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BISPECTRALITY FOR MATRIX LAGUERRE-SOBOLEV

POLYNOMIALS

FRANCISCO MARCELLÁN AND IGNACIO ZURRIÁN

Abstract

In this contribution we deal with sequences of polynomials orthogonal with respect
to a Sobolev type inner product. A banded symmetric operator is associated with such
a sequence of polynomials according to the higher order difference equation they satisfy.
Taking into account the Darboux transformation of the corresponding matrix we deduce
the connection with a sequence of orthogonal polynomials associated with a Christoffel
perturbation of the measure involved in the standard part of the Sobolev inner prod-
uct. A connection with matrix orthogonal polynomials is stated. The Laguerre-Sobolev
type case is studied as an illustrative example. Finally, the bispectrality of such matrix
orthogonal polynomials is pointed out.

Mathematics Subject Classification: Primary: 42C05, 33C45. Secondary: 15
A23, 34L10.

Keywords: Standard orthogonal polynomials, Sobolev type orthogonal polynomials,
Darboux transformations, matrix orthogonal polynomials, bispectrality.

1. Introduction

The study of inner products associated with a vector of measures (dµ0, dµ1, · · · , dµN )
supported on the real line has attracted the interest of many researchers taking into
account many properties of standard orthogonal polynomials are lost (see the survey
paper [MX15]). In particular, the multiplication operator by x is not symmetric with
respect to such inner products and, as a consequence, the corresponding sequences of
orthogonal polynomials do not satisfy a three term recurrence relation, that plays a
central role in the theory of standard orthogonal polynomials (see [Ch78]). The matrix
counterpart of the three term recurrence relation is a tridiagonal matrix that is known
in the literature as Jacobi matrix. The spectral theory of such Jacobi matrices is an
old topic and yields the so called Favard theorem (see [Ch78]). Assuming you have LU

and UL factorization, respectively, of a shifted Jacobi matrix, then the commutation be-
tween the matrices in the above factorizations yields new Jacobi matrices whose spectral
resolution generates the canonical Christoffel and Geronimus transformations, respec-
tively (see [BM04], [GMM21], [Ga02], [Ga04] [Y02], [Z97], among others). They are the
discrete counterpart of the Darboux transformations for second order linear differential
operators. When you consider a canonical Christoffel transformation and next a canon-
ical Geronimus transformation of a Jacobi matrix, then the resulting Jacobi matrix has
as spectral resolution the so called Uvarov transformation that is a perturbation of the
initial spectral measure by adding a Dirac mass point. They appear in the framework of
the spectral analysis of fourth order differential operators with polynomial coefficients
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as analyzed in the pioneering work [HLK40].

The implementation of multiple Christoffel transformations, i. e., an iteration of
canonical Christoffel transformations, has been studied in [Ga04]. On the other hand,
in [DGM14] the authors focus the attention on multiple Geronimus transformations in
a more general framework.

When you deal with a Sobolev inner product associated with a vector of measures
as above but dµk, k = 1, 2, · · · , N, are supported on finite subsets of the real line, the
so called Sobolev-type inner product appears. The corresponding sequences of orthog-
onal polynomials are ”no so far” of the sequences of standard orthogonal polynomials
with respect to the measure dµ0. This fact was pointed out in [AMRR92] when N = 1
and the support of dµ1 is a point c in the real line that can also be a mass point of
the measure dµ0 and in [MR90] when dµk = 0, k = 1, 2, · · · , N − 1, and support of
dµN is a point c in the real line. Algebraic and analytic properties of such orthogonal
polynomials have been extensively studied in the literature. In particular, when dµ0

is the gamma distribution several authors have studied differential operators such that
the corresponding eigenfunctions are orthogonal polynomials with respect to Sobolev
type inner products assuming the support of the measures dµk, k = 1, 2, · · · , N is {0}.
The pioneering work [K90] yields an intensive study about the existence and explicit
expressions for such differential operators (see [DI15], [KKB98], [KM93], [M19]). When
dµ0 is the beta distribution, a similar analysis was done when the masses are located in
one of the end points of the support, i. e., {±1} (see [DI18], [M21], [Ma21], [M22]).

Orthogonal polynomials with respect to Sobolev type inner products satisfy higher
order recurrence relations associated with a multiplication operator by a polynomial.
Such an operator is symmetric with respect to the above inner product. The converse
result, an analogue of the Favard’s theorem, has been studied in [D93] where a represen-
tation of a general symmetric real bilinear form such that there exists a multiplication
operator by a polynomial xN+1 that is symmetric with respect to such a bilinear form
B, i. e., the corresponding sequence of orthogonal polynomials satisfies a symmetric
2N + 3 recurrence relation, is given. Moreover, the following facts are equivalent (see
Corollary 7 in [D93]).

• The multiplication operator by xN+1 is a symmetric operator with respect to
the bilinear form B, it commutes with the multiplication operator x, i. e.,
if p, q are polynomials, then B(xN+1p(x), xq(x)) = B(xp(x), xN+1q(x)), and

B(xj, x
k

) = B(1, xj+k), 1 ≤ j, k ≤ N.

• There exist a function µ0 and constants Mk, 1 ≤ k ≤ N, such that

B(p(x), q(x)) =

∫

p(x)q(x)dµ0(x) +

N
∑

k=1

Mkp
(k)(0)q(k)(0).

In particular, it was shown in [ELMMR95] that for a Sobolev type inner product

〈f, g〉 =
∫

f(x) g(x) dµ(x) +

N
∑

k=0

Mkf
(k)(c)g(k)(c), MN > 0,

where c is a point in R, the multiplication by (x− c)N+1, denoted by E, is a symmetric
operator and the sequence of orthogonal polynomials {sn}n≥0 satisfies a (2N + 3)-term
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recurrence relation of the form

(x− c)N+1sn(x) =

n+N+1
∑

k=n−N−1

an,k sk(x).

In other words, sn(x) is an eigenfunction of a linear difference operator E in the variable
n with eigenvalue (x − c)N+1. Notice that, according to [ELMMR95], if you have a
Sobolev inner product

〈f, g〉 =
N
∑

k=0

∫

f (k)(x) g(k)(x) dµk(x)

and the multiplication by (x− c)N+1 is a symmetric operator with respect to the above
inner product, then dµk(x), k = 1, 2, · · · , N, are Dirac deltas supported at x = c and
the mass of dµN (x) is a positive real number.

On the other hand, in Theorem 6 [D93] it is proved that the following statements are
equivalent.

• The multiplication operator by xN+1 is symmetric with respect to the bilinear
formB it commutes with the multiplication operator x, i. e., B(xN+1p(x), xq(x)) =
B(xp(x), xN+1q(x)), where p, q are polynomials.

• There exist a function µ0 and a positive semi-definite matrix M such that

B(p(x), q(x)) =

∫

p(x)q(x)dµ0(x)+(p(0), p′(0), · · · , p(N)(0))M(q(0), q′(0), · · · , q(N)(0))t.

This inner product is said to be a nondiagonal Sobolev type inner product. Zeros and
asymptotic properties of sequences of orthogonal polynomials with respect to the above
inner product have been studied in [AMRR95]. A connection with bispectral problems
when dµ0(x) is the gamma distribution has been studied in [DI20].

The structure of the manuscript is as follows. In Section 2 we prove that a Darboux
transformation of the operator E. i.e., E = LU, gives rise to an operator UL which has
as eigenfunctions the orthogonal polynomials associated with (x−c)N+1dµ(x). Further-
more, we prove that UL actually is the (N + 1)-th power of the standard three-term
recurrence relation (TTRR in short) that the sequence of polynomials orthogonal with
respect to the measure (x − c)N+1dµ(x) satisfies. Thus, we generalize a result given in
[HHLM22] when N = 1 concerning the connection between the matrix representation,
a five diagonal matrix in terms of the orthonormal basis sn(x), of the multiplication
operator by (x− c)2 and the square of the shifted matrix J2− cI, where J2 is the Jacobi
matrix associated with the measure (x− c)2dµ(x).

In Section 3 we set a matrix-valued approach by means of [DvA95]. For this regard
we consider the specific sequence of Laguerre-Sobolev type orthogonal polynomials to
build a monic matrix-valued orthogonal polynomial sequence {Pn}n≥0 that satisfy a
TTRR with matrix coefficients and we perform a Darboux transformation to find a very
interesting connection with results in [DS02]. Namely, we start with a matrix-valued
TTRR

xPn(x) = Pn+1(x) + (ζ2n+1 + ζ2n)Pn(x) + ζ2nζ2n−1Pn−1(x), n ≥ 0, P−1(x) = 0,
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which, after a Darboux transformation, yields a TTRR satisfied by another sequence of
monic matrix orthogonal polynomials {Qn}n≥0

xQn(x) = Qn+1(x) + (ζ2n+2 + ζ2n+1)Qn(x) + ζ2n+1ζ2nQn−1(x), n ≥ 0, Q−1(x) = 0.

Here, the coefficients ζn are such that

xWn(x) = Wn+1(x) + ζnWn−1(x), n ≥ 0,W−1(x) = 0,

where {Wn}n≥0 is a sequence of monic matrix orthogonal polynomials given byW2n(x) =
Pn(x

2), n ≥ 0, and W2n+1(x) = xQn(x
2), n ≥ 0.

Finally, in Section 4, we consider the Laguerre-Sobolev type inner product with α ∈ N,
N = 1 and M1 > 0,M0 = 0, to construct a differential operator of order 8 that has
every Pn as eigenfunction, showing an underlaying matrix-valued bispectrality. Lastly,
we prove that any matrix-valued orthogonal polynomial built from bispectral scalar
polynomials with the aid of [DvA95] is bispectral too. Furthermore, we give a general
an explicit method to build the corresponding differential operator.

2. Sobolev polynomials under Darboux transformation

Given a probability measure µ supported on an infinite subset of the real line, a point
c in the real line and a positive integer N , we consider the following inner products: the
one mentioned in the introduction

(2.1) 〈f, g〉 =
∫

f(x) g(x) dµ(x) +

N
∑

j,k=0

Mj,kf
(j)(c)g(k)(c),

where (Mj,k)
N
j,k=0 is a positive semi-definite matrix of size (N +1)× (N +1), and other

one of the form

(2.2) 〈f, g〉N+1 =

∫

f(x) g(x) (x − c)N+1dµ(x).

Now, let us denote by {sn}n≥0 and {pn}n≥0 the sequences of orthonormal polynomials
with respect to (2.1) and (2.2), respectively. Immediately, one realizes that, since

〈sn, pj〉N+1 = 〈sn, (x− c)N+1pj〉0 = 〈(x− c)N+1sn, pj〉(2.3)

is equal to 0 for j < n−N − 1, we have

sn(x) =
n
∑

j=n−N−1

Tn,jpj(x),

for some coefficients Tn,j.
For any two sequences of polynomials {αj}j≥0 and {βj}j≥0 one can consider the vector

notation α = (α0, α1, . . . )
t and β = (β0, β1, . . . )

t. Furthermore, for any inner product
B(·, ·) we can also consider the bilinear form B(α, β) which is nothing more than the
semi-infinite matrix whose (j, k)-entry is given by B(αj, βk). With this notation, if
we call s = (s0, s1, . . . )

t, p = (p0, p1, . . . )
t, and we define the semi-infinite nonsingular

matrix T = (Tn,j)
∞
n,j=0, then we have s = Tp and therefore

〈s, s〉N+1 = 〈Tp, Tp〉N+1 = TT ∗.

Recall in this connection that, by definition, the matrix T is not only lower triangular
and nonsingular but also has zero entries below the (N + 1)-th subdiagonal.
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On the other hand, we have that the sequence of orthonormal polynomials {sn}n≥0

satisfies a (2N + 3)-term recurrence relation of the form

(x− c)N+1sn(x) =

n+N+1
∑

k=n−N−1

hn,k sk(x).

This defines a matrix H such that

(2.4) (x− c)N+1s = Hs.

Since

〈s, s〉N+1 = 〈Hs, s〉 = H,

we also have the following factorization of H

H = TT ∗.

From (2.4) we now have that

(2.5) (x− c)N+1s = TT ∗s and (x− c)N+1p = T ∗Tp.

This can be summarized as follows.

Theorem 2.1. For any probability measure µ supported on an infinite subset of the real
line, a point c in the real line and a positive integer N , the sequence of Sobolev-type
orthonormal polynomials {sn}n≥0 with respect to

〈f, g〉 =
∫

f(x) g(x) dµ(x) +

N
∑

j,k=0

Mj,kf
(j)(c)g(k)(c),

is a Darboux transformation of the sequence of orthonormal polynomials {pn}n≥0 with
respect to

〈f, g〉N+1 =

∫

f(x) g(x) (x − c)N+1dµ(x),

by means of (2.5). Namely, if we consider the TTRR satisfied by the sequence of or-
thonormal polynomials {pn(x)}n≥0, in vector notation xp = JN+1p, the symmetric ma-
trix (JN+1 − c)N+1 can be factorized as T ∗T, where s = Tp. Notice that the matrix
T = (Tn,j)

∞
n,j=0 can be calculated explicitly

Tn,j =

{ 〈sn, pj〉N+1 n−N − 1 ≤ j ≤ n,

0 elsewhere.

As a straightforward consequence of the above theorem, when in (2.1) Mj,k = 0, j, k =
0, 1, · · · , N, we get

Corollary 2.2. For any probability measure µ supported on an infinite subset of the
real line, a point c in the real line and a positive integer N , the sequence of orthonormal
polynomials {qn}n≥0 with respect to

〈f, g〉0 =
∫

f(x) g(x) dµ(x)

is a Darboux transformation of the sequence of orthonormal polynomials {pn}n≥0 with
respect to

〈f, g〉N+1 =

∫

f(x) g(x) (x − c)N+1dµ(x).
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Namely, if we consider the TTRR satisfied by {pn}n≥0 in vector notation xp = JN+1p,
the symmetric matrix (JN+1−c)N+1 can be factorized as C∗C with p = Cq. Furthermore,

Cn,k =

{ 〈qn, pk〉N+1 n−N − 1 ≤ k ≤ n,

0 elsewhere.

Finally, let us observe that from the TTRR satisfied by {pn}n≥0 in vector notation
xp = JN+1p we have

(x− c)N+1p = (JN+1 − c)N+1p.

From what we saw above, (JN+1 − c)N+1 admits an UL-factorization with U = L∗,
which of course is not unique . We conjecture that all such factorizations give rise to
one of the families already considered above.

3. Matrix-valued orthogonal polynomials

In this section we will restrict ourselves to the particular case when c = 0. Further-
more, for reasons of space we will simplify the notation by considering α = 0, N = 1
and the inner product

(3.6) 〈f, g〉 =
∫ ∞

0
f(x)g(x)e−xdx+ f ′(0)g′(0).

The interested reader can verify that the results in the present section hold for more
general α and N. Nevertheless we believe that a 2× 2 matrix-valued construction with
α = 0 will suffice to illustrate the situation.

Let us denote by {Ln}n≥0 the sequence of orthonormal polynomials with respect to
the inner product (3.6). Thus we have

x2Ln(x) = anLn+2(x) + bnLn+1(x) + cnLn(x) + bn−1Ln−1(x) + an−2Ln−2(x), n ≥ 2,

with

an =

√

(2n2 + 7n + 9)(2n2 − 5n+ 6)(n+ 4)(n+ 2)(n+ 1)3

(2n2 + 3n + 4)(2n2 − n+ 3)(n+ 3)
,

bn = 4

√

(4n7 + 16n6 + 13n5 + 10n4 + 43n3 + 64n2 + 84n + 36)2(n+ 1)

(2n2 + 3n+ 4)(2n2 − n+ 3)2(2n2 − 5n + 6)(n+ 3)(n+ 2)2
,

cn = 2

√

(12n8 + 12n7 − 23n6 + 57n5 + 82n4 − 81n3 + 37n2 + 120n + 36)2

(2n2 − n+ 3)2(2n2 − 5n+ 6)2(n+ 2)2(n+ 1)2
.

Let {R0,n}n≥0, {R1,n}n≥0 be the sequences of polynomials such that for any n

Ln(x) = xR1,n(x
2) +R0,n(x

2).

Then, following [DvA95], we build the matrix-valued polynomials

(3.7) Rn(y) =

(

R0,2n(y) R1,2n(y)
R0,2n+1(y) R1,2n+1(y)

)

.

The sequence {Rn}n≥0 satisfies a matrix TTRR

(3.8) xRn(y) = A∗
n−1Rn−1(y) +BnRn(y) +AnRn+1(y), n ≥ 0,

with An, Bn given, respectively, by
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An0,0 =
2
√

8n2 + 14n + 9
√

4n2
− 5n + 3(2n + 1)

3

2

√

n + 2
√

n + 1
√

8n2
− 2n + 3

√

4n2 + 3n + 2
√

2n + 3
,

An0,1 =0,

An1,0 = −

4
(

256n7 + 1408n6 + 3088n5 + 3640n4 + 2692n3 + 1414n2 + 570n + 135
)√

n + 1
√

8n2 + 14n + 9
√

8n2
− 2n + 3(4n2 + 3n + 2)(2n + 3)

√

n + 2
,

An1,1 =
2
√

8n2
− 2n + 3

√

4n2 + 11n + 9
√

2n + 5
√

2n + 3(n + 1)
3

2

√

8n2 + 14n + 9
√

4n2 + 3n + 2
√

n + 2
,

Bn0,0 =
2
(

768n8 + 384n7
− 368n6 + 456n5 + 328n4

− 162n3 + 37n2 + 60n + 9
)

(8n2
− 2n + 3)(4n2

− 5n + 3)(2n + 1)(n + 1)
,

Bn0,1 = −

4
(

128n7 + 256n6 + 104n5 + 40n4 + 86n3 + 64n2 + 42n + 9
)√

2n + 1

(8n2
− 2n + 3)

√

4n2 + 3n + 2
√

4n2
− 5n + 3

√

2n + 3(n + 1)
,

Bn1,0 = −

4
(

128n7 + 256n6 + 104n5 + 40n4 + 86n3 + 64n2 + 42n + 9
)√

2n + 1

(8n2
− 2n + 3)

√

4n2 + 3n + 2
√

4n2
− 5n + 3

√

2n + 3(n + 1)
,

Bn1,1 =
2
(

768n8 + 3456n7 + 6352n6 + 6744n5 + 5128n4 + 2898n3 + 1099n2 + 303n + 63
)

(8n2
− 2n + 3)(4n2 + 3n + 2)(2n + 3)(n + 1)

.

Thus {Rn}n≥0 is a sequence of matrix orthonormal polynomials with respect to the
positive semi-definite matrix-valued inner product given by

〈F,G〉 =
∫ ∞

0
F (y)

(

1
√
y√

y y

)

G∗(y)e−ydy + F (0)

(

0 0
0 1

)

G∗(0),

for 2× 2 matrix-valued functions F,G.
We now explore the Darboux process for the above matrix TTRR, but applied to the

monic matrix orthogonal polynomials. Since the leading coefficient of Rn is given by





√
4n2

−5n+3
√

2n+1

4
√

8n2
−2n+3(2n−1)

√

n+1(n−1)n(2n−3)!
0

(8n
3+6n

2
−5n+3)(2n+1)

4
√

8n2
−2n+3

√
4 n2+3n+2

√

2n+3(2n−1)(2n−3)
√

n+1(n−1)n(2n−4)!

−

√
8n2

−2n+3
√

n+1√
4n2+3n+2

√

2 n+3(2n)!



 ,

we can build explicitly the sequence of monic matrix orthogonal polynomials {Pn}n≥0.
They will satisfy a matrix TTRR such that the corresponding Jacobi matrix of (2× 2)-
blocks can be decomposed in the form LU where L is a lower block triangular matrix and
U is a block upper triangular matrix. From Theorem 2.1 the Darboux transformation
will give rise to a sequence of monic matrix polynomials {Qn}n≥0 orthogonal with respect
to the weight e−y multiplied by y = x2. More precisely, the sequences {Pn}n≥0 and
{Qn}n≥0 satisfy

(3.9)
xPn(x) =Pn+1(x) + (ζ2n+1 + ζ2n)Pn(x) + ζ2nζ2n−1Pn−1(x), n ≥ 0,

xQn(x) =Qn+1(x) + (ζ2n+2 + ζ2n+1)Qn(x) + ζ2n+1ζ2nQn−1(x), n ≥ 0,

where

ζ2n =





−2 (16n2−12n−9)(2n−1)2(n−1)n

(4n2−5n+3)(2n+1)

4 (8n3−12n2+4n+3)n
(4n2−5n+3)(2n+1)

−2 (16n3−40n2+28n−3)(2n+1)(2n−1)2n

4n2−5n+3

2 (16n3−36n2+29n−6)(2n+1)n

4n2−5n+3



 ,

ζ2n−1 =





−2 (32n4+8n3−14n2+7n+3)(2n−1)n

(4n2−5n+3)(2n+1)

4 (8n3−2n+3)n
(4n2−5n+3)(2n+1)

−2 (32n4+16n3−32n2+14n+9)(2n+1)(2n−1)n

4n2−5n+3

2 (16n3+4n2−15n+12)(2n+1)n

4n2−5n+3



 .
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These TTRR are related through a Darboux transformation. Namely, we have

x















P0

P1

P2

P4
...















=















1 0 0 0 · · ·
ζ2 1 0 0 · · ·
0 ζ4 1 0 · · ·
0 0 ζ6 1

. . .
...

...
. . .

. . .
. . .















×

















ζ1 1 0 0 · · ·
0 ζ3 1 0 · · ·
0 0 ζ5 1

. . .

0 0 0 ζ7
. . .

...
...

. . .
. . .

. . .































P0

P1

P2

P4
...















,

x















Q0

Q1

Q2

Q4
...















=

















ζ1 1 0 0 · · ·
0 ζ3 1 0 · · ·
0 0 ζ5 1

. . .

0 0 0 ζ7
. . .

...
...

. . .
. . .

. . .

















×















1 0 0 0 · · ·
ζ2 1 0 0 · · ·
0 ζ4 1 0 · · ·
0 0 ζ6 1

. . .
...

...
. . .

. . .
. . .





























Q0

Q1

Q2

Q4
...















.

Equation (3.9) may be compared with [DS02, Lemma 3.3].
It is worth to notice that the coefficients for the TTRR of {Qn}n≥0 are nicer. Indeed,

ζ2n+2 + ζ2n+1 = 4(n + 1)

(

−(4n + 3)(2n+ 1) 2
−2

(

4n2 + 8n+ 5
)

(2n + 3)(2n+ 1) (4n + 5)(2n+ 3)

)

,

ζ2n+1ζ2n = 4(n + 1)n(2n + 1)

(

−(8n + 3)(2n− 1) 4

−4 (2n + 3)(2n+ 1)2(2n− 1) (8n + 5)(2n+ 3)

)

.

This is in concordance with the results of Section 2. Indeed, the sequence of monic
matrix polynomials {Qn}n≥0 is built from a sequence of polynomials satisfying a five
term recurrence relation that, as we proved above, is the square iterated of a standard
TTRR and, as a consequence, we get a very simple expression for their coefficients.

4. Matrix-valued Bispectrality

Once one realizes that the sequence of matrix-valued polynomials {Rn}n≥0 given
by (3.7) is related via a Darboux transformation with classical standard orthogonal
polynomials it is natural to seek for matrix linear differential equations. As in the
previous section we will set c = 0, α = 0, N = 1 and the inner product (3.6), for an
initial examplification; at the end we will deal with arbitrary size N + 1 and general
coefficients.

After straightforward computations one can see that for the following 2 × 2 matrix-
valued operator,

D =

8
∑

k=0

dk

dxk
Dk(x),

acting on the right-hand side of the polynomial Rn(x), yields

Rn(x)D = ΛnRn(x),
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where

D0 =

(

0 0
−3 3

)

, D1 =

(

9 y − 6 −12
−105 y + 54 24 y

)

,

D2 =

(

27 y2 + 474 y − 72 −276 y
−6 (151 y + 459)y 3 (19 y + 1100)y

)

,

D3 =

(

24
(

y2 + 166 y + 93
)

y −12 (53 y + 570)y
−4 (287 y + 6852)y2 8

(

4 y2 + 1278 y + 2205
)

y

)

,

D4 =

(

4
(

y2 + 1080 y + 4701
)

y2 −8 (37 y + 2253)y2

−8 (47 y + 4908)y3 4
(

y2 + 1770 y + 14301
)

y2

)

,

D5 =

(

96 (13 y + 252)y3 −32 (y + 348)y3

−32 (y + 534)y4 384 (4 y + 123)y3

)

,

D6 =

(

96 (y + 101)y4 −2208 y4

−2656 y5 32 (3 y + 443)y4

)

,

D7 =

(

1408 y5 −128 y5

−128 y6 1664 y5

)

, D8 =

(

64 y6 0
0 64 y6

)

and

Λn =

( (

4n3 − n+ 6
)

n 0
0

(

2n3 + 3n2 + n+ 3
)

(2n + 1)

)

.

Furthermore, it is easy to check that there is not a linear differential operator of order
less than 8 having {Rn}n≥0 as eigenfunctions. On the other hand, the results in [KKB98]
prove the existence of a linear differential operator of order 2α+8 (see [KKB98, Theorem
3.1]). This, of course, is not a coincidence as we will show below.

4.1. Bispectrality for general size. Following the construction in [DvA95, page 265],
let N ∈ N and {sn}n≥0 be a sequence of orthonormal polynomials, satisfying the (2N +
3)-term recurrence relation

xN+1sn(x) =
N+1
∑

k=0

(cn,ksn−k(x) + cn+k,ksn+k(x)) , n ≥ 0,

where cn,k are complex numbers, cn,N = 0 for any n, the degree of sn is n, and sn = 0
for n < 0.

For any n, let Rk,n, k = 0, . . . , n, be polynomials such that

sn(x) = R0,n(x
N+1) + xR1,n(x

N+1) + · · ·+ xNRN,n(x
N+1).

Let

(4.10) Rn(y) =











R0,(N+1)n(y) R1,(N+1)n(y) · · · RN,(N+1)n(y)
R0,(N+1)n+1(y) R1,(N+1)n+1(y) · · · RN,(N+1)n+1(y)

...
...

...
R0,(N+1)n+N (y) R1,(N+1)n+N (y) · · · RN,(N+1)n+N (y)











.

In [DvA95] it is proved that {Rn}n≥0 is a sequence of matrix polynomials that satisfies a
TTRR. We will prove that if there exists a differential operator D having every sn(x) as
eigenfunction, then there is a matrix-valued differential operator that has every Rn(y)
as eigenfunction.
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Before stating the theorem let us introduce some notation. We denote by w the

(N + 1)-th root of unity e
i

2π
N+1 . For y 6= 0 we denote by |y|

j−1
N+1 its only positive

(N+1)-th root. Then all the (N+1)-th roots of y are x = wj |y|
j−1
N+1 for j = 0, 1, . . . , N .

Given a differential operator D with coefficients in the variable x we will denote it by

D(x) to emphasize the role of variable and by D

(

wj |y|
j−1
N+1

)

the operator obtained

after the change of variables x → wj |y|
j−1
N+1 .

Theorem 4.1. Let us assume that there exists a (scalar-valued) linear differential op-
erator D(x) with polynomial coefficients such that

D(x) sn(x) = λn sn(x), n = 0, 1, . . . .

We consider the matrix-valued differential operator D(y) acting on the right-hand side,
given by

D(y) = A(y)B C(y)B−1A(y)−1,

where A(y) is a diagonal matrix, B is a constant matrix and C(y) is a (diagonal) matrix-
valued operator acting on the right-hand side, all of size (N + 1)× (N + 1), such that

A(y)j,j = |y|
j−1
N+1 , Bj,k = w(j−1)(k−1), C(y)j,j = D

(

wj−1|y|
1

N+1

)

.

Then

Rn(y)D(y) = ΛnRn(y),

where Rn are the (N + 1) × (N + 1) matrix-valued polinomials given in (4.10) and Λn

is the diagonal eigenvalue matrix

Λn =







λ(N+1)n

λ(N+1)(n+1)

...
λ(N+1)N






.

Proof. By looking at the entry (Rn(y)A(y)B)j,k we have

(

R0,(N+1)n+j−1(y) R1,(N+1)n+j−1(y) . . . RN,(N+1)n+j−1(y)
)

×















|y|
0

N+1w0(k−1)

|y|
1

N+1w1(k−1)

. . .

|y|
N

N+1wN(k−1)















which is

R0,(N+1)n+j−1(y)|y|
0

N+1w0(k−1) + · · ·+RN,(N+1)n+j−1(y)|y|
N

N+1wN(k−1)

= s(N+1)n+j−1

(

|y|
1

N+1w(k−1)

)

.
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Since ((Rn(y)A(y)B) C(y))j,k = D(wk−1|y|
1

N+1 ) ((Rn(y)A(y)B)j,k) , we have

(Rn(y)A(y)B C(y))j,k =D(wk−1|y|
1

N+1 )

(

sN,(N+1)n+j−1

(

|y|
1

N+1w(k−1)

))

=λ(N+1)n+j−1s(N+1)n+j−1

(

|y|
1

N+1w(k−1)

)

=λ(N+1)n+j−1(Rn(y)A(y)B)j,k.

This implies that Rn(y)A(y)BC(y) = ΛnRn(y)A(y)B.

Thus

Rn(y)A(y)B C(y)B−1 A(y)−1 = ΛnRn(y),

and we get the desired statement. �

Notice that bispectrality for Krall-Laguerre orthogonal polynomials, an example of
standard orthogonal polynomials, when α is a positive integer, has been studied in [DI20]
by using a different approach.
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Appl., 285, Birkhkäuser/Springer, Cham, 2021.

[M22] C. Markett, The differential equation for Jacobi-Sobolev orthogonal polynomials with two
linear perturbations. J. Approx. Theory, 280, Paper No. 105782, 24 pp. 2022.

[Y02] G. J. Yoon, Darboux transforms and orthogonal polynomials, Bull. Korean Math. Soc., 39:359-
376, 2002.

[Z97] A. Zhedanov, Rational spectral transformations and orthogonal polynomials. J. Comput. Appl.

Math., 85:63-87, 1997.
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