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Abstract: The morphology and void connectivity of thin films grown by a magnetron sputtering
deposition technique at oblique geometries were studied in this paper. A well-tested thin film growth
model was employed to assess the features of these layers along with experimental data taken from
the literature. A strong variation in the film morphology and pore topology was found as a function
of the growth conditions, which have been linked to the different collisional transport of sputtered
species in the plasma gas. Four different characteristic film morphologies were identified, such as
(i) highly dense and compact, (ii) compact with large, tilted mesopores, (iii) nanocolumns separated
by large mesopores, and (iv) vertically aligned sponge-like coalescent nanostructures. Attending to
the topology and connectivity of the voids in the film, the nanocolumnar morphology was shown
to present a high pore volume and area connected with the outside by means of mesopores, with a
diameter above 2 nm, while the sponge-like nanostructure presented a high pore volume and area,
as well as a dense network connectivity by means of micropores, with a diameter below 2 nm. The
obtained results describe the different features of the porous network in these films and explain the
different performances as gas or liquid sensors in electrochromic applications or for infiltration with
nanoparticles or large molecules.

Keywords: magnetron sputtering; oblique angle deposition; nanocolumnar thin films; porous coatings;
physical vapor deposition

1. Introduction

The last years have witnessed the flourishing of numerous applications and tech-
nological devices based on nanocolumnar porous, thin films [1]. These are formed by
nanocolumns with a typical diameter and side-to-side distance in the order of 100 nm, mak-
ing these materials less dense and with a much larger specific surface than their compact
counterpart [2–4], and with different optical, electrical, and magnetic properties [5–12].
These features make them good candidates for the development of numerous technological
devices, such as gas or liquid sensors, optical coatings, and electrodes or instruments
for fluid manipulation, among others [13–26]. They are also applied in biomedicine, as
the surface energy of the film and its interaction with living organisms can be tuned by
modifying the features of the columnar arrangement [27,28]. In all these cases, and aside
from the chemical composition of the film, a key feature defining their functionality resides
in the characteristics of the porous structure. As a matter of fact, the nanocolumns are far
from being smooth and compact, but are rather rough and with numerous highly connected
cavities that penetrate deeply into the film, thus increasing the overall film surface [29,30].
However, not all these pore cavities are fully accessible when these films are put into contact
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with air or an external fluid, as they might be connected by very narrow throats which may
preclude a smooth diffusion mechanism [31–33].

In general, the nanocolumnar structures emerge during growth thanks to a certain
geometrical arrangement of the deposition setup, the so-called glancing or oblique angle
configuration [1,34]. This arrangement promotes the deposition on a substrate of species
directed along a well-defined oblique direction, which causes the appearance of surface
shadowing mechanisms, the formation of a few nanometers-thick continuous layers on the
substrate and, eventually, the development of nanocolumnar structures [35]. Classically, this
type of morphology has been obtained using the evaporation technique [36,37] at glancing
angles, by which a given material is sublimated in a vacuum reactor, forming a gaseous
flux of species that are deposited on a substrate situated off-axis [38]. Yet, the difficulty to
upscale this arrangement to operate over large surfaces, a key feature to implement the
technique for industrial applications, has motivated the adoption of more sophisticated
approaches, such as the magnetron sputtering technique using oblique angle deposition
(MS-OAD), which is a variation of the classical magnetron sputtering technique [1]. In this
case, an argon plasma is made to interact with a solid plate, the target, causing the sputtering
of species from it, preferentially in the direction perpendicular to the target surface [39,40].
In this way, the oblique angle configuration is usually achieved by placing a substrate in
front of the target and tilting it an angle α with respect to the surface of the target, although
other operational geometries have also been proposed in the last years, targeting specific
industrial applications [27,41].

The morphology of thin films grown by MS-OAD shows a strong dependence
on two key experimentally controllable quantities: the pressure of the gases in the
deposition reactor, pg, and the tilt angle of the substrate, α. In this way, pg determines
the mean free path of the sputtered species in the plasma, and thus their collisional
transport from the target towards the substrate [42]. For instance, in the limit of very
high pressures (typically well above 1 Pa), the movement of sputtered species in the
plasma gas becomes randomized due to the large number of collisions previous to their
deposition, so they may arrive at the substrate following a Brownian-like trajectory and
an isotropic momentum distribution, thus precluding the formation of nanocolumns [43].
Under these conditions, the film morphology is known to contain numerous vertically
aligned and coalescent sponge-like structures [42], which from now forth will be simply
dubbed sponge-like morphology in this paper. On the other hand, in the low-pressure
limit, most sputtered particles do not experience collisions in the plasma and arrive
at the substrate with the kinetic energy and direction of movement with which they
leave the target, along a so-called ballistic trajectory [44]. Under these last conditions,
in Ref. [42] it was experimentally demonstrated that the morphology of Au thin films
grown by MS-OAD strongly depended on α, yielding typical compact structures when α
was below 45◦, as well as compact structures containing large and tilted embedded pores
for increasing values of α up to ~70◦. Moreover, when α was above ~70◦, well-separated
and tilted nanocolumnar structures were reported.

Much research has been carried out in the last years in order to characterize the porous
network in the films in terms of morphology and connectivity. With respect to classical gas
adsorption methods widely used to characterize powder materials [45], a clear shortcom-
ing of the characterization of thin film porosity is the relatively low amount of material
available, which generally precludes the use of classical BET adsorption methods using N2
as the adsorbing gas. Nevertheless, in Ref. [32], the pore size distribution in evaporated
nanocolumnar TiO2 and SiO2 thin films was studied, circumventing this limitation by
analyzing the adsorption isotherm curves with Kr gas, finding out that the size of the pores
was maximized for the film grown with an angle of incidence of ∼ 70◦ for TiO2. Likewise,
in Ref. [31], a similar adsorption approach was adopted, using water as the adsorbing gas
and measuring the adsorption isotherm with a quartz crystal monitor. This time, it was
found that the pore volume accessible to water condensation could spread up to 60% of the
total film volume. Adsorption isotherms of different vapors in porous optical multilayers
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have also been obtained using optical methods [46,47]. Moreover, in Ref. [3], the efficiency
of porous WO3 thin films prepared by MS-OAD as cathodes for electrochromic applications
was analyzed when they were put into contact with a liquid electrolyte. There, it was
found that the total void space in the film was not the relevant quantity defining the elec-
trochromic efficiency, but rather the so-called accessible volume and the actual contact area,
defined, respectively, as the volume inside the film that is actually filled by the electrolyte
and its surface. Remarkably, it was found that the sponge-like morphology presented better
electrochromic efficiency than a nanocolumnar film when used as a cathode, despite both
having similar total void volumes, which was a clear indication of the relevance of the void
connectivity for this particular application. This analysis has motivated this paper, where a
well-tested model of the film growth is used to systematically analyze the influence of pg
and α on the pore features, as well as analyze the main differences between sponge-like
and nanocolumnar film morphologies in terms of porosity. As a case example, the focus
has been set on a particular material such as TiO2 grown by MS-OAD due to the multiple
technological applications it presents, although the results and discussion can be easily
extrapolated to other materials and conditions.

2. Growth Model and Pore Analysis
2.1. Growth Simulation

The growth model has been explained in detail in Ref. [48], where it was proven
adequate to describe the morphological features of different thin films by MS-OAD at low
temperatures. Next, we briefly present its basics, although, for additional information, it
is advised to check Ref. [48]. Sputtered Ti species are considered to leave the racetrack of
the target with a momentum distribution F

(→
p
)

, calculated by the software SRIM (James

F. Ziegler, Annapolis, MD, USA) (version 2013) [49], where
→
p is the linear momentum.

Along their way to the substrate, they experience scattering events with the plasma-heavy
species until they are deposited, arriving with a momentum distribution function f

(→
p
)

,
which can be calculated by the software SIMTRA (Ghent University, Ghent, Belgium)
(version 2.2) [50,51]. The incorporation of these species to the growing film is simulated by
using a home-made MatLab code and Monte Carlo techniques; the space over the substrate
is divided into a NL × NL × NH 3D array (NL is the number of cells along the two Cartesian
axes parallel to the substrate, while NH represents the number of cells along the Cartesian
axis perpendicular to the substrate), where each cell has the value 1 if it contains a deposited
species and 0 otherwise. In this way, the deposition atoms move towards the substrate
from a random initial location above the film surface, following a straight trajectory defined
by
→
p , which is randomly obtained from f

(→
p
)

. The movement continues in the 3D grid,
using periodic boundary conditions, until the species arrive at the substrate or attempt to
move into an occupied cell, where different mobility processes are induced depending on
its kinetic energy, as described in Ref. [52] (see also Ref. [48] for more details).

After the incorporation of a sputtered Ti species into the film, it is considered that
the continuous impingement of oxygen species on the growing film surface causes its
oxidation, becoming TiO2. Consequently, the volume of each cell in the cubic array can be
estimated by the volume of a TiO2 species in the film, which attending to the typical density
of TiO2, yields a length of the cell edge of ∼ 0.4 nm. Here, it is important to underline that
no thermally induced mobility processes are introduced in the model, implying that the
calculated results will only be valid when the growth takes place in Zone I of the Thornton
Structure Zone Model [53,54]. The working pressure was varied in each simulation from
0.2 to 2 Pa, and the value of α from 0◦ to 180◦.

2.2. Simulation Conditions

The simulation conditions aim at reproducing the experimental setup presented in
Refs. [41,55], where the experimental details are given. Yet, for the sake of clarity, in Figure 1
the main geometrical details of the simulation conditions are presented: a 3-inches diameter
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Ti target was considered, located L = 7 cm apart from a rotatable substrate holder. An
Ar pressure ranging from 0.20 to 1 Pa was considered, while the oxygen partial pressure
was set to 0.05 Pa. A DC target voltage of ∼ 300 V was considered in all the cases. Given
the circular shape of the target, the substrate rotation angle, α, and the ballistic angle of
incidence, αi, are related by means of the linear relation αi = α− ∆, with ∆ = tan−1(R/L),
being R = 2 cm the radius of the racetrack (the circular region of the target where species
are sputtered from), and consequently ∆ ∼ 15◦ (see Figure 1).
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Figure 1. Scheme of the simulated experimental setup and the difference between the angle of
incidence, αi, and the substrate rotation angle, α.

The simulated films have been compared with experimental data taken from Refs. [41,55].
All these films had a composition of TiO2, being transparent in the visible range of the
spectrum [56]. In Ref. [55] the aim was to compare the nanocolumnar growth of TiO2 thin
films when using either a pure DC or a pulsed DC electromagnetic signal to maintain the
plasma discharge. For this paper, only the films grown with a DC signal are considered.
The films were grown for different values of the substrate rotation angle, α = 60◦, 70◦, 80◦,
and 85◦ which resulted in an angle of incidence of αi = 45◦, 55◦, 65◦, and 70◦. The density
of these films was measured by means of Rutherford Backscattering Spectroscopy (RBS),
and it was employed to assess the total void space in the films, just by comparing the
obtained value of the film density with that of a fully compact film. In Ref. [41], the same
setup described above to grow TiO2 thin films was employed, this time setting the substrate
rotation angle at α = 95◦ (or likewise αi = 80◦) and the total deposition pressure at three
different values, pg = 0.2–0.3, 0.5–0.6, and 0.8–0.9 Pa. In that work, films grown with and
without the presence of a collimator were compared. For this work only the cases grown
in standard conditions (in absence of a collimator) were analyzed. All these films were
transparent in the visible part of the spectrum, indicating that its composition was TiO2 [56].
This result was also corroborated by analyzing the proportion O:Ti in the films as obtained
by the RBS measurements.

2.3. Pore Network Characterization

The void space structure of the simulated films was characterized using the same
concepts defined in Ref. [29]. The parameter φ, dubbed the pore throat, is introduced to
topologically characterize the void space, as follows: two voids in the film are considered
connected and, thus, to belong to the same pore if a sphere of diameter φ may follow
a continuous path from one to the other through void space, not touching any material
(see Figure 2a for a scheme). If this path does not exist, both voids are considered not
connected, and, hence, to belong to different and independent pores. Following this idea,
three relevant quantities that will be studied in detail in this paper are defined:



Coatings 2023, 13, 991 5 of 15

• The void space, vT , defined as the total volume inside the film not occupied by material
(see Figure 2b for a scheme). This quantity, therefore, does not consider any type of
connectivity, and can be calculated by means of the film density, ρ, through the formula
vT = 1− ρ/ρc, where ρc is the density of a fully compact film.

• The void volume connected with the outside, vφ, (see Figure 2b for a scheme) defined
as the volume of the voids within the film that are connected with the outside by
means of a pore throat φ. Therefore, according to the definition of connectivity made
above, a sphere with a diameter φ may follow a continuous path from any point within
this volume to the exterior of the film, not touching any material.

• The contact area of the void volume connected with the outside, aφ (see Figure 2b for
a scheme), as the area corresponding to vφ.
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connected if a sphere with diameter φ may continuously move from one void to the other without
intercepting any material and (b) illustration of the concept of total void volume (vT), and volume
(vφ) and area (aφ) of the voids connected with the outside of the film.

3. Results and Discussion
3.1. Morphology of the Films

In Figure 3 we show the cross-sectional images of a set of simulations performed at
a relatively low deposition pressure, pg = 0.2 Pa, and for increasing values of α. There,
we notice the progressive structural shift of the films, from a compact morphology when
α . 60◦, to a morphology defined by tilted pores that extend from the very surface of the
film to the bottom for 60◦ . α . 85◦. Moreover, the nanocolumnar morphology emerges
when α & 85◦. These generic morphologies are in agreement with other results from
the literature for Au thin films grown by MS-OAD at relatively low pressures [42], by
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considering that αi = α− ∆, with ∆ ∼ 15◦ in our case. Remarkably, Figure 3 indicates
an additional phenomenon that, to our knowledge, has not been yet reported in the
literature: when α & 100◦ the columns start to straighten up. Outstandingly, this trend
is similar to that found when increasing the deposition pressure, which is presented in
Figure 4. There, the effect of increasing pg from 0.2 to 1 Pa when α = 100◦ is depicted,
and it is clear that the nanocolumns progressively straighten up as well, until becoming
completely vertical at very high pressures. This latter trend was already explained
in Ref. [42] and is associated with an increasing amount of Brownian-like deposition
species in the plasma due to the shorter mean free path of these species with increasing
pressures, in detriment of well-directed ballistic species. For comparison purposes, in
Figure 4 an image of the limit case when all sputtered species arrive at the film from
any random direction (i.e., all deposition species are Brownian-like) is included. This
case depicts a structure similar to the pg = 1 Pa case in Figure 4 and the α = 180◦ case
in Figure 3, implying that the film nanostructure in these two cases corresponds to the
sponge-like morphology, as commented in the introduction section. Yet, the appearance
of this same morphology at low pressures in Figure 3, as well as the straightening up
of the nanocolumns when α > 100◦ (i.e., αi = 85◦), must have another origin, since
the mean free path of sputtered species does not depend on α and, at relatively low
pressures, the transport is dominated by ballistic species.
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Figure 4. Cross-sectional images of the simulated films when increasing pg up to 1 Pa when α = 100◦.
As a Reference, the simulated film nanostructure in the high-pressure limit is also included. Film
thickness is 250 nm.

In order to analyze the appearance of the sponge-like morphology as a limit case in
Figure 3, the software SIMTRA (Ghent University, Ghent, Belgium) (version 2.2) [50,51] has
been used to calculate the function f (θ), defined as the distribution function of possible
angles of incidence of sputtered species arriving at the substrate, where θ represents this
angle of incidence as measured from the substrate normal. This function is depicted in
Figure 5 for different values of α and for pg = 0.2 Pa, normalized to the total number of
sputtered atoms. Furthermore, f (θ) has been separated in two components according to the
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energy of the arriving species, where the threshold corresponds to the energy of a particle
following a thermal motion defined by the temperature of the argon neutral atoms, Tg.
Since Tg is below 600 K under typical magnetron sputtering conditions, the typical kinetic
energy of Brownian-like species is below 3kBTg/2 ∼0.05 eV. Figure 5a shows f (θ) for the
species with kinetic energies above 0.05 eV, which correspond to those species that still keep
part of the original energy and momentum when sputtered, i.e., ballistic species (and those
in an intermediate state). Figure 5b shows f (θ) for those with kinetic energies in the thermal
range below 0.05 eV, i.e., those that follow a Brownian-like trajectory. For α = 60◦, Figure 5a
indicates the existence of a clear ballistic peak at αi ∼ 45◦, corroborating that ∆ ∼ 15◦ in
our conditions. Moreover, when α increases, a shift of the ballistic peak towards higher
angles of incidence becomes evident, along with a remarkable decrease in the height of the
peak. This phenomenon is related to the area (cosine) factor modulating the arrival rate of
these well-directed species when tilting the substrate. However, the angular distribution
of Brownian-like species in Figure 5b is not only independent of the particular value of α,
which is coherent with their isotropic momentum distribution in the plasma phase, but
it also depicts a shape ∼ sinθcosθdθ (also included in Figure 5b), which is well known
for describing the deposition flux of species with an isotropic momentum distribution in
a plasma gas [57]. Therefore, it is obtained that, for a given pressure, there is a constant
number of Brownian-like species that act as background contribution to the film growth
no matter the value of α, while the ballistic contribution diminishes with α. Consequently,
there is a critical angle, α = αM, above which the ballistic component is small enough to
allow Brownian-like species to start affecting the nanocolumnar growth, which results in
the progressive straightening up of the nanocolumns. In this way, the condition α = αM
would yield the film containing better defined and well-separated nanocolumns with a
maximum tilt angle, which according to Figure 3 results in αM ∼ 100◦ (corresponding
to an angle of incidence of αi ∼ 85◦) when pg = 0.2 Pa. Moreover, as α increases, the
deposition of ballistic species as well as those in an intermediate state decrease, finding
in the limit case of α = 180◦ that the growth is only carried out by Brownian-like species.
Thus, under those conditions, a sponge-like morphology is grown, equal to that obtained
at high pressures. This is clearly visible in Figure 6, where the calculated value of the tilt
angle of the nanocolumns with respect to the substrate normal, β, is displayed as a function
of α for different values of pg, and where β is found to increase up to a certain angle of
incidence, α = αM, above which β decreases down to 0◦, in agreement with the progressive
straightening up of the nanocolumns. Remarkably, an increase of pg in Figure 6 does not
only cause the progressive flattening of the curve but also a shift in αM towards lower
values. This trend is explained by the overall increase in Brownian-like species with the
pressure in detriment of ballistic ones, thus the straightening up process will start at lower
values of α.

Furthermore, the discussion above also explains why this characteristic phenomenon
was not previously detected for Au thin films in Ref. [42], as the large atomic mass of Au
in comparison with Ti makes more difficult the complete loss of original kinetic energy
and momentum (i.e., Au sputter atoms would require more collisions than Ti atoms to
become Brownian-like). Therefore, under the same pressure conditions, the Au deposition
flux would contain less Brownian-like species than in the case of Ti, making the value of
αM to be above the studied range in Ref. [42]. In order to check experimental evidence
on these results, experimental data obtained at pg = 0.2–0.3 Pa as a function of α have
been included in Figure 6, taken from Refs. [41,55], where an experimental setup similar
to the one considered in this article (see Figure 1) was employed. In this way, the good
agreement between the experimental values and the presented model can be appreciated,
as well as the existence of αM when operating at relatively low pressures and high angles
of incidence.
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Figure 5. Calculated incident polar angle distribution function of the deposition species on the
substrate for a pressure pg = 0.2 Pa and for different values of α, normalized to the number of
sputtered particles. (a) Distribution function of the species with kinetic energy above 0.05 eV and
(b) distribution function of the species with kinetic energy below 0.05 eV. In (b) the typical shape of
the distribution function corresponding to a deposition flux of species with isotropic momentum
distribution in the gas phase (∼ sinθcosθdθ) is included.
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3.2. Topology of the Porous Structure in Contact with the Outside

In Figure 7, the proportion of void space in the films, vT , as a function of α is shown for
different values of pg. For a pressure of 0.2 Pa, four different regions are again distinguished
for increasing values of α, in agreement with the discussion above on film morphology.
When α < 60◦ (when the structure is compact, according to Figure 3) a linear increase of
vT is obtained. Moreover, when 60◦ . α . 85◦ the curve bends upwards, corresponding
to the appearance of the tilted mesopores, while for 85◦ . α . αM a rather linear trend is
again found, with a higher slope than the previous one, corresponding to the region where
the nanocolumns develop. Finally, when α > αM, the curve flattens and stays at a constant
value of vT ∼ 65%; this means that a nanocolumnar film grown when α = αM and the
sponge-like morphology found when α = 180◦ (or in the high-pressure limit) remarkably
possess a similar amount of void space. For increasing pressures, the same trend is found:
all the curves converge to the same value ( vT ∼ 65%) whenever the threshold α = αM is
surpassed. In order to better appreciate these changes in the behavior of vT as a function of
α, a differential form of Figure 7 has been included as Supporting Information (Figure S1).
For comparison purposes, we have included some experimental data in Figure 7 taken from
Ref. [41], for pg = 0.2 Pa and α = 60◦, 70◦, 80◦, and 85◦, obtained under similar conditions
as those depicted in Figure 1, finding again an overall good comparison with the calculated
results (note that the case α = 60◦ corresponds to a sharp transition from a fully compact
film to a compact film with tilted mesopores according to Figure 3, which represents an
important source of error in this case when comparing with experimental data).
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At this point, it is important to underline that the quantity vT analyzed above takes
into account all void spaces in the film and, consequently, it contains no information on
the void connectivity. In order to study this, the quantity vφ has been introduced as the
volume of the voids inside the film connected with the outside by means of a pore throat φ
(for simplicity reasons, the values of φ have been expressed in terms of cells in the model,
knowing that the width of a cell is∼0.4 nm). For instance, when φ = 5 (i.e., 2 nm), vφ Refers
to all the empty volume inside the film that is connected with the outside by means of a
sphere with a diameter of 5 cells; i.e., the connectivity with the outside of the film would
only be stablished by means of mesopores (we use here the nomenclature defined by the
IUPAC for pores with a diameter above 2 nm [58]), while the remaining void space would
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be considered not connected with the outside. On the other hand, when φ = 1 (i.e., 0.4 nm)
the connectivity will be higher, since it will be established by micropores (again we use the
same nomenclature defined by the IUPAC for pores with a diameter below 2 nm [58]). For
illustration purposes, in Figure 8, we have displayed the zoomed view of a nanocolumn
(top row) and of a sponge-like (bottom row) structure, which include all the void space
in black (left side images), the void connected with the outside for φ = 1 in blue (center
images), φ = 5 in yellow (right side images), while the material is in white.
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Figure 8. Detailed cross-sectional image of a nanocolumn when pg = 0.2 Pa and α = 100◦ (top row),
and of a sponge-like film grown in the high pressure limit (bottom row), which include all the
void space in black (left side images), the volume of the pores connected with the outside for
φ = 1 superimposed in blue (center images), and φ = 5 superimposed in yellow (right side images).
The material is in white.

The value of vφ as a function of α has been calculated for a pressure of pg = 0.2 Pa and
for φ = 1 and φ = 5, which is displayed in Figure 9a. In this way, when φ = 1 (Figure 9a,
top image), the pore throat is so small that the pore connectivity is the highest, so pores
connected with the outside penetrate deep into the film, filling almost all the void space
(see Figure 8, top row central image). Consequently, vφ=1 follows a similar trend as vT
in Figure 7, since there are very few occluded pores under these conditions. Hence, the
four regions mentioned above when discussing Figure 7 are also found now, finding that
vφ=1 reaches a maximum value whenever α > αM, i.e., throughout the whole structural
transition from a columnar to a sponge-like morphology. On the other hand, when φ = 5,
only voids connected by large throats are taken into consideration (see Figure 8, right
images). The dependence of vφ=5 with α appears in Figure 9a (bottom image), where
the maximum value is achieved when α = αM, i.e., when the nanostructure is clearly
nanocolumnar, unlike the φ = 1 case. The origin of this difference resides on the small
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size of the voids produced by the incorporation of Brownian-like species when α > αM,
which are not accounted when φ = 5 (see Figure 8 top and bottom row). The contact area
of the pores has been calculated under the same conditions as in Figure 9a for φ = 1 and
φ = 5, and is displayed in Figure 9b. Remarkably, aφ=1 shows the same trend as vφ=1 when
α < αM. However, when α & αM the behavior is quite different: now the structural shift
from nanocolumnar to sponge-like produces an increasing trend for aφ=1, implying that the
pore area is not constant with α in this range, unlike vφ=1. Conversely, the trend depicted
by aφ=5 is quite similar to that of vφ=5 in the whole α range, with a clear maximum value
when α = αM. Again, similar results are obtained when increasing the film pressure up to
1 Pa (see Figure 9b). In this way, the obtained results regarding the void connectivity can be
summarized as follows:

• When the connectivity through micropores ( φ = 1) is analyzed, the maximum volume
of the voids in contact with the outside is obtained when α & αM, i.e., during the whole
structural transition from nanocolumnar to sponge-like morphologies. However, its
area is only maximum for this second morphology. Consequently, the maximum
values of vφ and aφ are achieved when the morphology is formed by vertically aligned
sponge-like nanostructures, i.e., when the growth is dominated by Brownian-like
species (at high pressures irrespective of the angle or at low pressures when α ∼ 180◦).

• When the connectivity through mesopores ( φ = 5) is analyzed, the maximum volume
and area of the voids connected with the outside is obtained when the film morphology
is nanocolumnar, when α = αM.
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and φ = 5 (bottom), and for different values of the deposition pressure, pg, and substrate rotation
angle, α. The thick horizontal red lines correspond to the values obtained for the films grown in the
high-pressure limit.

This important difference between the two relevant morphologies explains the results
in Ref. [3], in which, as mentioned in the introduction, a WO3 coating was employed as a
cathode for electrochromic applications when using a LiClO4 solution in propylene carbonate
as electrolyte, and where the performance of columnar and sponge-like morphologies was
tested. There, it was determined that the best behavior corresponded to the latter film, i.e., the
film that possessed a higher volume and area of the pores connected with the outside by
micropores. This same result is expected whenever the performance of the film is related
to the penetration of a fluid through the pores, as these could diffuse through micropores
(it is important to mention here that there are other important aspects to consider, such as
the diffusivity and the typical filling and emptying time of the pores, that may also have an
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important impact in the performance of the films). In addition, for other applications that
demand larger pore throats, e.g., nanoparticle or large molecule infiltration into the film, it is
expected to find an opposite behavior, being the nanocolumnar morphology more adequate
than the sponge-like morphology. For instance, in Ref. [59], a nanocolumnar TiO2 thin film
was infiltrated with a dye, while in Ref. [60], Ag and Au nanoparticles were synthesized in a
nanocolumnar film by infiltrating it with different solutions.

4. Conclusions

In this article, a well-tested and accurate thin film growth model by MS-OAD has been
used to systematically analyze the influence of key experimentally controllable quantities,
such as the operating pressure and angle of incidence of the deposition flux, on the mor-
phology and void connectivity of TiO2 thin films. Overall, three different characteristic
morphologies have been obtained when the deposition takes place at low pressures: (i) com-
pact morphology when the rotation angle is below 60◦, (ii) a morphology defined by tilted
pores that extends from the very surface of the film to the bottom for 60◦ . α . 85◦, and
(iii) a morphology characterized by tilted and isolated nanocolumns when 85◦ . α . αM,
with αM ∼ 100◦ for a pressure of 0.2 Pa. In addition, a fourth characteristic nanostruc-
ture has been obtained when α surpasses the critical value αM, above which the tilted
nanocolumns start to straighten up and become more coalescent and with a sponge-like
morphology. In this way, in the limit case α ∼ 180◦, the obtained morphology resembled
that of a film grown at relatively high pressures, which contains vertically aligned and
coalescent porous nanostructures. Furthermore, for increasing pressures, the same four
characteristic nanostructures are found, although the particular value of αM shifted towards
lower values. In the limit case of very high pressures, only this latter structure is found
no matter the value of α. Moreover, the appearance of these characteristic morphologies
has been analyzed in terms of the transport of sputtered species in the plasma gas and the
existence of ballistic and Brownian-like deposition species in the reactor.

The connectivity of the voids inside these films with the outside has also been studied,
either by micropores with a pore throat of 0.4 nm, or by mesopores with a pore throat of 2
nm. In this way, it is found that attending to the connectivity by micropores, the morphology
that optimizes the volume and area of the voids connected with the outside corresponds
to films formed by vertically aligned sponge-like coalescent structures, typically grown at
relatively high pressures. However, if the connectivity is analyzed in terms of mesopores, the
best conditions to optimize the volume and area of these voids are those of a nanocolumnar
thin film, typically grown by MS-OAD at low pressures. The implications of the obtained
results have been discussed in terms of the potential applications of these films.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings13060991/s1, Figure S1. Differential void space as a function
of the substrate rotation angle and for different values of the gas pressure.
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