BISPECTRALITY FOR MATRIX LAGUERRE-SOBOLEV POLYNOMIALS

FRANCISCO MARCELLÁN AND IGNACIO ZURRIÁN

Abstract

In this contribution we deal with sequences of polynomials orthogonal with respect to a Sobolev type inner product. A banded symmetric operator is associated with such a sequence of polynomials according to the higher order difference equation they satisfy. Taking into account the Darboux transformation of the corresponding matrix we deduce the connection with a sequence of orthogonal polynomials associated with a Christoffel perturbation of the measure involved in the standard part of the Sobolev inner product. A connection with matrix orthogonal polynomials is stated. The Laguerre-Sobolev type case is studied as an illustrative example. Finally, the bispectrality of such matrix orthogonal polynomials is pointed out.

Mathematics Subject Classification: Primary: 42C05, 33C45. Secondary: 15 A23, 34L10.

Keywords: Standard orthogonal polynomials, Sobolev type orthogonal polynomials, Darboux transformations, matrix orthogonal polynomials, bispectrality.

1. Introduction

The study of inner products associated with a vector of measures $\left(d \mu_{0}, d \mu_{1}, \cdots, d \mu_{N}\right)$ supported on the real line has attracted the interest of many researchers taking into account many properties of standard orthogonal polynomials are lost (see the survey paper (MX15]). In particular, the multiplication operator by x is not symmetric with respect to such inner products and, as a consequence, the corresponding sequences of orthogonal polynomials do not satisfy a three term recurrence relation, that plays a central role in the theory of standard orthogonal polynomials (see [Ch78]). The matrix counterpart of the three term recurrence relation is a tridiagonal matrix that is known in the literature as Jacobi matrix. The spectral theory of such Jacobi matrices is an old topic and yields the so called Favard theorem (see [Ch78]). Assuming you have $L U$ and $U L$ factorization, respectively, of a shifted Jacobi matrix, then the commutation between the matrices in the above factorizations yields new Jacobi matrices whose spectral resolution generates the canonical Christoffel and Geronimus transformations, respectively (see BM04], GMM21], Ga02], Ga04] [Y02], [Z97], among others). They are the discrete counterpart of the Darboux transformations for second order linear differential operators. When you consider a canonical Christoffel transformation and next a canonical Geronimus transformation of a Jacobi matrix, then the resulting Jacobi matrix has as spectral resolution the so called Uvarov transformation that is a perturbation of the initial spectral measure by adding a Dirac mass point. They appear in the framework of the spectral analysis of fourth order differential operators with polynomial coefficients
as analyzed in the pioneering work HLK40.
The implementation of multiple Christoffel transformations, i. e., an iteration of canonical Christoffel transformations, has been studied in Ga04. On the other hand, in DGM14 the authors focus the attention on multiple Geronimus transformations in a more general framework.

When you deal with a Sobolev inner product associated with a vector of measures as above but $d \mu_{k}, k=1,2, \cdots, N$, are supported on finite subsets of the real line, the so called Sobolev-type inner product appears. The corresponding sequences of orthogonal polynomials are "no so far" of the sequences of standard orthogonal polynomials with respect to the measure $d \mu_{0}$. This fact was pointed out in AMRR92 when $N=1$ and the support of $d \mu_{1}$ is a point c in the real line that can also be a mass point of the measure $d \mu_{0}$ and in MR90] when $d \mu_{k}=0, k=1,2, \cdots, N-1$, and support of $d \mu_{N}$ is a point c in the real line. Algebraic and analytic properties of such orthogonal polynomials have been extensively studied in the literature. In particular, when $d \mu_{0}$ is the gamma distribution several authors have studied differential operators such that the corresponding eigenfunctions are orthogonal polynomials with respect to Sobolev type inner products assuming the support of the measures $d \mu_{k}, k=1,2, \cdots, N$ is $\{0\}$. The pioneering work [K90 yields an intensive study about the existence and explicit expressions for such differential operators (see DI15, KKB98, [KM93], M19]). When $d \mu_{0}$ is the beta distribution, a similar analysis was done when the masses are located in one of the end points of the support, i. e., $\{ \pm 1\}$ (see [DI18], M21], Ma21, M22]).

Orthogonal polynomials with respect to Sobolev type inner products satisfy higher order recurrence relations associated with a multiplication operator by a polynomial. Such an operator is symmetric with respect to the above inner product. The converse result, an analogue of the Favard's theorem, has been studied in [D93] where a representation of a general symmetric real bilinear form such that there exists a multiplication operator by a polynomial x^{N+1} that is symmetric with respect to such a bilinear form B, i. e., the corresponding sequence of orthogonal polynomials satisfies a symmetric $2 N+3$ recurrence relation, is given. Moreover, the following facts are equivalent (see Corollary 7 in [D33).

- The multiplication operator by x^{N+1} is a symmetric operator with respect to the bilinear form B, it commutes with the multiplication operator x, i. e., if p, q are polynomials, then $B\left(x^{N+1} p(x), x q(x)\right)=B\left(x p(x), x^{N+1} q(x)\right)$, and $B\left(x^{j}, x^{k}\right)=B\left(1, x^{j+k}\right), 1 \leq j, k \leq N$.
- There exist a function μ_{0} and constants $M_{k}, 1 \leq k \leq N$, such that

$$
B(p(x), q(x))=\int p(x) q(x) d \mu_{0}(x)+\sum_{k=1}^{N} M_{k} p^{(k)}(0) q^{(k)}(0) .
$$

In particular, it was shown in ELMMR95 that for a Sobolev type inner product

$$
\langle f, g\rangle=\int f(x) g(x) d \mu(x)+\sum_{k=0}^{N} M_{k} f^{(k)}(c) g^{(k)}(c), \quad M_{N}>0
$$

where c is a point in \mathbb{R}, the multiplication by $(x-c)^{N+1}$, denoted by E, is a symmetric operator and the sequence of orthogonal polynomials $\left\{s_{n}\right\}_{n \geq 0}$ satisfies a $(2 N+3)$-term
recurrence relation of the form

$$
(x-c)^{N+1} s_{n}(x)=\sum_{k=n-N-1}^{n+N+1} a_{n, k} s_{k}(x)
$$

In other words, $s_{n}(x)$ is an eigenfunction of a linear difference operator E in the variable n with eigenvalue $(x-c)^{N+1}$. Notice that, according to [ELMMR95], if you have a Sobolev inner product

$$
\langle f, g\rangle=\sum_{k=0}^{N} \int f^{(k)}(x) g^{(k)}(x) d \mu_{k}(x)
$$

and the multiplication by $(x-c)^{N+1}$ is a symmetric operator with respect to the above inner product, then $d \mu_{k}(x), k=1,2, \cdots, N$, are Dirac deltas supported at $x=c$ and the mass of $d \mu_{N}(x)$ is a positive real number.

On the other hand, in Theorem 6 [D93] it is proved that the following statements are equivalent.

- The multiplication operator by x^{N+1} is symmetric with respect to the bilinear form B it commutes with the multiplication operator x, i. e., $B\left(x^{N+1} p(x), x q(x)\right)=$ $B\left(x p(x), x^{N+1} q(x)\right)$, where p, q are polynomials.
- There exist a function μ_{0} and a positive semi-definite matrix M such that
$B(p(x), q(x))=\int p(x) q(x) d \mu_{0}(x)+\left(p(0), p^{\prime}(0), \cdots, p^{(N)}(0)\right) M\left(q(0), q^{\prime}(0), \cdots, q^{(N)}(0)\right)^{t}$.
This inner product is said to be a nondiagonal Sobolev type inner product. Zeros and asymptotic properties of sequences of orthogonal polynomials with respect to the above inner product have been studied in AMRR95. A connection with bispectral problems when $d \mu_{0}(x)$ is the gamma distribution has been studied in [DI20.

The structure of the manuscript is as follows. In Section 2 we prove that a Darboux transformation of the operator E. i.e., $E=L U$, gives rise to an operator $U L$ which has as eigenfunctions the orthogonal polynomials associated with $(x-c)^{N+1} d \mu(x)$. Furthermore, we prove that $U L$ actually is the $(N+1)$-th power of the standard three-term recurrence relation (TTRR in short) that the sequence of polynomials orthogonal with respect to the measure $(x-c)^{N+1} d \mu(x)$ satisfies. Thus, we generalize a result given in HHLM22] when $N=1$ concerning the connection between the matrix representation, a five diagonal matrix in terms of the orthonormal basis $s_{n}(x)$, of the multiplication operator by $(x-c)^{2}$ and the square of the shifted matrix $J_{2}-c I$, where J_{2} is the Jacobi matrix associated with the measure $(x-c)^{2} d \mu(x)$.

In Section 3 we set a matrix-valued approach by means of DvA95. For this regard we consider the specific sequence of Laguerre-Sobolev type orthogonal polynomials to build a monic matrix-valued orthogonal polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}$ that satisfy a TTRR with matrix coefficients and we perform a Darboux transformation to find a very interesting connection with results in [DS02. Namely, we start with a matrix-valued TTRR

$$
x P_{n}(x)=P_{n+1}(x)+\left(\zeta_{2 n+1}+\zeta_{2 n}\right) P_{n}(x)+\zeta_{2 n} \zeta_{2 n-1} P_{n-1}(x), n \geq 0, P_{-1}(x)=0,
$$

which, after a Darboux transformation, yields a TTRR satisfied by another sequence of monic matrix orthogonal polynomials $\left\{Q_{n}\right\}_{n \geq 0}$

$$
x Q_{n}(x)=Q_{n+1}(x)+\left(\zeta_{2 n+2}+\zeta_{2 n+1}\right) Q_{n}(x)+\zeta_{2 n+1} \zeta_{2 n} Q_{n-1}(x), n \geq 0, Q_{-1}(x)=0
$$

Here, the coefficients ζ_{n} are such that

$$
x W_{n}(x)=W_{n+1}(x)+\zeta_{n} W_{n-1}(x), n \geq 0, W_{-1}(x)=0
$$

where $\left\{W_{n}\right\}_{n \geq 0}$ is a sequence of monic matrix orthogonal polynomials given by $W_{2 n}(x)=$ $P_{n}\left(x^{2}\right), n \geq 0$, and $W_{2 n+1}(x)=x Q_{n}\left(x^{2}\right), n \geq 0$.

Finally, in Section4, we consider the Laguerre-Sobolev type inner product with $\alpha \in \mathbb{N}$, $N=1$ and $M_{1}>0, M_{0}=0$, to construct a differential operator of order 8 that has every P_{n} as eigenfunction, showing an underlaying matrix-valued bispectrality. Lastly, we prove that any matrix-valued orthogonal polynomial built from bispectral scalar polynomials with the aid of [DvA95] is bispectral too. Furthermore, we give a general an explicit method to build the corresponding differential operator.

2. Sobolev polynomials under Darboux transformation

Given a probability measure μ supported on an infinite subset of the real line, a point c in the real line and a positive integer N, we consider the following inner products: the one mentioned in the introduction

$$
\begin{equation*}
\langle f, g\rangle=\int f(x) g(x) d \mu(x)+\sum_{j, k=0}^{N} M_{j, k} f^{(j)}(c) g^{(k)}(c), \tag{2.1}
\end{equation*}
$$

where $\left(M_{j, k}\right)_{j, k=0}^{N}$ is a positive semi-definite matrix of size $(N+1) \times(N+1)$, and other one of the form

$$
\begin{equation*}
\langle f, g\rangle_{N+1}=\int f(x) g(x)(x-c)^{N+1} d \mu(x) \tag{2.2}
\end{equation*}
$$

Now, let us denote by $\left\{s_{n}\right\}_{n \geq 0}$ and $\left\{p_{n}\right\}_{n \geq 0}$ the sequences of orthonormal polynomials with respect to (2.1) and (2.2), respectively. Immediately, one realizes that, since

$$
\begin{equation*}
\left\langle s_{n}, p_{j}\right\rangle_{N+1}=\left\langle s_{n},(x-c)^{N+1} p_{j}\right\rangle_{0}=\left\langle(x-c)^{N+1} s_{n}, p_{j}\right\rangle \tag{2.3}
\end{equation*}
$$

is equal to 0 for $j<n-N-1$, we have

$$
s_{n}(x)=\sum_{j=n-N-1}^{n} T_{n, j} p_{j}(x),
$$

for some coefficients $T_{n, j}$.
For any two sequences of polynomials $\left\{\alpha_{j}\right\}_{j \geq 0}$ and $\left\{\beta_{j}\right\}_{j \geq 0}$ one can consider the vector notation $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots\right)^{t}$ and $\beta=\left(\beta_{0}, \beta_{1}, \ldots\right)^{t}$. Furthermore, for any inner product $B(\cdot, \cdot)$ we can also consider the bilinear form $B(\alpha, \beta)$ which is nothing more than the semi-infinite matrix whose (j, k)-entry is given by $B\left(\alpha_{j}, \beta_{k}\right)$. With this notation, if we call $s=\left(s_{0}, s_{1}, \ldots\right)^{t}, p=\left(p_{0}, p_{1}, \ldots\right)^{t}$, and we define the semi-infinite nonsingular matrix $T=\left(T_{n, j}\right)_{n, j=0}^{\infty}$, then we have $s=T p$ and therefore

$$
\langle s, s\rangle_{N+1}=\langle T p, T p\rangle_{N+1}=T T^{*} .
$$

Recall in this connection that, by definition, the matrix T is not only lower triangular and nonsingular but also has zero entries below the $(N+1)$-th subdiagonal.

On the other hand, we have that the sequence of orthonormal polynomials $\left\{s_{n}\right\}_{n \geq 0}$ satisfies a $(2 N+3)$-term recurrence relation of the form

$$
(x-c)^{N+1} s_{n}(x)=\sum_{k=n-N-1}^{n+N+1} h_{n, k} s_{k}(x) .
$$

This defines a matrix H such that

$$
\begin{equation*}
(x-c)^{N+1} s=H s \tag{2.4}
\end{equation*}
$$

Since

$$
\langle s, s\rangle_{N+1}=\langle H s, s\rangle=H,
$$

we also have the following factorization of H

$$
H=T T^{*} .
$$

From (2.4) we now have that

$$
\begin{equation*}
(x-c)^{N+1} s=T T^{*} s \quad \text { and } \quad(x-c)^{N+1} p=T^{*} T p \tag{2.5}
\end{equation*}
$$

This can be summarized as follows.
Theorem 2.1. For any probability measure μ supported on an infinite subset of the real line, a point c in the real line and a positive integer N, the sequence of Sobolev-type orthonormal polynomials $\left\{s_{n}\right\}_{n \geq 0}$ with respect to

$$
\langle f, g\rangle=\int f(x) g(x) d \mu(x)+\sum_{j, k=0}^{N} M_{j, k} f^{(j)}(c) g^{(k)}(c),
$$

is a Darboux transformation of the sequence of orthonormal polynomials $\left\{p_{n}\right\}_{n \geq 0}$ with respect to

$$
\langle f, g\rangle_{N+1}=\int f(x) g(x)(x-c)^{N+1} d \mu(x)
$$

by means of (2.5). Namely, if we consider the TTRR satisfied by the sequence of orthonormal polynomials $\left\{p_{n}(x)\right\}_{n \geq 0}$, in vector notation $x p=J_{N+1} p$, the symmetric matrix $\left(J_{N+1}-c\right)^{N+1}$ can be factorized as $T^{*} T$, where $s=T p$. Notice that the matrix $T=\left(T_{n, j}\right)_{n, j=0}^{\infty}$ can be calculated explicitly

$$
T_{n, j}= \begin{cases}\left\langle s_{n}, p_{j}\right\rangle_{N+1} & n-N-1 \leq j \leq n, \\ 0 & \text { elsewhere }\end{cases}
$$

As a straightforward consequence of the above theorem, when in (2.1) $M_{j, k}=0, j, k=$ $0,1, \cdots, N$, we get

Corollary 2.2. For any probability measure μ supported on an infinite subset of the real line, a point c in the real line and a positive integer N, the sequence of orthonormal polynomials $\left\{q_{n}\right\}_{n \geq 0}$ with respect to

$$
\langle f, g\rangle_{0}=\int f(x) g(x) d \mu(x)
$$

is a Darboux transformation of the sequence of orthonormal polynomials $\left\{p_{n}\right\}_{n \geq 0}$ with respect to

$$
\langle f, g\rangle_{N+1}=\int f(x) g(x)(x-c)^{N+1} d \mu(x)
$$

Namely, if we consider the TTRR satisfied by $\left\{p_{n}\right\}_{n \geq 0}$ in vector notation $x p=J_{N+1} p$, the symmetric matrix $\left(J_{N+1}-c\right)^{N+1}$ can be factorized as $C^{*} C$ with $p=C q$. Furthermore,

$$
C_{n, k}= \begin{cases}\left\langle q_{n}, p_{k}\right\rangle_{N+1} & n-N-1 \leq k \leq n, \\ 0 & \text { elsewhere. }\end{cases}
$$

Finally, let us observe that from the TTRR satisfied by $\left\{p_{n}\right\}_{n \geq 0}$ in vector notation $x p=J_{N+1} p$ we have

$$
(x-c)^{N+1} p=\left(J_{N+1}-c\right)^{N+1} p .
$$

From what we saw above, $\left(J_{N+1}-c\right)^{N+1}$ admits an $U L$-factorization with $U=L^{*}$, which of course is not unique. We conjecture that all such factorizations give rise to one of the families already considered above.

3. Matrix-valued orthogonal polynomials

In this section we will restrict ourselves to the particular case when $c=0$. Furthermore, for reasons of space we will simplify the notation by considering $\alpha=0, N=1$ and the inner product

$$
\begin{equation*}
\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} d x+f^{\prime}(0) g^{\prime}(0) \tag{3.6}
\end{equation*}
$$

The interested reader can verify that the results in the present section hold for more general α and N. Nevertheless we believe that a 2×2 matrix-valued construction with $\alpha=0$ will suffice to illustrate the situation.

Let us denote by $\left\{\mathcal{L}_{n}\right\}_{n \geq 0}$ the sequence of orthonormal polynomials with respect to the inner product (3.6). Thus we have

$$
x^{2} \mathcal{L}_{n}(x)=a_{n} \mathcal{L}_{n+2}(x)+b_{n} \mathcal{L}_{n+1}(x)+c_{n} \mathcal{L}_{n}(x)+b_{n-1} \mathcal{L}_{n-1}(x)+a_{n-2} \mathcal{L}_{n-2}(x), \quad n \geq 2,
$$

with

$$
\begin{aligned}
& a_{n}=\sqrt{\frac{\left(2 n^{2}+7 n+9\right)\left(2 n^{2}-5 n+6\right)(n+4)(n+2)(n+1)^{3}}{\left(2 n^{2}+3 n+4\right)\left(2 n^{2}-n+3\right)(n+3)}}, \\
& b_{n}=4 \sqrt{\frac{\left(4 n^{7}+16 n^{6}+13 n^{5}+10 n^{4}+43 n^{3}+64 n^{2}+84 n+36\right)^{2}(n+1)}{\left(2 n^{2}+3 n+4\right)\left(2 n^{2}-n+3\right)^{2}\left(2 n^{2}-5 n+6\right)(n+3)(n+2)^{2}}}, \\
& c_{n}=2 \sqrt{\frac{\left(12 n^{8}+12 n^{7}-23 n^{6}+57 n^{5}+82 n^{4}-81 n^{3}+37 n^{2}+120 n+36\right)^{2}}{\left(2 n^{2}-n+3\right)^{2}\left(2 n^{2}-5 n+6\right)^{2}(n+2)^{2}(n+1)^{2}}} .
\end{aligned}
$$

Let $\left\{R_{0, n}\right\}_{n \geq 0},\left\{R_{1, n}\right\}_{n \geq 0}$ be the sequences of polynomials such that for any n

$$
\mathcal{L}_{n}(x)=x R_{1, n}\left(x^{2}\right)+R_{0, n}\left(x^{2}\right) .
$$

Then, following [DvA95], we build the matrix-valued polynomials

$$
R_{n}(y)=\left(\begin{array}{cc}
R_{0,2 n}(y) & R_{1,2 n}(y) \tag{3.7}\\
R_{0,2 n+1}(y) & R_{1,2 n+1}(y)
\end{array}\right) .
$$

The sequence $\left\{R_{n}\right\}_{n \geq 0}$ satisfies a matrix TTRR

$$
\begin{equation*}
x R_{n}(y)=A_{n-1}^{*} R_{n-1}(y)+B_{n} R_{n}(y)+A_{n} R_{n+1}(y), n \geq 0, \tag{3.8}
\end{equation*}
$$

with A_{n}, B_{n} given, respectively, by

$$
\begin{aligned}
& A_{n_{0,0}}=\frac{2 \sqrt{8 n^{2}+14 n+9} \sqrt{4 n^{2}-5 n+3}(2 n+1)^{\frac{3}{2}} \sqrt{n+2} \sqrt{n+1}}{\sqrt{8 n^{2}-2 n+3} \sqrt{4 n^{2}+3 n+2} \sqrt{2 n+3}}, \\
& A_{n_{0,1}}=0, \\
& A_{n_{1,0}}=-\frac{4\left(256 n^{7}+1408 n^{6}+3088 n^{5}+3640 n^{4}+2692 n^{3}+1414 n^{2}+570 n+135\right) \sqrt{n+1}}{\sqrt{8 n^{2}+14 n+9} \sqrt{8 n^{2}-2 n+3}\left(4 n^{2}+3 n+2\right)(2 n+3) \sqrt{n+2}}, \\
& A_{n_{1,1}}=\frac{2 \sqrt{8 n^{2}-2 n+3} \sqrt{4 n^{2}+11 n+9} \sqrt{2 n+5} \sqrt{2 n+3}(n+1)^{\frac{3}{2}}}{\sqrt{8 n^{2}+14 n+9} \sqrt{4 n^{2}+3 n+2} \sqrt{n+2}}, \\
& B_{n_{0,0}}=\frac{2\left(768 n^{8}+384 n^{7}-368 n^{6}+456 n^{5}+328 n^{4}-162 n^{3}+37 n^{2}+60 n+9\right)}{\left(8 n^{2}-2 n+3\right)\left(4 n^{2}-5 n+3\right)(2 n+1)(n+1)}, \\
& B_{n_{0,1}}=-\frac{4\left(128 n^{7}+256 n^{6}+104 n^{5}+40 n^{4}+86 n^{3}+64 n^{2}+42 n+9\right) \sqrt{2 n+1}}{\left(8 n^{2}-2 n+3\right) \sqrt{4 n^{2}+3 n+2} \sqrt{4 n^{2}-5 n+3} \sqrt{2 n+3}(n+1)}, \\
& B_{n_{1,0}}=-\frac{4\left(128 n^{7}+256 n^{6}+104 n^{5}+40 n^{4}+86 n^{3}+64 n^{2}+42 n+9\right) \sqrt{2 n+1}}{\left(8 n^{2}-2 n+3\right) \sqrt{4 n^{2}+3 n+2} \sqrt{4 n^{2}-5 n+3} \sqrt{2 n+3}(n+1)}, \\
& B_{n_{1,1}}=\frac{2\left(768 n^{8}+3456 n^{7}+6352 n^{6}+6744 n^{5}+5128 n^{4}+2898 n^{3}+1099 n^{2}+303 n+63\right)}{\left(8 n^{2}-2 n+3\right)\left(4 n^{2}+3 n+2\right)(2 n+3)(n+1)} .
\end{aligned}
$$

Thus $\left\{R_{n}\right\}_{n \geq 0}$ is a sequence of matrix orthonormal polynomials with respect to the positive semi-definite matrix-valued inner product given by

$$
\langle F, G\rangle=\int_{0}^{\infty} F(y)\left(\begin{array}{cc}
1 & \sqrt{y} \\
\sqrt{y} & y
\end{array}\right) G^{*}(y) e^{-y} d y+F(0)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) G^{*}(0)
$$

for 2×2 matrix-valued functions F, G.
We now explore the Darboux process for the above matrix TTRR, but applied to the monic matrix orthogonal polynomials. Since the leading coefficient of R_{n} is given by

$$
\left(\begin{array}{cc}
\frac{\sqrt{4 n^{2}-5 n+3} \sqrt{2 n+1}}{4 \sqrt{8 n^{2}-2 n+3}(2 n-1) \sqrt{n+1}(n-1) n(2 n-3)!} & 0 \\
\frac{\left(8 n^{3}+6 n^{2}-5 n+3\right)(2 n+1)}{4 \sqrt{8 n^{2}-2 n+3} \sqrt{4 n^{2}+3 n+2} \sqrt{2 n+3}(2 n-1)(2 n-3) \sqrt{n+1}(n-1) n(2 n-4)!} & \frac{-\sqrt{8 n^{2}-2 n+3} \sqrt{n+1}}{\sqrt{4 n^{2}+3 n+2} \sqrt{2 n+3}(2 n)!}
\end{array}\right),
$$

we can build explicitly the sequence of monic matrix orthogonal polynomials $\left\{P_{n}\right\}_{n \geq 0}$. They will satisfy a matrix TTRR such that the corresponding Jacobi matrix of (2×2)blocks can be decomposed in the form $L U$ where L is a lower block triangular matrix and U is a block upper triangular matrix. From Theorem 2.1 the Darboux transformation will give rise to a sequence of monic matrix polynomials $\left\{Q_{n}\right\}_{n \geq 0}$ orthogonal with respect to the weight e^{-y} multiplied by $y=x^{2}$. More precisely, the sequences $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ satisfy

$$
\begin{align*}
& x P_{n}(x)=P_{n+1}(x)+\left(\zeta_{2 n+1}+\zeta_{2 n}\right) P_{n}(x)+\zeta_{2 n} \zeta_{2 n-1} P_{n-1}(x), n \geq 0, \\
& x Q_{n}(x)=Q_{n+1}(x)+\left(\zeta_{2 n+2}+\zeta_{2 n+1}\right) Q_{n}(x)+\zeta_{2 n+1} \zeta_{2 n} Q_{n-1}(x), n \geq 0, \tag{3.9}
\end{align*}
$$

where

$$
\begin{aligned}
\zeta_{2 n} & =\left(\begin{array}{cc}
-\frac{2\left(16 n^{2}-12 n-9\right)(2 n-1)^{2}(n-1) n}{\left(4 n^{2}-5 n+3\right)(2 n+1)} & \frac{4\left(8 n^{3}-12 n^{2}+4 n+3\right) n}{\left(4 n^{2}-5 n+3\right)(2 n+1)} \\
-\frac{2\left(16 n^{3}-40 n^{2}+28 n-3\right)(2 n+1)(2 n-1)^{2} n}{4 n^{2}-5 n+3} & \frac{2\left(16 n^{3}-36 n^{2}+29 n-6\right)(2 n+1) n}{4 n^{2}-5 n+3}
\end{array}\right) \\
\zeta_{2 n-1} & =\left(\begin{array}{cc}
-\frac{2\left(32 n^{4}+8 n^{3}-14 n^{2}+7 n+3\right)(2 n-1) n}{\left(4 n^{2}-5 n+3\right)(2 n+1)} & \frac{4\left(8 n^{3}-2 n+3\right) n}{\left(4 n^{2}-5 n+3\right)(2 n+1)} \\
-\frac{2\left(32 n^{4}+16 n^{3}-32 n^{2}+14 n+9\right)(2 n+1)(2 n-1) n}{4 n^{2}-5 n+3} & \frac{2\left(16 n^{3}+4 n^{2}-15 n+12\right)(2 n+1) n}{4 n^{2}-5 n+3}
\end{array}\right) .
\end{aligned}
$$

These TTRR are related through a Darboux transformation. Namely, we have

$$
\begin{aligned}
x\left(\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{4} \\
\vdots
\end{array}\right) & =\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
\zeta_{2} & 1 & 0 & 0 & \cdots \\
0 & \zeta_{4} & 1 & 0 & \cdots \\
0 & 0 & \zeta_{6} & 1 & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right) \times\left(\begin{array}{ccccc}
\zeta_{1} & 1 & 0 & 0 & \cdots \\
0 & \zeta_{3} & 1 & 0 & \cdots \\
0 & 0 & \zeta_{5} & 1 & \ddots \\
0 & 0 & 0 & \zeta_{7} & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
P_{0} \\
P_{1} \\
P_{2} \\
P_{4} \\
\vdots
\end{array}\right), \\
x\left(\begin{array}{c}
Q_{0} \\
Q_{1} \\
Q_{2} \\
Q_{4} \\
\vdots
\end{array}\right) & =\left(\begin{array}{ccccc}
\zeta_{1} & 1 & 0 & 0 & \cdots \\
0 & \zeta_{3} & 1 & 0 & \cdots \\
0 & 0 & \zeta_{5} & 1 & \ddots \\
0 & 0 & 0 & \zeta_{7} & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right) \times\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
\zeta_{2} & 1 & 0 & 0 & \cdots \\
0 & \zeta_{4} & 1 & 0 & \cdots \\
0 & 0 & \zeta_{6} & 1 & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
Q_{0} \\
Q_{1} \\
Q_{2} \\
Q_{4} \\
\vdots
\end{array}\right) .
\end{aligned}
$$

Equation (3.9) may be compared with [DS02, Lemma 3.3].
It is worth to notice that the coefficients for the TTRR of $\left\{Q_{n}\right\}_{n \geq 0}$ are nicer. Indeed,

$$
\begin{aligned}
& \zeta_{2 n+2}+\zeta_{2 n+1}=4(n+1)\left(\begin{array}{rr}
-(4 n+3)(2 n+1) & 2 \\
-2\left(4 n^{2}+8 n+5\right)(2 n+3)(2 n+1) & (4 n+5)(2 n+3)
\end{array}\right), \\
& \zeta_{2 n+1} \zeta_{2 n}=4(n+1) n(2 n+1)\left(\begin{array}{rr}
4 \\
-(8 n+3)(2 n-1) & (2 n+3)(2 n+1)^{2}(2 n-1)
\end{array}\right) .
\end{aligned}
$$

This is in concordance with the results of Section 2. Indeed, the sequence of monic matrix polynomials $\left\{Q_{n}\right\}_{n \geq 0}$ is built from a sequence of polynomials satisfying a five term recurrence relation that, as we proved above, is the square iterated of a standard TTRR and, as a consequence, we get a very simple expression for their coefficients.

4. Matrix-valued Bispectrality

Once one realizes that the sequence of matrix-valued polynomials $\left\{R_{n}\right\}_{n \geq 0}$ given by (3.7) is related via a Darboux transformation with classical standard orthogonal polynomials it is natural to seek for matrix linear differential equations. As in the previous section we will set $c=0, \alpha=0, N=1$ and the inner product (3.6), for an initial examplification; at the end we will deal with arbitrary size $N+1$ and general coefficients.

After straightforward computations one can see that for the following 2×2 matrixvalued operator,

$$
\mathfrak{D}=\sum_{k=0}^{8} \frac{d^{k}}{d x^{k}} D_{k}(x),
$$

acting on the right-hand side of the polynomial $R_{n}(x)$, yields

$$
R_{n}(x) \mathfrak{D}=\Lambda_{n} R_{n}(x),
$$

where

$$
\begin{aligned}
D_{0} & =\left(\begin{array}{rr}
0 & 0 \\
-3 & 3
\end{array}\right), \quad D_{1}=\left(\begin{array}{rr}
9 y-6 & -12 \\
-105 y+54 & 24 y
\end{array}\right), \\
D_{2} & =\left(\begin{array}{cc}
27 y^{2}+474 y-72 & -276 y \\
-6(151 y+459) y & 3(19 y+1100) y
\end{array}\right), \\
D_{3} & =\left(\begin{array}{rr}
24\left(y^{2}+166 y+93\right) y & -12(53 y+570) y \\
-4(287 y+6852) y^{2} & 8\left(4 y^{2}+1278 y+2205\right) y
\end{array}\right), \\
D_{4} & =\left(\begin{array}{cc}
4\left(y^{2}+1080 y+4701\right) y^{2} & -8(37 y+2253) y^{2} \\
-8(47 y+4908) y^{3} & 4\left(y^{2}+1770 y+14301\right) y^{2}
\end{array}\right), \\
D_{5} & =\left(\begin{array}{cc}
96(13 y+252) y^{3} & -32(y+348) y^{3} \\
-32(y+534) y^{4} & 384(4 y+123) y^{3}
\end{array}\right), \\
D_{6} & =\left(\begin{array}{cc}
96(y+101) y^{4} & -2208 y^{4} \\
-2656 y^{5} & 32(3 y+443) y^{4}
\end{array}\right), \\
D_{7} & =\left(\begin{array}{rrr}
1408 y^{5} & -128 y^{5} \\
-128 y^{6} & 1664 y^{5}
\end{array}\right), \quad D_{8}=\left(\begin{array}{rr}
64 y^{6} & 0 \\
0 & 64 y^{6}
\end{array}\right)
\end{aligned}
$$

and

$$
\Lambda_{n}=\left(\begin{array}{rr}
\left(4 n^{3}-n+6\right) n & 0 \\
0 & \left(2 n^{3}+3 n^{2}+n+3\right)(2 n+1)
\end{array}\right) .
$$

Furthermore, it is easy to check that there is not a linear differential operator of order less than 8 having $\left\{R_{n}\right\}_{n \geq 0}$ as eigenfunctions. On the other hand, the results in KKB98] prove the existence of a linear differential operator of order $2 \alpha+8$ (see KKB98, Theorem 3.1]). This, of course, is not a coincidence as we will show below.
4.1. Bispectrality for general size. Following the construction in DvA95, page 265], let $N \in \mathbb{N}$ and $\left\{s_{n}\right\}_{n \geq 0}$ be a sequence of orthonormal polynomials, satisfying the ($2 N+$ 3)-term recurrence relation

$$
x^{N+1} s_{n}(x)=\sum_{k=0}^{N+1}\left(c_{n, k} s_{n-k}(x)+\overline{c_{n+k, k}} s_{n+k}(x)\right), n \geq 0
$$

where $c_{n, k}$ are complex numbers, $c_{n, N}=0$ for any n, the degree of s_{n} is n, and $s_{n}=0$ for $n<0$.

For any n, let $R_{k, n}, k=0, \ldots, n$, be polynomials such that

$$
s_{n}(x)=R_{0, n}\left(x^{N+1}\right)+x R_{1, n}\left(x^{N+1}\right)+\cdots+x^{N} R_{N, n}\left(x^{N+1}\right) .
$$

Let

$$
R_{n}(y)=\left(\begin{array}{cccc}
R_{0,(N+1) n}(y) & R_{1,(N+1) n}(y) & \cdots & R_{N,(N+1) n}(y) \tag{4.10}\\
R_{0,(N+1) n+1}(y) & R_{1,(N+1) n+1}(y) & \cdots & R_{N,(N+1) n+1}(y) \\
\vdots & \vdots & & \vdots \\
R_{0,(N+1) n+N}(y) & R_{1,(N+1) n+N}(y) & \cdots & R_{N,(N+1) n+N}(y)
\end{array}\right) .
$$

In DvA95 it is proved that $\left\{R_{n}\right\}_{n \geq 0}$ is a sequence of matrix polynomials that satisfies a TTRR. We will prove that if there exists a differential operator D having every $s_{n}(x)$ as eigenfunction, then there is a matrix-valued differential operator that has every $R_{n}(y)$ as eigenfunction.

Before stating the theorem let us introduce some notation. We denote by w the $(N+1)$-th root of unity $e^{i \frac{2 \pi}{N+1}}$. For $y \neq 0$ we denote by $|y|^{\frac{j-1}{N+1}}$ its only positive $(N+1)$-th root. Then all the $(N+1)$-th roots of y are $x=w^{j}|y|^{\frac{j-1}{N+1}}$ for $j=0,1, \ldots, N$. Given a differential operator D with coefficients in the variable x we will denote it by $D(x)$ to emphasize the role of variable and by $D\left(w^{j}|y|^{\frac{j-1}{N+1}}\right)$ the operator obtained after the change of variables $x \rightarrow w^{j}|y|^{\frac{j-1}{N+1}}$.

Theorem 4.1. Let us assume that there exists a (scalar-valued) linear differential operator $D(x)$ with polynomial coefficients such that

$$
D(x) s_{n}(x)=\lambda_{n} s_{n}(x), \quad n=0,1, \ldots
$$

We consider the matrix-valued differential operator $\mathfrak{D}(y)$ acting on the right-hand side, given by

$$
\mathfrak{D}(y)=A(y) B C(y) B^{-1} A(y)^{-1}
$$

where $A(y)$ is a diagonal matrix, B is a constant matrix and $C(y)$ is a (diagonal) matrixvalued operator acting on the right-hand side, all of size $(N+1) \times(N+1)$, such that

$$
A(y)_{j, j}=|y|^{\frac{j-1}{N+1}}, \quad B_{j, k}=w^{(j-1)(k-1)}, \quad C(y)_{j, j}=D\left(w^{j-1}|y|^{\frac{1}{N+1}}\right)
$$

Then

$$
R_{n}(y) \mathfrak{D}(y)=\Lambda_{n} R_{n}(y)
$$

where R_{n} are the $(N+1) \times(N+1)$ matrix-valued polinomials given in (4.10) and Λ_{n} is the diagonal eigenvalue matrix

$$
\Lambda_{n}=\left(\begin{array}{llll}
\lambda_{(N+1) n} & & & \\
& \lambda_{(N+1)(n+1)} & & \\
& & \ddots & \\
& & & \lambda_{(N+1) N}
\end{array}\right)
$$

Proof. By looking at the entry $\left(R_{n}(y) A(y) B\right)_{j, k}$ we have

$$
\left(\begin{array}{llll}
R_{0,(N+1) n+j-1}(y) & R_{1,(N+1) n+j-1}(y) & \ldots & R_{N,(N+1) n+j-1}(y)
\end{array}\right) \times\left(\begin{array}{c}
|y|^{\frac{0}{N+1}} w^{0(k-1)} \\
|y|^{\frac{1}{N+1}} w^{1(k-1)} \\
\ldots \\
\cdots \\
|y|^{\frac{N}{N+1}} w^{N(k-1)}
\end{array}\right)
$$

which is

$$
\begin{aligned}
& R_{0,(N+1) n+j-1}(y)|y|^{\frac{0}{N+1}} w^{0(k-1)}+\cdots+R_{N,(N+1) n+j-1}(y)|y|^{\frac{N}{N+1}} w^{N(k-1)} \\
&=s_{(N+1) n+j-1}\left(|y|^{\frac{1}{N+1}} w^{(k-1)}\right)
\end{aligned}
$$

Since $\left(\left(R_{n}(y) A(y) B\right) C(y)\right)_{j, k}=D\left(w^{k-1}|y|^{\frac{1}{N+1}}\right)\left(\left(R_{n}(y) A(y) B\right)_{j, k}\right)$, we have

$$
\begin{aligned}
\left(R_{n}(y) A(y) B C(y)\right)_{j, k} & =D\left(w^{k-1}|y|^{\frac{1}{N+1}}\right)\left(s_{N,(N+1) n+j-1}\left(|y|^{\frac{1}{N+1}} w^{(k-1)}\right)\right) \\
& =\lambda_{(N+1) n+j-1} s_{(N+1) n+j-1}\left(|y|^{\frac{1}{N+1}} w^{(k-1)}\right) \\
& =\lambda_{(N+1) n+j-1}\left(R_{n}(y) A(y) B\right)_{j, k} .
\end{aligned}
$$

This implies that $R_{n}(y) A(y) B C(y)=\Lambda_{n} R_{n}(y) A(y) B$.
Thus

$$
R_{n}(y) A(y) B C(y) B^{-1} A(y)^{-1}=\Lambda_{n} R_{n}(y),
$$

and we get the desired statement.
Notice that bispectrality for Krall-Laguerre orthogonal polynomials, an example of standard orthogonal polynomials, when α is a positive integer, has been studied in [DI20] by using a different approach.

Acknowledgements

The research of F. Marcellán has been supported by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación of Spain, grant PID2021-122154NBI00, and the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors, grant EPUC3M23 in the context of the V PRICIT (Regional Program of Research and Technological Innovation). The research of the author Ignacio Zurrián was partially supported by CONICET and by VI PPIT-US.

References

[AMRR92] M. Alfaro, F. Marcellán, M. L. Rezola and A. Ronveaux, On orthogonal polynomials of Sobolev type: algebraic properties and zeros. SIAM J. Math. Anal., 23 (3):737-757,1992.
[AMRR95] M. Alfaro, F. Marcellán, M. L. Rezola and A. Ronveaux, Sobolev-type orthogonal polynomials: the nondiagonal case. J. Approx. Theory 83 (2): 266-287, 1995.
[BM04] M. I. Bueno and F. Marcellán, Darboux transformation and perturbation of linear functionals, Linear Algebra Appl., 384:215-242, 2004.
[Ch78] T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, New York. 1978
[DGM14] M. Derevyagin, J. C. García-Ardila and F. Marcellán, Multiple Geronimus transformations. Linear Algebra Appl., 454:158-183, 2014.
[DS02] H. Dette and W. J. Studden, Matrix measures, moment spaces and Favard's theorem for the interval $[0,1]$ and $[0, \infty)$. Linear Algebra Appl., 345(1-3):169-193, 2002.
[D93] A. J. Durán, A generalization of Favard's theorem for polynomials satisfying a recurrence relation. J. Approx. Theory, 74(1):83-109, 1993.
[DI15] A. J. Durán and M. D. de la Iglesia, Differential equations for discrete Laguerre-Sobolev orthogonal polynomials. J. Approx. Theory, 195:70-88, 2015.
[DI18] A. J. Durán and M. D. de la Iglesia, Differential equations for discrete Jacobi-Sobolev orthogonal polynomials. J. Spectr. Theory, 8 (1):191-234, 2018.
[DI20] A. J. Durán and M. D. de la Iglesia, Bispectral Laguerre type polynomials. Integral Transforms Spec. Funct., 31 (2):133-151, 2020.
[DvA95] A. J. Durán and W. Van Assche, Orthogonal matrix polynomials and higher-order recurrence relations. Linear Algebra Appl,. 219:261-280, 1995.
[ELMMR95] W. D. Evans, L. L. Littlejohn, F. Marcellán, C. Markett and A. Ronveaux, On recurrence relations for Sobolev orthogonal polynomials. SIAM J. Math. Anal. 26 (2):446-467, 1995.
[GMM21] J. C. García-Ardila, F. Marcellán and M. E. Marriaga, Orthogonal polynomials and linear functionals-an algebraic approach and applications. EMS Series of Lectures in Mathematics. EMS Press, Berlin, 2021.
[Ga02] W. Gautschi, The interplay between classical analysis and (Numerical) Linear Algebra-A tribute to Gene Golub $E T N A, 13: 119-147,2002$.
[Ga04] W. Gautschi, Orthogonal polynomials: computation and approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2004.
[HHLM22] C. Hermoso, E. J. Huertas, A. Lastra and F. Marcellán, Higher-order recurrence relations, Sobolev-type inner products and matrix factorizations. Numer. Algorithms. 92:665-692, 2023.
[K90] R. Koekoek, Generalizations of Laguerre polynomials. J. Math. Anal. Appl., 153 (2):576-590, 1990.
[KKB98] J. Koekoek, R. Koekoek and H. Bavinck, On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc., 350 (1):347-393, 1998.
[KM93] R. Koekoek and H. G. Meijer, A generalization of Laguerre polynomials. SIAM J. Math. Anal. 24 (3):768-782, 1993.
[HLK40] H. L. Krall, On orthogonal polynomials satisfying certain fourth order differential equations. Pennsylvania State College Studies 6, State College, PA 1940.
[MR90] F. Marcellán and A. Ronveaux, On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Indag. Math., 1(4):451-464, 1990.
[MX15] F. Marcellán and Yuan Xu, On Sobolev orthogonal polynomials. Expo. Math. 33 (3): 308-352, 2015.
[M19] C. Markett, On the differential equation for the Laguerre-Sobolev polynomials. J. Approx. Theory, 247:48-67, 2019.
[M21] C. Markett, Symmetric differential operators for Sobolev orthogonal polynomials of Laguerreand Jacobi-type. Integral Transforms Spec. Funct., 32 (5-8):568-587, 2021.
[Ma21] C. Markett, New representations of the Laguerre-Sobolev and Jacobi-Sobolev orthogonal polynomials. In: From operator theory to orthogonal polynomials, combinatorics, and number theory-a volume in honor of Lance Littlejohn's 70th birthday, 305-327, Oper. Theory Adv. Appl., 285, Birkhkäuser/Springer, Cham, 2021.
[M22] C. Markett, The differential equation for Jacobi-Sobolev orthogonal polynomials with two linear perturbations. J. Approx. Theory, 280, Paper No. 105782, 24 pp. 2022.
[Y02] G. J. Yoon, Darboux transforms and orthogonal polynomials, Bull. Korean Math. Soc., 39:359376, 2002.
[Z97] A. Zhedanov, Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math., 85:63-87, 1997.
(F. Marcellán) Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, SpAIN.

Email address: pacomarc@ing.uc3m.es
(I. Zurrián) Departamento de Matemática Aplicada II, Universidad de Sevilla, Seville, Spain.

Email address, Corresponding author: ignacio.zurrian@fulbrightmail.org

