for UDP/IP, RTPS has been extended
by some vendors to include TCP/IP support, broadening its
usability across various network configurations.

RTPS is a decentralized protocol capable of running
over multicast and connectionless best-effort transports like
UDP/IP. It supports unidirectional data exchange, where pub-
lishers ”push” data updates to the local caches of co-located
subscribers, regulated by Quality of Service (QoS) contracts.
Key technical features of RTPS include:

• Built-in discovery service for dynamic discovery and
monitoring of publishers and subscribers without cen-
tralized name servers.

• Fault tolerance and decentralized architecture without
single points of failure.

• Extensibility and backward compatibility, allowing pro-
tocol evolution while maintaining interoperability with
deployed systems.

• Configurability for balancing reliability and timeliness
requirements per data delivery.

• Scalability to support large-scale networks with poten-
tially thousands of participants.

• Type-safety to prevent programming errors from com-
promising remote node operations.

2) DDS Security: Initially, DDS security relied on TLS or
DTLS protocols for ensuring data integrity and confidentiality,
given the lack of a specific security framework within the
DDS standards [27] [14]. DDS-compliant products, such as
RTI DDS, OpenSplice DDS, and eProsima Fast DDS, have
incorporated security mechanisms based on these protocols.
For example, RTI DDS uses DTLS to encapsulate notifica-
tions, while OpenSplice DDS leverages domain partitioning
to implement access control. eProsima Fast DDS and RTI
Connext also support securing TCP transports with TLS
[28] [29]. However, TLS is not standardized across all DDS
implementations [30].

The limitations of these approaches, particularly in support-
ing multicast due to DTLS’s inherent client/server structure,
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highlighted the need for a comprehensive DDS security spec-
ification. Soroush et al. studied the security of DDS on top
of secure TLS/DTLS transports and compared it with RTI’s
beta version of the DDS Security Specification [31].

The DDS-Security specification [23] extends DDS by in-
troducing predefined security features through a Service Plu-
gin Interface framework, which supports multicast and real-
time communication. DDS-Security works over any transport
protocol with configurable Quality of Service (QoS) settings.
Likewise, it offers interoperability across vendor implementa-
tions. It introduces five key SPIs:

• Authentication: Ensures the identity authentication of
domain participants through a trusted identity CA. The
builtin Authentication plugin, DDS:Auth:PKI-DH,
uses RSA or ECDSA signature algorithms (with key
sizes of 2048-bit and 256-bit NIST P-256 curve, respec-
tively) and DHE or ECDHE as key exchange methods,
involving a 3-message handshake protocol.

• Cryptography: Manages encryption, signing, and hash-
ing for data integrity. The builtin Cryptography plugin,
DDS:Crypto:AES-GCM-GMAC, provides encryption
and message authentication using AES in Galois Counter
Mode (AES-GCM) and Galois Message Authentication
Code (AES-GMAC).

• Access Control: Regulates permissions for DDS opera-
tion execution, offering finer-grained control and allow-
ing different permissions for different applications within
a DDS domain.

• Logging: Facilitates auditing of security-related events.
Not universally required for compliance, leading to par-
tial implementation across DDS systems.

• Data Tagging: Allows for the addition of metadata tags
to data samples. Similarly, not a universal requirement
for compliance.

These security features are designed to protect against unau-
thorized subscriptions, unauthorized publication, tampering,
replay attacks, and unauthorized access to data, providing a
more comprehensive and standardized approach to securing
DDS-based systems. The selection of these built-in plugins
was driven by key functional and non-functional requirements,
including scalable performance, robustness, ease of use, and
leveraging existing security infrastructure, while aiming to fit
the data-centric DDS model and avoid centralized components
that could become single points of failure.

3) DDS Authentication Handshake: The DDS authentica-
tion handshake is similar to the TLS handshake [32] [23]. The
authentication process begins with a 3-message handshake
initiated by the participant with the lower unique identifier
(GUID). Let’s say Participant Bob wants to start communi-
cating with Participant Alice.

Bob calls begin_handshake_request() which
sends its Diffie-Hellman public value (Bdh), its certificate
(Bcert) signed by the Identity CA, the domain permissions
document signed by the Permissions CA, and a random
256-bit nonce (Brand) for authentication. Alice calls
begin_handshake_reply() to validate Bcert against
the Identity CA. It responds with its own DH public value
(Adh), certificate (Acert), permissions document, the received
Brand, a new 256-bit nonce (Arand), and a signature (Asig)
over the nonces. Bob calls process_handshake()

Fig. 1. DDS Authentication handshake with mutual authentication between
two domain participants, Alice and Bob. We omit the discovery mechanism
of the participants.

to validate Acert and Asig . It sends back its own
signature (Bsig) over the nonces. Alice finalizes with
process_handshake(), verifying Bsig . Both use the
exchanged DH public values to compute a shared secret with
get_shared_secret() which is hashed with SHA256.
Bob generates a master salt, session ID, and IV suffix. Using
HKDF, Bob derives a master sender key from the shared
secret, salts, and nonces. This key is encrypted with the
shared secret and sent to Alice over a secure channel.

Both expand the master key with the salts, session ID,
and nonces into a session key using HKDF with HMAC-
SHA256. The IV comprises the session ID and suffix. The
session key and IV secure future communications, with the
IV incremented for each operation under this session key.

The DDS handshake is depicted in Figure 1
4) DDS Implementations and Security: Table I provides an

overview of the main DDS implementations, highlighting their
licensing, programming language, key exchange mechanisms,
and signature algorithms. In what follows, we have considered
implementations with open licenses, instead of commercial
software.

The DDS implementations considered in this study have
their own DDS Security integration, as described below.

a) Cyclone DDS: Cyclone DDS allows dynamic
loading of external security plugins for authentication,
cryptography, and access control (see External Plugin
Development [36]). The security plugin API consists of a
few header files, with separate headers for each plugin type,
such as dds_security_api_authentication.h,
dds_security_api_cryptography.h, and
dds_security_api_access_control.h. The
API functions and types are prepared from the IDL by
adding the DDS_Security_ namespace prefix, and
separate DDS_Security_ data types are defined instead of
extending DDS built-in topic data types.

To configure external security plugins in Cyclone DDS,
developers can use an XML configuration file. By creating
an XML file with the desired settings for the authenti-
cation, cryptography, or access control plugins and setting
the CYCLONEDDS_URI environment variable to point to
the XML configuration file path, the plugins can be easily
integrated into the DDS system.
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TABLE I
CONSIDERED DDS IMPLEMENTATIONS

Implementation License Language Key Exchange Signature
eProsima
Fast DDS [33]

Apache 2 C++ DH 2048 256
ECDH prime256v1

RSA SHA256 or
ECDSA SHA256

Eclipse
Cyclone DDS [34]

Eclipse Public License v2.0 C DH+MODP-2048-256 or
ECDH+prime256v1-CEUM

RSASSA-PSS-SHA256 or
ECDSA-SHA256

OpenDDS [35] Open Source C++ DH 2048 MODP 256 PRIME STR
or ECDH PRIME 256 V1 CEUM

RSASSA-PSS-SHA256 or
ECDSA-SHA256

RTI
Connext DDS

Commercial, Research C and C++ DHE MODP 2048 256 or
ECDHE CEUM P256/P384

RSASSA PSS or
ECDSA P256 SHA256 or
ECDSA P384 SHA384

GurumNetworks
GurumDDS

Commercial C++ - -

b) OpenDDS: OpenDDS incorporates its security mech-
anisms, such as authentication functionality and credential
management, within the dds/DCPS/security/ directory.
It is possible to implement custom plugins, although its
documentation is not as clear as CycloneDDS. Developers can
write custom plugins in C+ (the optional support for external
C plugins of the DDS Security v1.1 specification is not yet
implemented) [37]. The plugin is then built and integrated
into OpenDDS at the application level, loading the plugin
and creating a custom security configuration.

c) eProsima Fast DDS: An examination of the Fast-
DDS documentation and source code reveals that this imple-
mentation is not yet compatible with external plugins. As a
result, eProsima Fast DDS will not be considered further in
this study.

B. Post-Quantum Cryptography

1) PQC Overview: PQC -also known as quantum-resistant
cryptography- standardization is yet open. The algorithms use
public key schemes for Key Encapsulation Mechanism (KEM)
and signature. KEM defines schemes for key exchange and
encryption to transport a key from one party to another [38].
Signature scheme defines both generation and verification of
digital signatures [39].

The algorithms proposed so far are mainly based on five
schemes: lattices, multivariate polynomials, error-correcting
and error-detecting codes, hash-based signatures, and isogeny
of elliptic curves. Some lattice-based algorithms have been
standardized by NIST, such as Kyber [40] for KEM and
Dilithium [41] for signature. In addition, one algorithm based
on stateless hash has been also standardized [42], called
SPHINCS+.

These algorithms differ significantly in key sizes and en-
crypted or signed text compared to traditional algorithms.
Likewise, new algorithms can be standardized. Therefore,
algorithms can be used according to the specific requirements
of each scenario. The goal is to have a crypto-agile API that
enables seamless integration of these algorithms into appli-
cations regardless of cryptographic material size, to ensure
long-term security.

2) Integrating Post-Quantum Cryptography in TLS/DTLS:
TLS 1.2 [43] and its datagram counterpart DTLS 1.2 [44]
leverage the TLS handshake for peer authentication, algo-
rithm negotiation, and shared secret computation, followed
by the TLS record protocol for data confidentiality and
integrity using symmetric cryptography with the established
keys. These protocols rely on X.509 certificates, cipher suites

specifying cryptographic algorithms, and key exchange meth-
ods like Diffie-Hellman. The handshake involves a Clien-
tHello/ServerHello exchange with nonces, certificate/signature
exchange, and Diffie-Hellman-based key derivation using
HMAC. DTLS 1.2 introduces reliability mechanisms like
sequencing and retransmissions to adapt TLS 1.2 to unreliable
transports like UDP.

The more recent TLS 1.3 [45] and DTLS 1.3 [46] specifica-
tions introduce significant improvements, enhancing security
and performance. They use only modern, secure cryptographic
algorithms, removing obsolete ciphers. The handshake process
is streamlined, reducing round trips for connection establish-
ment. TLS 1.3 incorporates advancements like Elliptic Curve
Diffie-Hellman (ECDHE) for forward-secret key exchange,
ChaCha20-Poly1305 authenticated encryption, and a revised
key derivation process based on the HKDF scheme. DTLS 1.3
closely follows TLS 1.3 while maintaining datagram-specific
reliability mechanisms.

Traditional public-key operations in the TLS handshake
can be replaced with post-quantum primitives [47], [48],
[49]. RSA/ECDSA signatures can be substituted by post-
quantum signature schemes. For TLS 1.3, the Diffie-Hellman
key exchange can be replaced by using the server’s key encap-
sulation mechanism encapsulation operation and sending the
ciphertext instead of the server’s public key, as demonstrated
by Bos et al. [47]. Their work includes a proof of the
security of replacing Diffie-Hellman with KEM key exchange
in TLS 1.2. The proposed approach for TLS 1.3 leverages
hybrid primitives, combining post-quantum algorithms with
traditional pre-quantum schemes like ECDH [10]. As breaking
a hybrid scheme requires compromising both components,
this approach allows confidence in the implementation and
security of the pre-quantum scheme against classical attacks to
carry over to the hybrid scheme, providing quantum resistance
while maintaining pre-quantum security assurances during the
transition period.

In recent years, the integration of post-quantum cryp-
tography into widely-used software libraries and protocols
has gained significant attention. One notable example is the
Open Quantum Safe project’s fork of OpenSSL [11], which
incorporates quantum-resistant algorithms for key exchange
and digital signatures into the widely-used TLS 1.2 and
1.3 protocols. This integration leverages the liboqs library
[50], which provides a collection of post-quantum crypto-
graphic algorithms. Additionally, oqs-provider, an OpenSSL 3
provider, has been developed to integrate post-quantum cryp-

PQSec-DDS: Integrating Post-Quantum Cryptography into DDS Security for Robotic
Applications

399



Requirement DDS TLS/DTLS 1.2 TLS/DTLS 1.3 (Default)
PKI with X.509 Certificates Yes Yes Yes
Signature Algorithm RSA or ECDSA RSA or ECDSA RSA or ECDSA
Key Exchange Method DHE or ECDHE DHE or ECDHE ECDHE
Encryption AES-GCM AES-GCM AES-GCM
Integrity AES-GMAC AES-GMAC AES-GMAC
Hybrid Mode Not Specified Not Specified Supported (Post-Quantum + Classical)

TABLE II
COMPARISON OF SECURITY PROTOCOLS: DDS, TLS/DTLS 1.2, AND TLS/DTLS 1.3 WITH DEFAULT AND POST-QUANTUM CRYPTOGRAPHY

INTEGRATION

tography through the liboqs library [51], further expanding the
availability of quantum-resistant algorithms in the OpenSSL
ecosystem. Another significant development is the support
for post-quantum cryptography in the DTLS 1.3 protocol by
wolfSSL [12], which enables the use of quantum-resistant
algorithms in datagram-based secure communication. These
initiatives demonstrate the growing effort to prepare critical
software infrastructure for the potential advent of large-scale
quantum computers and the associated security risks.

III. PQSEC-DDS: INTEGRATING POST-QUANTUM
CRYPTOGRAPHY IN DDS AUTHENTICATION HANDSHAKE

To address the need for post-quantum security in DDS-
based systems, we propose PQSec-DDS, a plugin that in-
tegrates post-quantum cryptography into the DDS security
framework. Our plugin focuses on the Authentication plugin,
which is one of the five Service Plugin Interfaces (SPIs)
defined in the DDS security specification. The Authentication
plugin directly performs asymmetric or public key cryptogra-
phy operations, and the Access Control and Cryptographic
plugins rely on it for operations dependent on public key
cryptography, such as using the shared secret for deriving key
material or identity handles for access control.

PQSec-DDS integrates post-quantum signature and key
encapsulation mechanisms through the liboqs library and the
oqs-provider for OpenSSL, mirroring the integration of post-
quantum cryptography in protocols like TLS and DTLS. We
have made the source code of our plugin publicly available
on GitHub [24] (work in progress).

A. Integrating Post-Quantum Cryptography in DDS Authen-
tication Handshake

The integration of PQ cryptography starts replacing
public keys in DH with the PQ equivalents as de-
scribed in [47], [48], [49]. Thus, the initiator Bob calls
begin_handshake_request() sending a KEM public
key Bpk generated by KEM.KeyGen(), retaining the se-
cret key Bsk. His certificate, permissions, and nonce Brand
are also sent. Alice calls begin_handshake_reply(),
running KEM.Encaps() on Bpk to get an encapsulated
ciphertext Act and shared secret Ass. She sends Act, Acert,
permissions, Brand, a new Arand, and a signature Asig over
the nonces using a post-quantum signature scheme. After vali-
dating Acert and Asig , Bob calls process_handshake(),
running KEM.Decaps(Act, Bsk) to retrieve the shared Bss,
sending back Bsig over the nonces. Finally, Alice calls
process_handshake() verifying Bsig , with both retriev-
ing the get_shared_secret() for future key derivation.
The PQ integration into the DDS Authentication handshake
is depicted in Figure 2.

Fig. 2. Integration of Post-Quantum KEMs and signatures into DDS
Authentication handshake with mutual authentication. We omit the discovery
mechanism of domain participants. The required changes are highlighted in
blue.

The PQ key exchange and the handling of certificates and
public keys can be done using two approaches: either directly
using the OpenSSL library endowed with the liboqs provider
via the EVP and X509 APIs, or using the liboqs library
directly.

The key exchange impacts the
begin_handshake_request(),
begin_handshake_reply(), and
process_handshake() functions, where the classical
DH key generation and shared secret derivation are replaced
with PQ KEMs.

On the other hand, the handling of certificates af-
fects functions like get_certificate_contents(),
verify_certificate(), and the signature creation and
verification processes in begin_handshake_reply()
and process_handshake(). These functions rely on
OpenSSL’s X509 and EVP APIs, which can work with post-
quantum algorithms through the oqs-provider.

It’s important to note that while the core of the PQ
integration is in the handshake process, several other functions
in the DDS Security plugin may require minor adjustments
to accommodate the new post-quantum algorithms, such as
adapting key encoding and decoding functions to handle the
different key sizes of PQ schemes.

B. PQSec-DDS Design

The PQSec-DDS Authentication plugin is designed to
be compliant with the conformance points outlined in the
DDS Security specification, with extended support of PQC
algorithms into the DDS security framework. The plugin
targets both C and C++ API compatibility, ensuring portability
across compliant DDS implementations, leveraging the liboqs
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library and the Open Quantum Safe’s oqs-provider to provide
post-quantum key encapsulation mechanisms and signature
schemes. The architecture of the plugin allows it to interact
with the DDS middleware, as depicted in Figure 3. The figure
depicts the DDS middleware architecture in the bottom layer,
which includes a module DDS-Security for RTPS and
DDS. This module interacts with the plugin layer, in our case,
the PQSec-DDS Authentication plugin, which incorporates
the functions associated with the signatures and certificates
handling and key exchange modules. The plugin uses liboqs
and OpenSSL libraries as underlying libraries to implement
the required functions.

The integration of post-quantum security in both Cy-
cloneDDS and OpenDDS follows a similar approach. The
common steps involve importing/generating the necessary API
header files, implementing the DDS Security Authentication
functions using the post-quantum cryptography algorithms -
provided by liboqs and OpenSSL-, and building the plugin as
a dynamic library that can be loaded by the respective DDS
implementations.

For CycloneDDS, the plugin development process in-
volves importing the required API header files, such as
dds_security_api_authentication.h, and imple-
menting the DDS Security Authentication functions, such as
initializing the authentication process, handling handshakes,
and managing identities. The plugin leverages liboqs and its
OpenSSL provider to perform key encapsulation and signature
operations, ensuring the security of the authentication process
in a post-quantum scenario. Once built as a dynamic library,
the plugin can be loaded by CycloneDDS using the .xml
configuration file.

Similarly, for OpenDDS, the integration of post-quantum
security involves defining the plugin interface using IDL,
generating C++ header from the IDL using the tao_idl
tool, implementing the plugin in C++ by inheriting from the
generated plugin interface class, and implementing the re-
quired functions according to the post-quantum cryptography
requirements. The plugin is then built and integrated into
OpenDDS at the application level, loading the plugin and
creating a custom security configuration.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the integration of post-
quantum cryptography into the DDS security specification, fo-
cusing on the authentication handshake. Our findings suggest
that the integration process closely mirrors that of TLS/DTLS,
indicating that the lessons learned from the post-quantum
transition in these protocols can be applied to DDS.

One of the key advantages of the DDS Security Specifica-
tion SPI is its API design, which facilitates the creation of
external plugins. This feature enables crypto-agility, a crucial
requirement in the transition to post-quantum cryptography.
However, it is important to note that not all open-source DDS
vendors currently provide a straightforward way to integrate
external plugins, which may present challenges for some
implementations.

As future work, we plan to benchmark the integration of
post-quantum cryptography into Cyclone DDS and OpenDDS,
within the context of ROS2. This will provide valuable

insights into the performance and practicality of post-quantum
cryptography in robotic systems.

Overall, our research highlights the importance of preparing
for the post-quantum era in robotic systems that rely on
DDS for secure communication. By integrating post-quantum
cryptography into the DDS Security Specification, we can
ensure that these systems remain secure against potential
quantum computing threats in the future.

ACKNOWLEDGMENTS

This work was supported by the Spanish Government
under the grant TED-2021-130369B-C32 funded by
MICIU/AEI/ 10.13039/501100011033 and by the
“European Union NextGenerationEU/PRTR” and the
research project “Enhancing Communication Protocols
with Machine Learning while Protecting Sensitive Data
(COMPROMISE)” PID2020-113795RB-C32, funded
by MICIU/AEI/10.13039/501100011033. In addition, it
was partially supported by project i-SHAPER, which is
being carried out within the framework of the Recovery,
Transformation, and Resilience Plan funds, funded by the
European Union (Next Generation).

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science. Ieee, 1994, pp. 124–134.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[3] M. Mosca and M. Piani, “Global Risk Institute: Quantum Threat
Timeline Report 2022,” https://globalriskinstitute.org/publication/
2022-quantum-threat-timeline-report/, 2022, accessed: 6 march 2024.

[4] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature,
vol. 549, no. 7671, pp. 188–194, 2017.

[5] National Cyber Security Centre (NCSC), “Quantum security
technologies,” https://www.ncsc.gov.uk/pdfs/whitepaper/
quantum-security-technologies.pdf, Mar 2020, accessed: 6 march
2024.

[6] National Security Agency (NSA), “Quantum key distribution (qkd)
and quantum cryptography (qc),” https://www.nsa.gov/Cybersecurity/
Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/,
accessed: 2024-02-15.

[7] N. CISA and NIST, “Quantum-readiness: Migration to post-quantum
cryptography,” https://media.defense.gov/2023/Aug/21/2003284212/-1/
-1/0/CSI-QUANTUM-READINESS.PDF, Aug 2023, accessed: 15
february 2024.

[8] Centro Criptológico Nacional (CCN)-PYTEC, “Recomendaciones para
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