
 
 

 

 
Buildings 2024, 14, 1713. https://doi.org/10.3390/buildings14061713 www.mdpi.com/journal/buildings 

Article 

Artificial Neural Network-Based Model for Assessing  
the Whole-Body Vibration of Vehicle Drivers 
Antonio J. Aguilar 1, María L. de la Hoz-Torres 2,*, Ma Dolores Martínez-Aires 1, Diego P. Ruiz 3, Pedro Arezes 4  
and Nélson Costa 4 

1 Department of Building Construction, University of Granada, Av. Severo Ochoa s/n, 18071 Granada, Spain; 
antojes@ugr.es (A.J.A.); aires@ugr.es (M.D.M.-A.) 

2 Department of Building Construction II, University of Seville, 41012 Seville, Spain 
3 Department of Applied Physics, University of Granada, Av. Severo Ochoa s/n, 18071 Granada, Spain; 

druiz@ugr.es 
4 ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal; 

parezes@dps.uminho.pt (P.A.); ncosta@dps.uminho.pt (N.C.) 
* Correspondence: mdelahoz@us.es 

Abstract: Musculoskeletal disorders, which are epidemiologically related to exposure to whole-
body vibration (WBV), are frequently self-reported by workers in the construction sector. Several 
activities during building construction and demolition expose workers to this physical agent. 
Directive 2002/44/CE defined a method of assessing WBV exposure that was limited to an eight-
hour working day, and did not consider the cumulative and long-term effects on the health of 
drivers. This study aims to propose a methodology for generating individualised models for vehicle 
drivers exposed to WBV that are easy to implement by companies, to ensure that the health of 
workers is not compromised in the short or long term. A measurement campaign was conducted 
with a professional driver, and the collected data were used to formulate six artificial neural 
networks to predict the daily compressive dose on the lumbar spine and to assess the short- and 
long-term WBV exposure. Accurate results were obtained from the developed artificial neural 
network models, with R2 values above 0.90 for training, cross-validation, and testing. The approach 
proposed in this study offers a new tool that can be applied in the assessment of short- and long-
term WBV to ensure that workers’ health is not compromised during their working life and 
subsequent retirement. 

Keywords: WBV; occupational vibration; construction; artificial neural network; long-term 
assessment; safety management; workers’ health 
 

1. Introduction 
A high percentage of workers in the European Union are exposed to whole-body 

vibration (WBV), according to the European Agency for Safety and Health at Work (EU-
OSHA) [1]. WBV exposure is an inseparable part of the operations performed by vehicle 
drivers and equipment operators [2–6]. This exposure is epidemiologically related to the 
most common work-related health problems in the EU, namely musculoskeletal disorders 
(MSDs) [7]. Previous studies highlighted that WBV exposure increases the risk of sciatica 
and lower back pain (LBP) [8]. The characteristic aspects of vibration exposure (such as 
the frequency distribution of the signal energy and the magnitude of the acceleration) and 
the worker (e.g., weight, height, and personal factors) can influence the occurrence of 
MSDs, and awkward posture and repetitive tasks can also aggravate the symptoms [9]. 
Work-related MSDs are of concern worldwide, as they account for a significant proportion 
of all workplace injuries, have a high cost in terms of the health of the worker, and affect 
businesses and society in general [10]. The third European Survey of Enterprises on New 
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and Emerging Risks (ESENER) showed that MSDs are among the risks of greatest concern 
to European workplaces [11]. The World Health Organization (WHO) reported in 2022 
that 1.71 billion people had MSDs around the world, and that MSDs were the leading 
contributor to disability, with LBP being the single leading cause of disability in 160 
countries [12]. The construction industry is among the sectors in which MSDs are most 
frequently self-reported by workers [1]; this was pointed out by the European Risk 
Observatory in a report published in 2010 [13], and more than a decade later, MSDs are 
still a major concern in the construction sector, indicating that the current policies and 
safety measures have not contributed to a decrease in the prevalence of self-reported 
MSDs in this sector. Therefore, developing assessment models to minimise the occurrence 
of MSDs is of significant benefit to society. 

In 2002, to allow measures to be implemented to protect workers from adverse health 
effects, limits on workers’ exposure to WBV were established by the European Union in 
Directive 2002/44/CE. In addition, the European Directive 2006/42/EC [14] establishes that 
manufacturers must design and construct vehicle seats that transmit vibrations in such a 
way that the WBV transmitted to the driver are reduced to a minimum. In addition, 
manufacturers of equipment that transmits vibrations are required to declare the emission 
level of each model they supply (Directive 2022/44/EC). However, it should be noted that 
the values declared by manufacturers are based on tests, but not on in-use measurements. 
As a result, since many different parameters influence the level of transmitted vibrations, 
the emission level declared by the manufacturer is not always equal to the actual dose of 
WBV transmitted to the driver. 

The Directive 2022/44/CE [15] establishes models for assessing daily exposure to 
WBV based on the daily exposure value normalised to an eight-hour reference period 
(A(8)) and the vibration dose value (VDV), both of which are defined in ISO 2631-1 [16]. 
These methods are metrics of the external vibration acceleration load and take as inputs 
the exposure time and the triaxial signal of the acceleration measured at the seating 
surface: the root mean square (rms) in the case of A(8), and the vibration dose value (vdv) 
in the case of VDV. However, previous research has shown that the A(8) and VDV models 
may be poorly correlated with the internal load acting on the lumbar spine [17]. Some 
studies suggest that these methods may underestimate the severity of the effects of 
exposure to vibration containing shocks [18]. Recent research has revealed that there is an 
elevated risk of MSDs related to LBP, even for WBV exposures that are below the limits 
set in the European directive [19]. Moreover, the effects of long-term WBV exposure are 
not considered by the A(8) and VDV models, which may mean although that an exposure 
to WBV may be assessed as safe in the short term, it may have adverse consequences for 
the worker’s health in the long term [20]. 

The recently released ISO 2631-5:2018 standard [21] defines methods of assessing the 
risk of chronic injury caused by exposure to repeated shocks to the lumbar spine, due to 
WBV containing multiple shocks, in two exposure regimes (severe and less severe). 
According to this standard, the internal lumbar forces are estimated based on transfer 
functions. These functions were derived from the results of a group of finite element 
models of a seated human. These finite element models were developed for different 
individual anthropometric characteristics and various upright sitting postures, for 
representative groups of European drivers [22]. However, although the methods described in 
ISO 2631-5:2018 allow for the assessment of short- and long-term WBV exposure, 
companies within the EU are not obliged to apply them to assess the WBV to which their 
workers are exposed. In addition, although this method is based on the estimation of 
internal lumbar forces and is a better predictor of LBP than acceleration-based methods 
(e.g., A(8) and VDV), the primary drawback of these methods is the complexity of their 
application [19]. The implementation of the method defined in ISO 2631-5:2018 requires 
the wave signal to be recorded for the subsequent evaluation of WBV exposure, which 
involves the use of specialised and expensive equipment. The implementation of this 
assessment method may also be limited due to the atomised and traditional nature of the 
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construction sector in Europe [23]. The complexity of the calculation may prevent small 
and medium-sized construction companies from applying it on a daily basis for the long-
term monitoring of the effects of WBV exposure on the health of their workers. 

These considerations provide evidence of the limitations of current WBV assessment 
methods. Neither of the models established in Directive 2002/44/CE, i.e., A(8) and VDV, 
consider the personal characteristics of the driver or long-term assessments, and may have 
poor accuracy in predicting individual exposure risk. In contrast, the ISO 2631-5:2018 
standard model considers the individual variables, but its complexity imposes a limitation 
in terms of its implementation. There is therefore a need to generate methodologies that 
allow for the development of individualised models for the long-term continuous 
assessment and monitoring of workers’ health, which would make it easier for companies 
to implement them. Individualised models represent an alternative approach to general 
models, since the individual risk is assessed rather than the average risk for a group, 
where the assumed characteristics may be different from those of the individual. 

In view of the above discussion, the objective of this research is to develop a 
methodology to facilitate the implementation of long-term WBV exposure assessment 
models based on measures of WBV exposure. We present a methodology for generating 
individualised models for workers exposed to WBV that can be implemented by 
companies, and which can ensure that the health of workers is not compromised due to 
exposure to WBV, either in the short or long term. In this way, our approach overcomes 
the limitations of the A(8) and VDV methods. To achieve this goal, the current study 
includes: (i) the development of a WBV measurement campaign, (ii) an assessment of the 
collected data using models that include individual characteristics, and (iii) the generation 
of an ANN-based model to facilitate individual assessment and long-term monitoring. 

The structure of the manuscript is given as follows. Section 2 presents a literature 
review about the effects of WBV exposure on heavy machine drivers in the construction 
sector. In addition, this section reviews the application of machine learning techniques to 
the assessment of vibration exposure. Section 3 presents the materials and methods used 
in this research. Section 4 shows the results obtained concerning the performance of the 
proposed ANN and its application to a case study. Finally, Section 5 presents the 
discussion of the results obtained from the proposed model and Section 6 provides the 
main conclusions and findings. 

2. Literature Review 
Several activities in the construction sector involve driving different vehicles and 

machinery, which transmit WBV to workers, such as earth-moving operations [24,25], the 
transport of materials [26,27], and, in general, the use of heavy machinery equipment and 
vehicles [28]. WBV-exposing activities are prevalent across various phases of a building’s 
life cycle, including construction (such as material transportation and earth-moving), 
demolition (involving heavy machinery and rubble transport), as well as the 
infrastructure maintenance (including tasks like asphalting and ditch cleaning). In fact, 
demolition is recognised by the EU-OSHA as the most hazardous process in construction 
and demands rigorous safety measures [29]. This agency has emphasised that vibration 
exposure during demolition works must be managed and minimised as far as possible 
[29]. Nevertheless, this exposure minimisation should not only be carried out during 
demolition but also during all phases of construction, as vibration exposure (along with 
other physical hazards) is the second predominant category of risk identified in the sector 
of construction of buildings (34.26%) [30]. 

Preventing construction workers from suffering MSDs and enhancing their 
musculoskeletal health throughout their working lives is essential in order to address the 
long-term effects of demographic aging. This goal is in line with those of the European 
Strategy 2020–2022 [1]. After analysing the long-term consequences for workers’ health, 
EU-OSHA highlighted the need for a multidisciplinary approach to strategy and health 
policy at both the national and European levels to encourage the development of tools, 
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approaches, and models oriented towards managing and assessing all the factors that could 
lead to MSDs. [1]. 

In this context, it should be noted that the assessment methods set in the Directive 
2022/44/CE (A(8) and VDV) do not consider aspects such as the demographic and 
anthropometric characteristics of the drivers, which influence the amount of vibration that 
is transmitted to the driver’s spine [31]. The impact of the personal factors of drivers 
exposed to WBV have been explored in previous research works. Madhushanka et al. [32] 
investigated the WBV exposure of operators of construction vehicles and found that 
experience (number of years of exposure to WBV) and age were the most important factors 
that could affect drivers’ health, in addition to the daily exposure to vibration. Dewangan 
et al. [33] reported that biodynamic responses to vertical WBV were strongly coupled with 
body mass and certain anthropometric dimensions (body fat and hip circumference). 
Previous studies have also highlighted the importance of sitting posture during driving. 
In addition, previous researchers have already noted that the A(8) and VDV methods do 
not consider the adverse consequences for the worker’s health in the long-term activities 
[34]. Different responses to vibration can result from different inclinations of the back, as 
these can change the forces on the lumbar spine [35]. Previous studies have also suggested 
that internal dynamic forces are influenced by the interaction between the subject and the 
seat interface [36]. Hinzt et al. [22] noted that the level of risk could be improved through 
the consideration of both the posture and stature of the operator. 

In addition, previous researchers have already noted that the A(8) and VDV methods 
do not consider the adverse consequences for the worker’s health in the long term. Ramar 
et al. [37] analysed the discomfort of dumper operators during different operations and 
concluded that although the vibration exposures were within the Health Guidance 
Caution Zone limits, neck and shoulder pain were creating discomfort. De la Hoz-Torres 
et al. [38] assessed the short-term WBV exposure transmitted to drivers of heavy 
equipment vehicles (HEVs) and found that the VDV method was more restrictive for 
exposure levels above the limiting values, whereas other short-term assessment methods 
indicated that the same exposure levels were safe for workers. In addition, a recent study 
conducted by Bovenzi and Schust [19] concluded that assessment methods based on 
measures of external vibration acceleration provided worse predictors of LBP than 
measures of internal lumbar forces. 

To date, few studies have been conducted to propose models to facilitate the 
assessment of long-term WBV exposure using new approaches or machine learning (ML) 
techniques. The application of ML techniques for the development of models to predict 
complex variables has been successfully used in a wide variety of fields, such as the 
transport industry [39], financial market [40] or industrial sector [41]. The recent scoping 
review conducted by Chan et al. [42] on the role of ML in the prevention of MSDs 
concluded that ML techniques have enhanced work-related MSD prevention efforts, since 
although this is a relatively new approach, a wide variety of diverse algorithms are 
available to learn complex interactions. In this context, some researchers have used new 
approaches to generate models and frameworks to reduce WBV exposure to driving 
operations. De la Hoz-Torres et al. [43] proposed a GIS-based methodological framework 
to manage and reduce the exposure to WBV using the least-cost path algorithm for the 
process of route design. Upadhyay et al. [44] used a statistical approach to reduce WBV 
exposure among dumper operators. Rahimdel et al. [45] developed a vibrational health 
risk assessment for mining truck operators using artificial neural networks (ANNs). Atal 
et al. [46] used a Bayesian network to investigate dumper operators’ WBV exposure based 
on vibration measurements and a questionnaire survey in opencast coal mines. Singh et 
al. [47] analysed the ride comfort of agricultural tractors and proposed prediction models 
based on ML algorithms. They concluded that an ANN model was the most accurate in 
terms of predicting the ride comfort. In summary, and based on the results reported in the 
previous studies, ML techniques can provide accurate results and can be used to develop 
worker risk assessment models.  
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3. Materials and Methods 
This section is divided into several subsections that describe the experimental work 

carried out, the sensors used during the data acquisition process, and the ANN used in this 
study. An overview of the methodological approach of this work is shown in Figure 1. 

 
Figure 1. Methodological approach applied in this study. 

3.1. Research Participants and Experimental Setup 
This study presents a methodology that can ease the implementation of individual 

assessment models. The proposed methodology is versatile and can be effectively applied 
to various activities that expose vehicle drivers to WBV. These activities occur during 
different phases of building construction, such as earthmoving, material transport, and 
demolition. For instance, during demolition, heavy machinery is used to dismantle 
buildings, and debris transportation also involves significant WBV exposure. 

For this purpose, an employee with extensive experience of driving the HEVs 
commonly used in the construction sector was chosen, and the typical driving activities 
that exposed him to WBV were characterised and analysed. He was a healthy adult male 
with more than 20 years of driving experience (HEVs), without an MSD history or current 
pain. The characteristics of the driver and information about his work experience are 
shown in Table A1 (Appendix A). While the participant was specifically chosen due to his 
extensive HEV driving experience, it is important to note that this selection does not limit 
the applicability of the proposed methodology to younger drivers. This study was 
approved by the ethics committee of the University of Minho (reference number CEICSH 
101/2023) and respected the fundamental principles established in the Declaration of 
Helsinki. An informed consent form was signed by the participant as part of the 
experimental campaign. 

The vehicle selected for this study was a tractor, as the driver was most familiar with 
driving this type of HEV. This is a Class II Category A vehicle [48] and its characteristics 
are shown in Table A2 (Appendix A). 

In this investigation, we monitored and collected data during the typical activities 
carried out by the driver with this vehicle, which included travelling at different velocities 
and on different types of surfaces during load transport activities (earth and backfill 
materials). In this scenario, the driver is exposed to WBVs received through the vehicle 
seat surface. A typical work cycle was identified, and a route for field measurement was 
selected. This route included different type of surfaces: tarmac roads (IRI: 8.6 mm/m), 
unpaved roads (IRI: 11.9 mm/m) and off-road (IRI: 15.4 mm/m). The route was 
representative of the complete work cycle. Previous studies on the WBV exposure 
assessment have also used this experimental design [49,50]. 

Subsequently, after the field test was defined, the procedure and objectives of this 
research were explained to the driver. He was instructed to remain seated and to avoid 
losing contact with the seat. The driver performed the test and repeated the predefined 
route. The equipment used in this study to measure the acceleration transmitted between 
the seat and the driver was an SV 38 (SVANTEK, Warsaw, Poland) MEMS triaxial 
accelerometer, which was connected to an SV 106A six-channel human vibration meter 
and analyser. The SV38 sensor measured the signal along the x- (front-to-rear), y- (left-to-
right) and z- (buttocks-to-head) axes. The data sampling rate was 6 kHz, and the process 
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of data acquisition followed the requirements and recommendations set out in ISO 2631-
1:1997 and 2631-5:2018. A global positioning system was used to register the vehicle’s 
location, and subsequently to determine the travel velocity. The recorded data were 
processed using MATLAB® software (version R2013b v.8.2). Measurements were made 
over periods of at least 120 s, with a maximum speed deviation of 2.5 km/h. The method-
ology used in this study followed the ISO 2631-1:1997 recommendations (to ensure an 
error of less than 3 dB at a 90% confidence level, a minimum measurement duration of 108 
s for a lower frequency limit of 1 Hz was selected). Each recorded measurement was pro-
cessed and used to analyse the health effects of vibration over different exposure times 
(from 1 to 8 h), which provided a total dataset of 3040 WBV exposures. 

3.2. Vibration Exposure and Assessment of Health Risks 
WBV assessment was first carried out using measures of external vibration. This ap-

proach is commonly used to assess WBV exposure, as it is the method indicated in Di-
rective 2002/44/EC. The input to this process consisted of the acceleration values measured 
at the seat interface (i.e., between the operator and the seat). According to ISO 2631-1, the 
acceleration should be weighted (using the factors described the ISO standard), and the 
obtained results used to assess the daily WBV exposure. Based on the recorded values, the 
rms (Equation (1)) and vdv (Equation (2)) of the signal were calculated and used in the 
A(8) (Equation (3)) and VDV (Equation (4)) assessment methods, respectively. 

𝑟𝑚𝑠௜௪ =  ቈ1𝑇  න 𝑎௜௪ଶ  (𝑡)்
଴  𝑑𝑡቉ଵ ଶൗ

 (1)

𝑣𝑑𝑣௜௪ =  ቈ න 𝑎௜௪ସ  (𝑡)்
଴  𝑑𝑡቉ଵ ସൗ

 (2)

𝐴(8)௜ =  𝑘௜ 𝑟𝑚𝑠௜௪ ඨ𝑇௘௫௣𝑇଴మ
 (3)

𝑉𝐷𝑉௜ =  𝑘௜ 𝑣𝑑𝑣௜௪ ඨ 𝑇௘௫௣𝑇௠௘௔௦ర
 (4)

where 𝑖 denotes the different axes x, y and z; 𝑟𝑚𝑠௜௪ is the root mean square (rms) of the 
weighted averaged acceleration in the i-th axis; 𝑇 is the time duration of the measure-
ment; 𝑎௜௪ is the frequency-weighted instantaneous acceleration along the i-th axis (Wk on 
the z-axis and Wd on the x- and y-axes); 𝑣𝑑𝑣௜௪ is the vibration dose value of the weighted 
averaged acceleration along the i-th axis; A(8) is the 8 h daily exposure; 𝑘௜ are the dimen-
sional multiplication factors in each axis (𝑘௭ = 1; 𝑘௫,௬ = 1.4 ); 𝑉𝐷𝑉௜  is the vdv exposure 
along the i-th axis; 𝑇௘௫௣ is the exposure duration; 𝑇଴ is the 8 h reference duration; and 𝑇௠௘௔௦ is the measurement period. 

According to the European Directive 2002/44/CE, the three axes should be evaluated, 
and the highest value obtained should be used for comparison with the daily exposure 
action value (A(8)EAV = 0.50 m/s2 and VDVEAV = 9.10 m/s1.75) and the daily exposure limit 
value (A(8)ELV = 1.15 m/s2 and VDVELV = 21.00 m/s1.75). 

ISO 2631-1:1997 specifies that rms methods are applicable for crest factors (CF) of 
below nine, whereas for exposures with a CF of above nine, other methods such as vdv are 
indicated. However, Directive 2002/44/CE does not mention this aspect. The CF is deter-
mined using Equation (5): 𝐶𝐹௜ = 𝑃𝑒𝑎𝑘௜,௪𝑟𝑚𝑠௜,௪  (5)
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where 𝐶𝐹௜ is crest factor along the i-th axis; 𝑃𝑒𝑎𝑘௜,௪ is the instantaneous peak value of 
the frequency-weighted acceleration signal on the i-axis and 𝑟𝑚𝑠௜௪  is the rms of the 
weighted averaged acceleration along the i-th axis. 

In addition, in this study, the WBV assessment method defined in the International 
Standard ISO 2631-5:2018 was applied. This method is based on the calculation of the in-
ternal lumbar forces. In addition, the method used here was the one developed for “less 
severe conditions”, since the activities corresponded to this regime (i.e., exposure without 
free-fall events, peak accelerations of up to 9.81 m/s2 in the z-direction and where the 
driver remains seated). The activities conducted in the construction sector are most likely 
to correspond to this exposure regime. The flowchart for the determination of the 𝑆ௗ஺ and 
RA parameters according to ISO 2631-5:2018 is shown in Figure 2. 

 
Figure 2. Flowchart of the calculation of the risk factor RA (ISO 2631-5:2018) [21]. 

The application of this method required us to record the acceleration between the 
operator and the seat, and the intra-spinal forces were predicted using the transfer func-
tion described in the ISO 2631-5:2018 standard. Although the acceleration measurement 
process followed the procedures outlined in ISO 2631-1:1997, the calculation required the 
application of a more complex method than those described in ISO 2631-1 and was not 
based on the widely used signal rms value. 

As a minimum, the ISO 2631-5:2018 model takes as input the acceleration measured 
at the seat surface in the three directions (x, y and z) and the posture and body mass index 
of the exposed driver (BMI). In addition, the acceleration measured at the feet and backrest 
can also be included in the evaluation. The compressive forces at different vertebral levels 
are calculated based on these acceleration time series and the transfer functions, which 
depend on the posture and BMI. The compressive dose 𝑆஺ is calculated for the six disc 
levels (i.e., T12/L1, L1/L2, L2/L3, L3/L4, L4/L5 and L5/S1) based on Equation (6). 

𝑆஺ = ൥෍൬𝐶ௗ௬௡,௝𝐵 ൰଺௜ ൩ଵ ଺ൗ
 (6)
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where 𝐵 is the area of a vertebral endplate, and 𝐶ௗ௬௡,௝ are the peak compressive forces 
acting on the area of a vertebral endplate. 

The 𝑆஺ values obtained for each disc level can be used to determine the equivalent 
daily compressive dose 𝑆ௗ஺ of the lumbar spine (Equation (7)). 

𝑆ௗ஺ = ቎෍𝑆௝஺଺  𝑡ௗ,௝𝑡௠,௝௝ ቏ଵ ଺ൗ
 (7)

where 𝑆௝஺ is the dynamic compressive dose to the lumbar spine due to WBV exposure 
from activity j; 𝑡௠,௝ is the time period over which 𝑆௝஺ has been measured; and 𝑡ௗ,௝ is the 
time period of the daily vibration exposure to the activity j. 

In terms of long-term WBV exposure assessment, ISO 2631-5 describes the risk of 
spinal injury based on the RA parameter. This parameter considers the duration of expo-
sure related to the age of the exposed individual and the year at which the exposure 
started. RA is estimated for vertebral levels T12/L1 to L5/S1 and requires as input data the 
value of 𝑆ௗ஺ and duration of each vibration exposure, the year of birth of the exposed in-
dividual, the first year of exposure, the last year of exposure, and the duration and pattern 
of each exposure per year. Assuming a constant exposure pattern per day over all years, 
RA is calculated according to Equation (8): 

𝑅஺ = ൦෍ቌ 𝑆ௗ஺  𝑁௜ଵ ଺ൗ𝑆௨,௜஺ −  𝑆௦௧௔௧,௜஺ ቍ଺௡
௜ୀଵ ൪ଵ ଺ൗ

 (8)

where 𝑛 is the number of years of exposure; 𝑖 is the year counter; Ni is the number of 
exposure days per year 𝑖; 𝑆ௗ஺ is the constant daily compressive dose; 𝑆௦௧௔௧,௜஺  is the mean 
value of the compressive–decompressive force divided by the area of a vertebra endplate 
B, and 𝑆௨,௜஺  is the ultimate strength of a lumbar vertebra for a person aged (b + 1) years 
(where b is the age at which the exposure started). 

This standard also defines the limits of probability of an adverse health effect: a low 
probability is indicated by 𝑅஺ < 0.8, while a high probability is indicated by 𝑅஺ > 1.2. 

3.3. Artificial Neural Network 
To generate a model to predict the long-term health risk of an individual exposed to 

WBV, an ANN model was formulated for each vertebral level in this study. This approach 
is necessary because, when a driver is exposed to WBV, the 𝑆஺ at each vertebral level 
varies. Consequently, the 𝑆ௗ஺ also differs. By accurately formulating models that deter-
mine 𝑆ௗ஺, the safety manager can assess the 𝑅஺, allowing him to evaluate the driver long-
term WBV exposure. 

An ANN was chosen for the predictive models, since this type of ML algorithm has 
been used in previous studies of the construction sector to predict complex variables that 
depend on several parameters, such as non-destructive vibration testing [51], the behav-
iour of building occupants [52] and safety management [53–55]. A multilayer perceptron 
ANN was used in this study, with an architecture that consisted of an input layer, which 
was connected to one or more hidden layers, and an output layer (Figure 3). The basic 
structure only had one hidden layer, and since any complex nonlinear function can be 
approximated in the first instance with this structure according to ANN theory [56], this 
was the structure selected. The ANN models were constructed, trained and validated us-
ing Python and Scikit-learn library. 
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Figure 3. Architecture of an artificial neural network (one hidden layer and one output variable). 

In this study, 13 variables have been selected for the input layer and one variable for 
the output layer. Different variables were selected as ANN input parameters: the rms on 
each axis (i.e., rmsx, rmsy and rmsz), the vdv on each axis (i.e., vdvx, vdvy and vdvz), the crest 
factor on each axis (i.e., CFx, CFy and CFz), and the mean velocity, type of surface, meas-
urement period, and exposure time. Posture and anthropometric characteristics were not 
included as input variables, as these do not vary across exposures. These characteristic 
parameters of the acceleration signal are typically used by companies to assess the expo-
sure of drivers according to European Directive 2002/44/CE, meaning that their measure-
ment does not pose a challenge or problem for companies that have used these values 
previously to assess WBV exposure. Therefore, the data collection process required for the 
implementation of the proposed methodology should not pose a problem for companies 
and safety managers, since these variables are used to assess short-term WBV exposure 
according to the methods set out in the Directive 2002/44/CE. 

A single output parameter was selected, consisting of the compressive dose 𝑆ௗ஺. The 𝑆ௗ஺ was calculated from the data collected in the field measurements and applying the 
assessment method defined in ISO 2631-5:2018. This parameter was selected because it is 
based on the internal lumbar forces, and this approach provides better predictors of LBP 
than methods based on external vibration acceleration [19]. In addition, 𝑆ௗ஺ is critical in 
determining the risk of short- and long-term exposure according to ISO 2631-5:2018. The 
optimal number of neurons in the hidden layers was calculated using Equation (9) [57–59]: 𝑁 = 2 𝑁௜௡௣௨௧ + 1 (9)

where 𝑁 is the number of neurons in the hidden layers, and 𝑁௜௡௣௨௧ is the number of neu-
rons in the input layer. Given that the compressive dose 𝑆ௗ஺ is different at each vertebra 
level, six models were generated to estimate the health risk assessment RA for each level. 
Table A3 in Appendix A shows a summary of the sets and parameters used in this study. 

To generate the ANN models, the dataset was segmented into training (80%) and test 
(20%) sets for each of the prediction models. The backpropagation lbfgs (quasi-Newton 
method) algorithm was selected as a solver for weight optimisation. The rectified linear 
unit (ReLU) was selected as activation function for the hidden layer. 
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In addition, K-fold cross validation was implemented. This approach requires divid-
ing the input data into k partitions to create k identical models, each of which is trained 
on k − 1 partitions and evaluated on the remaining partition [60]. This algorithm starts 
with a random mixing of the dataset and the initialisation of the parameter k (integer) that 
will define the number of partitions or splits of the dataset. The k parameter sets the num-
ber of training and validation iterations that will be used to develop the model. Once the 
value of k is set, the training and validation process starts. During the k iterations these 
steps are repeated: 
• One of the k partitions is taken and separated from the rest. This fold will be the one 

that validates the model so that it registers performance and errors. 
• The remaining k − 1 splits are taken and the model is trained with them. 
• Once the training process is completed, the model is validated with the fold from step 

one and its performance is stored. 
These steps are repeated k times, so that each split is used exactly once for validation. 

The validation score for the model is determined based on the average of the k validation 
rms error measurements. The final performance of the model will be the average of all 
performances. In this study, the number of folds was five (Figure 4). 

 
Figure 4. K-fold approach used during the training and validation process. 

Additionally, the data were also normalised using Equation (10), to avoid the smaller 
numbers being overridden by the larger numbers and the premature saturation of the 
neurons in the hidden layer [61]. 𝑋 =  𝑦 − min(𝑦)max(𝑦) − min(𝑦) (10)

where 𝑋 are the normalised data (in the range zero to one); 𝑦 is the initial parameter 
value; min(𝑦)  is the minimum value of the set of 𝑦 values and max(𝑦)  is the maximum 
value of the set of 𝑦 values. 

Finally, the ANN models developed in this study were evaluated through a compar-
ison of the predicted and actual values of 𝑆ௗ஺. Two forms of statistical error were consid-
ered: the mean absolute error (MAE), which is the mean of the absolute error between the 
actual and predicted values, and the mean square error (MSE), which is the average of the 
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squared errors between the actual and predicted values. Equations (11) and (12) were used 
to estimate these errors, respectively. 

𝑀𝐴𝐸 =  1𝑁  ෍|𝑄௜ − 𝑃௜|௡
ଵ  (11)

𝑀𝑆𝐸 =  1𝑁  ෍(𝑄௜ − 𝑃௜)ଶ௡
ଵ  (12)

where 𝑁 is the total number of data, 𝑃௜ is the predicted 𝑆஺ value and 𝑄௜ is the observed 𝑆஺ value. 
As can be deduced from Equations (11) and (12), the lower the values of MAE and 

MSE, the better the accuracy of the model. 

4. Results 
4.1. Performance Analysis of the ANN Models 

The collected data were processed and used to analyse the health effects of WBV expo-
sure. A total dataset of 3040 WBV exposures were used for this purpose. This dataset was 
elaborated based on the data collected during the measurement campaign. Anonymous sam-
ple data can be downloaded in Supplementary Materials. The ISO 2631-1:1997 recommenda-
tions were followed in this study (a minimum measurement duration of 108 s for a lower 
frequency limit of 1 Hz is required to ensure an error of less than 3 dB at a 90% confidence 
level). The obtained values were used to generate six ANN models to predict 𝑆ௗ஺ for each 
level of the spine. The accuracy of the different ANN models was evaluated. A summary 
of the R2, MSE and MAE values is shown in Table 1 for the training, cross-validation and 
test datasets. Each of the generated models had a high R2 value of above 0.90. Differences 
of less than 0.01 were found between the values of R2 for the different datasets at all ver-
tebral levels, except between the training and cross-validation, and cross-validation and 
test datasets for the L4/L5 and L3/L4 vertebral levels, where a difference of 0.02 was ob-
served. The statistical errors were analysed, where the lower the prediction error, the 
higher the accuracy of the developed models. Similar values for the MSE were shown by 
all models (0.01), although greater variation was found in the MAE values (between 0.017 
and 0.025). The results showed that the models provided accurate predictions. 

Table 1. Summary of results for the coefficient of determination (R2), MSE and MAE for the ANN 
models. 

Disc Level Dataset R2 MSE MAE 

T12/L1 
Training 0.95 0.001 0.017 

Cross-validation 0.95 0.001 0.017 
Test 0.94 0.001 0.018 

L1/L2 
Training 0.95 0.001 0.019 

Cross-validation 0.94 0.001 0.019 
Test 0.94 0.001 0.020 

L2/L3 
Training 0.93 0.001 0.021 

Cross-validation 0.93 0.001 0.021 
Test 0.93 0.001 0.023 

L3/L4 
Training 0.93 0.001 0.023 

Cross-validation 0.93 0.001 0.022 
Test 0.91 0.001 0.025 

L4/L5 
Training 0.94 0.001 0.022 

Cross-validation 0.94 0.001 0.022 
Test 0.92 0.001 0.023 
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L5/S1 
Training 0.94 0.001 0.021 

Cross-validation 0.93 0.001 0.022 
Test 0.93 0.001 0.023 

Figure 5 shows the relationship between the actual 𝑆ௗ஺ values for each vertebral level, 
and the predicted 𝑆ௗ஺ values obtained from the ANN models. In addition, the linearly re-
gressed relationships obtained between both values are shown as solid red lines. The per-
formance of each vertebral level ANN model was compared against the ideal conditions, 
which are shown on each graph as a bisector line. The closer the slope of the model’s 
regressed line to that of the bisector line, and the smaller the error determined from the 
difference between the actual and predicted values, the better the model’s performance. It 
can be observed from Figure 3 that the formulated ANN models provide accurate predic-
tions, since the values are close to the bisector line. This conclusion can also be drawn from 
the regression equation and R2 obtained for each ANN model (Figure 3). The slope of all 
regressed lines is close to one, with values ranging between 0.92 and 0.95. 

 
Figure 5. Relationships between predicted and actual values for six vertebral levels: (a) T12/L1, (b) 
L1/L2, (c) L2/L3, (d) L3/L4, (e) L4/L5, (f) L5/S1. The red line represents the regression equation, and 
the dotted line represents the bisector line. 

Figure 6 shows the error distribution profiles for the six developed ANN models. The 
error was determined by subtracting the predicted values from the actual values. A posi-
tive error shows that the actual value was underestimated, since the predicted value was 
lower than the actual value. In contrast, a negative error implies that the predicted value 
was higher than the actual value, meaning that the actual value was overestimated by the 
model. The obtained error profiles show that the predicted values deviate by less than 0.03 
from the actual values for the levels T12/L1 (84.4%), L1/L2 (84.3%), L2/L3 (82.1%), L3/L4 
(79.1%), L4/L5 (81.2%) and L5/T1 (85.5%). In addition, and as shown in Figure 3, the error 
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profiles of the models show a slight positive deviation. However, the frequency of this 
error is very low (deviations of greater than 0.09 represent less than 1% of the total sample). 

 
Figure 6. Error distribution profile for the 𝑆ௗ஺ ANN models for the six vertebral levels. 

These results indicate that the ANN models formulated here provide accurate results 
and can be used as useful tools to predict individual 𝑆ௗ஺ assessment values. 

4.2. Case Study and Comparison of the Assessment Models 
To illustrate the application of the generated ANN models and to compare them to 

other models, a typical daily work cycle for the driver who participated in the study was 
selected. This work cycle included two different types of driving activities: driving on a 
tarmac road (for 4 h at a mean velocity of 17.1 km/h) and driving on unpaved roads (for 
1.5 h at a mean velocity of 17.8 km/h). These types of driving activities were evaluated, 
and the acceleration transmitted to the driver through the seat was measured. The values 
of rms and vdv are shown in Table 2. 

Table 2. Summary of the measured rms and vdv values for the different activities in the selected 
work cycle. 

Type of Surface rmswx (m/s2) rmswy (m/s2) rmswz (m/s2) vdvwx (m/s1.75) vdvwy (m/s1.75) vdvwz (m/s1.75) 
Tarmac road 0.34 0.20 0.53 1.76 1.30 4.07 

Unpaved road 0.48 0.50 0.66 2.22 2.12 4.02 

The A(8) and VDV methods were applied based on the collected values, and the ob-
tained daily WBV exposures were 0.46 m/s2 and 16.11 m/s1.75, respectively. According to 
Directive 2002/44/CE, the value obtained for A(8) does not exceed the EAV limit, meaning 
that the WBV exposure is safe for the health of the driver. In contrast, the obtained VDV 
value exceeds the EAV limit, indicating that action should be taken in order to reduce the 
driver’s WBV exposure. 

The collected vibration data were also used to apply the ISO 2631-5:2018 method, and 
the results were compared with the predicted 𝑆ௗ஺ values obtained from the developed 
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ANN models. Table 3 shows these results. The values generated by the ISO 2631-5:2018 
model and our ANN models were very similar (with differences of between 0.002 and 
0.03). The most unfavourable value was seen for vertebral level T12/L1. 

Table 3. 𝑆ௗ஺ values obtained from the ISO 2631-5:2018 model and the formulated ANN models. 

Model 
Vertebra Level 

T12/L1 L1/L2 L2/L3 L3/L4 L4/L5 L5/S1 
ISO 2631-5:2018 0.577 0.539 0.520 0.513 0.503 0.489 

ANN models 0.581 0.541 0.490 0.496 0.510 0.484 

The 𝑆ௗ஺ values were then used to evaluate the risk factor RA. The long-term WBV 
exposure was calculated based on the assumption of a constant daily 𝑆ௗ஺ exposure in the 
most unfavourable scenario, where the driver was first exposed at the age of 20 and was 
exposed to 𝑆ௗ஺ over 45 working years (240 days per year), assuming a constant compres-
sive stress 𝑆௦௧௔௧஺  = 0.25 MPa. The RA calculated over the years for each vertebra level is 
shown in Figure 7. 

 
Figure 7. Evolution of the RA factor based on (a) the actual 𝑆ௗ஺ values, and (b) the predicted 𝑆ௗ஺ val-
ues. Red dotted lines indicate low and high probability limits. 

Figure 5 shows that the behaviour of the risk factor RA obtained from the actual and 
predicted 𝑆ௗ஺ values is similar. The RA obtained from the actual 𝑆ௗ஺ at the T12/L1 verte-
bral level is higher than 0.8 for an age of 59. The RA value obtained for the same vertebral 
level based on the predicted 𝑆ௗ஺ gives the same result at the same age. The ages at which 
a value of RA = 0.8 is exceeded are also the same based on both the actual and predicted 𝑆ௗ஺ for levels L1/L2 (62 years), L2/L3 (64 years), L3/L4 (64 years) and L4/L5 (65 years). The 
value RA for vertebral level L5/S1 does not exceed 0.8 before the age of 65 years. 

These results provide evidence that a long-term assessment of the RA parameter 
based on the actual 𝑆ௗ஺ is equivalent to one based on the 𝑆ௗ஺ values predicted by the de-
veloped models. Thus, the ANN models proposed in this study prove to be a useful re-
source for predicting long-term health risks from vibration exposure. This assessment is 
essential to protect workers’ health during both their working life and subsequent retire-
ment. Therefore, the proposed methodology can be used by safety managers to support 
the decision-making process during the design of activities to protect construction 
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workers from excessive WBV exposure. It can be applied to any activity that exposes driv-
ers to WBV during the building construction, maintenance and demolition. 

5. Discussion 
This research presents a method of developing individual ANN-based assessment 

models to predict the 𝑆ௗ஺ due to WBV exposure. A different approach is used here from 
the methods established in the European Directive 2022/44/CE, which are based on the 
external vibration acceleration load and consider only the short-term adverse health ef-
fects. Instead, the parameter 𝑆ௗ஺ is chosen in this study as the output of six ANN models. 
Since 𝑆ௗ஺ is based on the internal lumbar forces, it provides better predictions of LBP than 
methods based on measures of external acceleration. Furthermore, it can be used to assess 
the health effects of long-term cumulative WBV exposure from the calculation of the risk 
factor RA. 

The 𝑆ௗ஺ values predicted using the proposed ANN models provide a daily dose esti-
mate that can be used to support decision-making processes as part of health and safety 
management. The obtained values for R2, MAE and MSE indicate that our models provide 
accurate 𝑆ௗ஺ values. From a performance assessment of the models, it is possible to con-
clude that ANN algorithms can be used to predict the WBV exposure assessment based 
on the internal lumbar forces. 

The potential use of this type of ML algorithm has been noted in previous research; 
for instance, Singh et al. [47] proposed ML models to predict the overall value of vibrations 
transmitted to drivers during tractor driving and found that ANN models provided a 
more accurate prediction of ride comfort than other ML algorithms, such as linear regres-
sion and decision tree regressor. An R2 value of 0.90 was obtained from the ANN model 
developed by Singh et al. In this line, Rahimdel et al. [45] assessed the WBV transmitted 
to truck operators in mining and developed an ANN model to predict the rms of the ver-
tical acceleration based on the four input parameters (speed level, play load, haul road 
quality, and load geometry). The Pearson correlation value found between the actual and 
predicted rms values was 0.96. 

However, it should be noted that both the model developed by Sigh et al. [47] and 
the model developed by Rahimdel et al. [45] predict rms acceleration at the seat surface, 
which is a worse predictor of low back pain than internal lumbar forces. Further studies 
are needed to accurately predict LBP as a consequence of WBV exposure. Few studies 
proposed vibration exposure assessment models based on ML algorithms. More studies 
are needed to further explore this area. 

In addition, it should be remarked that the inputs to the proposed ANN models in 
this study are typical parameters of the acceleration signals (rms, vdv and CF), which are 
widely known and are currently used by European companies to assess the WBV expo-
sure of their workers. Hence, the measurement of these parameters should not pose a 
challenge for companies, as Directive 2002/44/CE established in 2002 that these parame-
ters should be used to assess WBV exposure. Although the proposed ANN models rely 
only these commonly used input parameters, the output parameter (𝑆ௗ஺) allows for an as-
sessment not only of short-term exposure but also long-term exposure. This means that 
the limitations of the methods defined in the Directive 2002/44/CE, which can only be used 
to assess short-term WBV exposure, can be overcome. 

We note that although the generation of these ANN models for each driver involves 
an initial effort, it allows for the assessment of short- and long-term WBV exposure. The 
proposed approach can therefore be used to create a new tool that can help to minimise 
the adverse effects of WBV exposure on the health of workers, thus improving their qual-
ity of life during their working years and subsequent retirement. This aspect is especially 
important, given that the problem of workforce aging has attracted attention over the last 
decade due to increases in life expectancy and delays in retirement [12]. This gives rise to 
an increased likelihood of developing MSDs caused by the cumulative effects of WBV 
exposure. 
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The results obtained from the developed models can also be used to generate a data-
base containing a worker’s lifetime exposure history. This database can provide key in-
formation for assessing long-term WBV exposure based on reliable data. The implemen-
tation of the proposed ANN models can facilitate the assessment of exposure over the 
entire working life of a driver, which is essential to protect workers’ health in both the 
short and long term. A safety manager can use this information during the design of ac-
tivities to support decision-making processes and risk assessments. 

The proposed approach for generating individualised WBV assessment models pro-
vides a potential tool for use with Internet of Things (IoT) technologies. Previous studies 
have noted that the current development and growth in the area of IoT offers new avenues 
for healthcare and smart health monitoring [62–64]. The integration of the IoT with the 
proposed models could play a vital role in real-time monitoring and safety enhancement 
during driving activities. This approach will change the conventional mode of health and 
safety management to a new smart system. Future studies are needed to explore the cre-
ation of a complete system of smart health, including device design, data collection and 
model integration for real-time monitoring. 

This study proposes a methodology that can be applied to any driving activity that 
exposes drivers to WBV under less severe conditions. These activities include the driving 
of a wide variety of vehicles, such as earthmoving machinery, tractors, off-road vehicles, 
trucks, etc. Although a tractor has been selected to illustrate the application of the meth-
odology proposed in this study, it can be applied to any other activity carried out with 
other vehicles. Since the magnitude of transmitted vibrations depends on a wide variety 
of parameters (e.g., type of driving surface, travel speed, type of vehicle, etc.), a case-by-
case basis should be applied to implement the proposed methodology. In fact, the pro-
posed methodology offers safety managers a valuable tool for informed decision-making. 
It assists during the planning and design stages of construction activities, aiming to pro-
tect workers from excessive WBV exposure. This approach can be seamlessly integrated 
into various tasks, spanning construction, maintenance, and demolition processes. Thus, 
although a tractor driver has been selected in this study, the proposed methodology is 
applicable to other types of vehicles. More studies are needed to study the applicability of 
more machine learning algorithms for risk prediction related to vibration exposure. 

Furthermore, the implementation of the proposed models will encourage the use of 
best practices and models to reduce WBV exposure and to increase safety knowledge in 
the construction industry. Their implementation will also support the achievement of ob-
jectives related to two of the three priorities of the EU Strategic Framework on Health and 
Safety at Work 2021–2027 [65]: anticipating and managing change in the context of demo-
graphic transitions (such as the increased aging of the workforce) and improving the pre-
vention of work-related accidents and diseases. 

Finally, in terms of limitations, it should be noted that the generation of the ANN 
models requires some initial effort, and small and medium-sized companies in the con-
struction sector may be less motivated to implement the proposed model due to this fact. 
Nevertheless, despite this initial effort, the models generated using the proposed method-
ology can be used to assess the short- and long-term WBV received by the driver over 
his/her entire working life. Therefore, the implementation of the proposed methodology 
can contribute to reducing the occurrence of MSDs, which not only have a high cost for 
the worker’s health, but also affect businesses and society in general. 

6. Conclusions 
Work-related MSDs are of concern worldwide, and the construction industry is 

among the sectors in which MSDs are most frequently reported by workers. WBV expo-
sure is epidemiologically related to the occurrence of MSDs. In this context, the objective 
of this study was to propose a methodology to generate individualised models based on 
ANN algorithms to assess short- and long-term WBV exposure. The results obtained from 
six ANN models led to the following findings. 
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Our ANN models for six vertebral lumbar levels provided accurate results. The R2 
value obtained for each ANN model was above 0.90 for all datasets (training, cross-vali-
dation, and testing), with differences of less than 0.01 between datasets at all vertebral 
levels (except for L3/L4 and L4/L5, where a difference of 0.02 was found). 

The difference between the actual and predicted 𝑆ௗ஺ values obtained from each ANN 
model was analysed. All models gave similar MSE values (0.001) and MAE values of be-
low 0.025. These results indicate that our ANN models provide accurate 𝑆ௗ஺ predictions. 
The error distribution profiles for the six models showed that around 80% of the predicted 
values deviated by less than 0.03 from the actual value for all vertebral levels. Deviations 
of greater than 0.09 were found to represent less than 1% of the total. 

The proposed models were applied to an illustrative case study. The predicted 𝑆ௗ஺ 
values were found to vary from the actual 𝑆ௗ஺ values by less than 0.03 MPa for the six 
ANN models. A long-term WBV assessment based on the RA factor provided equivalent 
results based on both the actual and predicted values of 𝑆ௗ஺. 

The obtained results showed that the implementation of the proposed model can ex-
tend the capabilities of the safety manager during the WBV assessment process. The pro-
posed model can be used to identify driving activities that may be harmful to workers’ 
health in the short or long term. In fact, this is one of the main advantages of the proposed 
model compared to the methods laid out in the EU Directive EU 2002/44/EC (i.e., A(8) and 
VDV), which can only be used to assess vibration exposure on a daily basis. Therefore, 
and in view of the results obtained in this study, the necessity of amending the provisions 
of the Directive 2002/44/EC is evident. The need to assess the cumulative exposure as an 
obligation of employers should be included in Art. 4 Determination and assessment and 
Art. 5 Provisions aimed at avoiding or reducing exposure. 

The proposed ANN models can allow companies to implement short- and long-term 
WBV exposure assessment models to ensure that the health of workers is not compro-
mised, either during a driver’s working life or during retirement. The approach used in 
this study can be applied to any activity that exposes workers to WBV during any phase 
of the building life cycle (including construction, maintenance or demolition). The pur-
pose of the proposed methodology is aligned with the European Strategy 2020–2022 and 
contributes to minimising the exposure to harmful WBV for the health of workers in the 
construction sector, a need highlighted by EU-OSHA. This methodology constitutes a new 
practical tool that can be used by safety managers for assessing and managing WBV ex-
posure, thus preventing construction workers from suffering from MSDs and promoting 
their musculoskeletal health throughout their working lives. Thus, it can be used to ad-
dress the long-term effects of demographic aging and protect the health of construction 
workers. 

Finally, future research should explore the implementation of the proposed ANN 
models in conjunction with IoT devices and real-time monitoring to assess WBV during 
driving activities. New wearable devices and monitoring sensors could be used to collect 
data and predict potentially hazardous WBV exposure in real time. The driver behaviour 
and the 𝑆ௗ஺ values could be evaluated based on historical data. Incorporating an assess-
ment model based on ML algorithms into the control system of HEV vehicles could pro-
vide a smart tool for monitoring WBV exposure in real time and, if necessary, issue warn-
ing signals to reduce risk. 

Supplementary Materials: Anonymous sample data can be downloaded at: 
https://doi.org/10.12795/11441/158149. 
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Appendix A 

Table A1. Driver’s characteristics. 

Characteristic Value 
Age 59 years 

Height 1.73 m 
Weight 73 kg 

BMI 24.4 kg/m2 
Mean daily exposure duration (WBV) 7 h 

Mean annual exposure duration (WBV) 150 days per year 
Age at first year of WBV exposure 20 years 

Cumulative exposure duration to WBV 39 years 
Posture group (based ono ISO 2631-5:2018) 3 

Table A2. Characteristics of the tractor. 

Characteristics Tractor Dimensions 
Power 78 kW Weight 3800 kg 

Cylinder 4 Wheelbase 2.26 m 
Front tyre (width/diameter) 7.50/18 Length 4.19 m 

Rear tyre 13.6R38 Width 2.05 m 
  Height (cab) 2.26 

Table A3. Sets and parameters used in this study. 

Structure 
Input layer 

rmsx 
rmsy 
rmsz 
vdvx 
vdvy 
vdvz 
CFx 
CFy 
CFz 

mean velocity 
type of surface 

measurement period 
exposure time 

Output layer 𝑆ௗ஺ 
Activation function hidden layer Rectified linear unit (ReLU) 

Backpropagation algorithm Lbfgs (quasi-Newton method) 
Dataset segmentation Training 80% 
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Test 20% 
Model validation  k-fold cross validation 

Performance metrics  MSE, MAE, R2 
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