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A B S T R A C T

Applying amplitude modulations to a parametrically excited damped pendulum is shown to be a reliable
method to control (suppress or enhance) its chaotic behaviour. Analytical (Melnikov analysis) and numerical
(Lyapunov exponents and bifurcation diagrams) results show an effective control scenario for a wide range of
resonances between the two excitations implicated. Different routes of regularization as the chaos-controlling
parameters vary are identified, including period-doubling and crises. The method’s effectiveness at suppressing
spatiotemporal chaos of starlike networks of sinusoidally coupled chaotic pendula is demonstrated where
effective regularization is obtained under localized control on an increasing number of pendula.
1. Introduction

Since the end of the last century, the suppression and enhancement
of the chaos emerging from general damped-driven systems have been
a fundamental field of intensive investigation in a large number of
contexts in science and engineering. Proof of this is the plentiful lit-
erature on the subject [1–4], including experimental research on chaos
suppression [5–11]. The effectiveness of diverse suppressory techniques
has been explored, including nonfeedback methods using small periodic
excitations [12–16]. These latter methods have proven to be useful in
applications where feedback control techniques are either inadequate
or impractical, while they are easily applicable experimentally [10,16].

Furthermore, since three decades ago or so there has been the
growth of a theoretical proposal to tame chaotic behaviour in damped-
driven systems which are capable of being studied by Melnikov’s
method (MM), and which entails applying periodic chaos-controlling
(CC) excitations [3,17]. This MM-based proposal has been demon-
strated to be efficient in suppressing chaos in networks of damped, pe-
riodically driven, nonlinear oscillators [18,19]. Hitherto, mainly three
kinds of instances have been explored regarding the two additive pe-
riodic excitations implicated (one chaos-inducing, CI, and the other
CC): (i) both perturbations are forcings (external excitations), (ii) one
excitation is parametric while the other is a forcing, and (iii) both
perturbations are parametric excitations. To the best of our knowl-
edge, however, the physically pertinent instance in which the CC
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excitation acts multiplying the CI excitation has yet to be investigated
in detail, despite its great theoretical relevance. Indeed, the appli-
cation of small subharmonic amplitude modulations has been shown
to be an effective procedure for preserving chaos in the context of
laser systems [15,16], while the effectiveness of resonant amplitude
modulations at suppressing chaos has been demonstrated for differ-
ent damped nonlinear oscillators subjected to a sinusoidal forcing in
the case where the two periodic excitations implicated are in phase
[20–22]. Also, the effectiveness of a multiplicative method at con-
trolling escape from a potential well by periodically modulating the
amplitude of the escape-inducing excitations has been shown [23].
While it has been demonstrated that the main resonance between the
two excitations implicated is the most effective resonance for optimally
controlling homoclinic chaos in general [3], we shall show here that
multiplicative CC excitations can tame chaotic behaviour beyond the
main resonance, thus providing an additional technological motivation
for the consideration of CC multiplicative excitations. Indeed, they
could be useful for example in the problem of extracting energy from
sea waves by means of a parametric pendulum [24].

In the present communication, we investigate this multiplicative CC
scenario numerically and analytically by focusing on the paradigmatic
model of a dissipative pendulum subjected to a parametric harmonic
excitation [25–29]. Specifically, we demonstrate the effectiveness of
the multiplicative control method in suppressing spatiotemporal chaos
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of starlike networks of identical sinusoidally coupled chaotic pendula
by localized application of CC excitations. It is worth mentioning that
starlike networks are network motifs that occur repeatedly in real
complex networks such as scale-free networks [30]. The remainder of
the communication is organized as follows. Section 2 discusses the MM-
based analytical predictions for the dissipative parametrically excited
pendulum subjected to small resonant amplitude modulations, and
then contrasts numerical outcomes (bifurcation diagrams and Lyapunov
exponents) with the analytical predictions, as well as describing the
regularization routes in the control parameter plane for the case of
resonances between the CI and CC excitations. Section 3 explores the
efficiency of the multiplicative control method under localized applica-
tion of the CC excitations in starlike networks of sinusoidally coupled
chaotic pendula. We consider the application of the CC excitations
onto an increasing number of pendula, and study the robustness of the
control scenario and related synchronization phenomena under changes
in the number and degree of the controlled nodes as well as in the
coupling strength. Finally, Section 4 is devoted to a discussion of the
major findings and of future work.

2. Multiplicative control scenario

We consider the equation of a dissipative pendulum whose pivot is
subjected to a vertical oscillation having a small resonant amplitude
modulation:
..
𝜃 + sin 𝜃 = −𝛿

.
𝜃 − 𝛾 [1 + 𝜀 cos (𝛺𝑡 + 𝜙)] cos (𝜔𝑡) sin 𝜃, (1)

where all variables and parameters are dimensionless. Here, the term
describing the vertical sinusoidal oscillations of the pivot, −𝛾 cos (𝜔𝜏)
sin 𝜃, is to be regarded as the CI excitation, while the term describing
the modulation of such oscillations, −𝛾𝜀 cos (𝛺𝑡 + 𝜙) cos (𝜔𝑡) sin 𝜃, is the
CC excitation. When the CC excitation is absent (𝜀 = 0), we assume that
the pendulum has a chaotic attractor for a given set of the remaining
parameters. The chaotic behaviour of vertically excited pendula has
been investigated for nearly forty years [24–29,31–35].

2.1. Melnikov analysis

Although the predictions from MM are both limited (only valid for
motions based at points sufficiently near the separatrix) and approxi-
mate (the MM technique is a first-order perturbative method), they are
of great interest due to the general scarcity of such analytical results in
the theory of chaos. Since the technique has been described many times
by different authors [36–38], we shall not discuss it in detail here, but
analyse the results obtained from it. See Refs. [36–38] for more details
about MM. Thus, it is also assumed that the complete system (1) satis-
fies the MM requirements, i.e., the excitation and dissipation terms are
small-amplitude perturbations of the underlying integrable pendulum..
𝜃+sin 𝜃 = 0. After applying MM to Eq. (1), one straightforwardly obtains
the Melnikov function (MF)

𝑀± (

𝑡0
)

= −𝐷 + 𝐴 sin
(

𝜔𝑡0
)

+ 𝐴′ sin
[

(𝛺 − 𝜔) 𝑡0 + 𝜙
]

+ 𝐴′′ sin
[

(𝛺 + 𝜔) 𝑡0 + 𝜙
]

,

𝐷 ≡ 8𝛿,

𝐴 ≡ 2𝜋𝛾𝜔2 csch (𝜋𝜔∕2) ,

𝐴′ ≡ 𝜋𝜀𝛾 (𝛺 − 𝜔)2 csch
[

𝜋 (𝛺 − 𝜔) ∕2
]

,

𝐴′′ ≡ 𝜋𝜀𝛾 (𝛺 + 𝜔)2 csch
[

𝜋 (𝛺 + 𝜔) ∕2
]

, (2)

where the positive (negative) sign refers to the top (bottom) homoclinic
orbit of the conservative pendulum: 𝜃0 (𝑡) = ±

(

4 arctan e𝑡 −𝜋
)

,
.
𝜃0 (𝑡) =

±2 sech 𝑡. To analyse the effect of the CC excitation, in the following we
shall consider the normalized MF

𝑀±
𝑛
(

𝑡0
)

≡ 𝑀± (

𝑡0
)

∕𝐷 = −1 + 𝑅′ sin
[

(𝛺 − 𝜔) 𝑡0 + 𝜙
]

( ) ′′ [ ]
2

+ 𝑅 sin 𝜔𝑡0 + 𝑅 sin (𝛺 + 𝜔) 𝑡0 + 𝜙 , (3)
𝑅 ≡ 𝐴∕𝐷,𝑅′ ≡ 𝐴′∕𝐷,𝑅′′ ≡ 𝐴′′∕𝐷. (4)

The next two subsections study, for 𝑅 > 1 (i.e., there exists homoclinic
chaos in the absence of any CC excitation (𝜀 = 0)), the appearance of
simple zeros of 𝑀±

𝑛
(

𝑡0
)

for two subharmonic resonances: 𝛺 = 𝜔 and
𝛺 = 2𝜔.

2.1.1. Resonance 𝛺 = 𝜔
For the main resonance between the two excitations implicated, the

normalized MF, Eq. (3), reduces to

𝑀±
𝑛
(

𝑡0
)

= −1 + 𝑅 sin
(

𝜔𝑡0
)

+ 𝜀𝑅 sech (𝜋𝜔∕2) sin
(

2𝜔𝑡0 + 𝜙
)

. (5)

After expanding the factor sin
(

2𝜔𝑡0 + 𝜙
)

on the right-hand side of
Eq. (5), one straightforwardly obtains

𝑀±
𝑛
(

𝑡0
)

= −1 − 𝜀𝑅 sech (𝜋𝜔∕2) sin𝜙
[

2 sin2
(

𝜔𝑡0
)

− 1
]

(6)
+ 𝑅[1 + 2𝜀 sech (𝜋𝜔∕2) cos𝜙 cos

(

𝜔𝑡0
)

] sin
(

𝜔𝑡0
)

.

Noting that

min
𝑡0

{

1 + 𝜀𝑅 sech (𝜋𝜔∕2) sin𝜙
[

2 sin2
(

𝜔𝑡0
)

− 1
]}

= 1 − 𝜀𝑅 sech (𝜋𝜔∕2) sin𝜙,

max
𝑡0

[

1 + 2𝜀 sech (𝜋𝜔∕2) cos𝜙 cos
(

𝜔𝑡0
)]

= 1 + 2𝜀 sech (𝜋𝜔∕2) cos𝜙,

and letting the CC excitation act on the pendulum such that

1 + 2𝜀 sech (𝜋𝜔∕2) cos𝜙 ⩽ |𝜀 sech (𝜋𝜔∕2) sin𝜙 − 1∕𝑅| , (7)

one has that this relationship represents a sufficient condition for
𝑀±

𝑛
(

𝑡0
)

to be negative (or null) for all 𝑡0. The equals sign in Eq. (7)
yields the approximate boundaries of the regions in the 𝜙−𝜀 parameter
plane in which homoclinic chaos is suppressed. After solving Eq. (7),
one straightforwardly obtains the boundary functions

𝜀 =
(1 + 1∕𝑅) cosh (𝜋𝜔∕2)

sin𝜙 − 2 cos𝜙
, (8)

𝜀 =
(1∕𝑅 − 1) cosh (𝜋𝜔∕2)

sin𝜙 + 2 cos𝜙
. (9)

One finds that 𝜙 = 𝜙sup,𝐼
𝑜𝑝𝑡,𝛺=𝜔 ≡ 2.68 and 𝜙 = 𝜙sup,𝐼𝐼

𝑜𝑝𝑡,𝛺=𝜔 ≡ 3.60 are
he optimal suppressory initial phase differences for the boundaries
8) and (9), respectively, while the suppressory effectiveness of the CC
xcitation presents sensitivity to the specific initial chaotic state (i.e.,
o the value of the ratio 𝑅; Fig. 1 shows an illustrative example).

Consider now the enhancing effect of the CC excitation. Noting that

max
𝑡0

{

1 + 𝜀𝑅 sech (𝜋𝜔∕2) sin𝜙
[

2 sin2
(

𝜔𝑡0
)

− 1
]}

= 1 + 𝜀𝑅 sech (𝜋𝜔∕2) sin𝜙,

min
𝑡0

[

1 + 2𝜀 sech (𝜋𝜔∕2) cos𝜙 cos
(

𝜔𝑡0
)]

= 1 − 2𝜀 sech (𝜋𝜔∕2) cos𝜙

(cf. Eq. (6)), and letting the CC excitation act on the pendulum such that

1 − 2𝜀 sech (𝜋𝜔∕2) cos𝜙 ⩾ |𝜀 sech (𝜋𝜔∕2) sin𝜙 + 1∕𝑅| , (10)

then this relationship represents a sufficient condition for 𝑀±
𝑛
(

𝑡0
)

to
change sign at some 𝑡0. Thus, enhancement of the initial homoclinic
chaos is achieved by moving the pendulum from an effective homo-
clinic tangency condition

(

𝐷𝑒𝑓𝑓 = 𝐴𝑒𝑓𝑓
)

even more than in the initial
situation with no CC excitation in the sense that

𝐷 < 𝐷𝑒𝑓𝑓 ≡ 𝐷
[

𝜀 sech (𝜋𝜔∕2) sin𝜙 + 1
]

and
[ ]
𝐴 > 𝐴𝑒𝑓𝑓 ≡ 𝐴 1 − 2𝜀 sech (𝜋𝜔∕2) cos𝜙
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Fig. 1. Boundary functions given by Eqs. (8) ((b), (d)) and (9) ((a), (c)) encircling
the regularization regions where homoclinic bifurcations are frustrated in the 𝜙 − 𝜀
arameter plane for the main resonance 𝛺 = 𝜔 = 1.6 and two values of the ratio 𝛿∕𝛾

(and hence of the ratio 𝑅, cf. Eqs. (2) and (3)): (a), (b) 𝑅 = 1.1, and (c), (d) 𝑅 = 2.852.
he quantities plotted are dimensionless.

ver certain ranges of 𝜀 and 𝜙. The equals sign in Eq. (10) yields the
pproximate boundaries of the regions in the 𝜙 − 𝜀 parameter plane

in which homoclinic chaos is enhanced. After solving Eq. (10), one
straightforwardly obtains the boundary functions

𝜀 =
(1 + 1∕𝑅) cosh (𝜋𝜔∕2)

2 cos𝜙 − sin𝜙
, (11)

𝜀 =
(1 − 1∕𝑅) cosh (𝜋𝜔∕2)

sin𝜙 + 2 cos𝜙
. (12)

One finds that 𝜙 = 𝜙enh,𝐼
𝑜𝑝𝑡,𝛺=𝜔 ≡ 5.81 and 𝜙 = 𝜙enh,𝐼𝐼

𝑜𝑝𝑡,𝛺=𝜔 ≡ 0.45
are the optimal enhancing initial phase differences for the boundaries
(11) and (12), respectively, while the enhancing effectiveness of the
CC excitation presents sensitivity to the specific initial chaotic state
(i.e., to the value of the ratio 𝑅; see Fig. 2 for an illustrative example).
Because of the perturbative nature of MM, the aforementioned values
of the optimal suppressory and enhancing initial phase differences are
approximate. It is worth noting that such optimal values present the
property:
|

|

|

𝜙sup,𝐼
𝑜𝑝𝑡,𝛺=𝜔 − 𝜙enh,𝐼

𝑜𝑝𝑡,𝛺=𝜔
|

|

|

= |

|

|

𝜙sup,𝐼𝐼
𝑜𝑝𝑡,𝛺=𝜔 − 𝜙enh,𝐼𝐼

𝑜𝑝𝑡,𝛺=𝜔
|

|

|

= 𝜋. (13)

2.1.2. Resonance 𝛺 = 2𝜔
In this case, the normalized MF, Eq. (3), can be recast in the form

𝑀±
𝑛
(

𝑡0
)

= −1 + 𝑅 sin
(

𝜔𝑡0
)

+ (1∕2) 𝜀𝑅 sin
(

𝜔𝑡0 + 𝜙
)

+
(9∕2)𝜀𝑅

1 + 2 cosh (𝜋𝜔)
sin

(

3𝜔𝑡0 + 𝜙
)

. (14)

When 9 [1 + 2 cosh (𝜋𝜔)]−1 ≪ 1, i.e., 𝜔 ≫ arccosh (4) ∕𝜋 ≃ 0.656812, one
can drop the third harmonic term in Eq. (14) and hence

𝑀±
𝑛
(

𝑡0
)

≲ −1 + 𝑅
√

𝜀2∕4 + (1 + 𝜀 cos𝜙∕2)2. (15)

If one now lets the CC excitation act on the pendulum such that

𝑅2 (𝜀2∕4 + 1 + 𝜀2 cos2 𝜙∕4 + 𝜀 cos𝜙
)

− 1 ⩽ 0, (16)
3

a

Fig. 2. Boundary functions given by Eqs. (11) ((b), (d)) and (12) ((a), (c)) encircling
the regions where homoclinic chaos is enhanced in the 𝜙 − 𝜀 parameter plane for the
main resonance 𝛺 = 𝜔 = 1.6 and two values of the ratio 𝛿∕𝛾 (and hence of the ratio
𝑅, cf. Eqs. (2) and (3): (a), (b) 𝑅 = 1.1, and (c), (d) 𝑅 = 2.852. The quantities plotted
re dimensionless.

his relationship represents a sufficient condition for 𝑀±
𝑛
(

𝑡0
)

to be
egative (or null) for all 𝑡0. The equals sign in Eq. (16) yields the
oundary of the region in the 𝜙−𝜀 parameter plane in which homoclinic
haos is suppressed,

= −
2 cos𝜙

1 + cos2 𝜙
±

2
√

cos2 𝜙 − 𝑅2 + 1
𝑅
(

1 + cos2 𝜙
) , (17)

with the constraint 𝑅 <
√

2, and where the sign + (−) before the square
root corresponds to the upper (lower) branch of the boundary. One
obtains that 𝜙 = 𝜙sup

𝑜𝑝𝑡,𝛺=2𝜔 ≡ 𝜋 is the single optimal suppressory phase
difference and that the effectiveness of the CC excitation noticeably
depends on the specific initial chaotic state (value of the ratio 𝑅). Fig. 3
shows an example of the regions in the 𝜙− 𝜀 parameter plane in which
homoclinic bifurcations are frustrated (Eqs. (16) and (17)). Also, one
finds that the area of the regularization regions in the 𝜙− 𝜀 parameter
plane for a fixed value of 𝑅, which provides a simple quantifier of the
suppressory effectiveness of the CC excitation, is comparable for both
resonances 𝛺 = {𝜔, 2𝜔} (compare the corresponding versions of Figs. 1
and 3).

Consider now the enhancing effect of the CC excitation, also for
the case 𝜔 ≫ arccosh (4) ∕𝜋 ≃ 0.656812. Clearly, enhancement of the
initial homoclinic chaos can be achieved by moving the pendulum
from the homoclinic tangency condition (𝐷 = 𝐴) even more than in the
nitial situation with no CC excitation. This means that constraining
1 +𝑅 sin

(

𝜔𝑡0
)

to be in phase with (1∕2) 𝜀𝑅 sin
(

𝜔𝑡0 + 𝜙
)

is a sufficient
ondition for the MF (14) to change sign at some 𝑡0. This condition
rovides the optimal enhancing initial phase difference, 𝜙 = 𝜙enh

𝑜𝑝𝑡,𝛺=2𝜔 ≡
, in the sense that the MF (14) presents its greatest maximum at
enh
𝑜𝑝𝑡,𝛺=2𝜔, i.e., one obtains the maximal gap from the homoclinic tan-
ency condition. Also, the optimal suppressory and enhancing initial
hase differences present the property

𝜙sup
𝑜𝑝𝑡,𝛺=2𝜔 − 𝜙enh

𝑜𝑝𝑡,𝛺=2𝜔
|

|

|

= 𝜋, (18)
s in the case of the main resonance.
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Fig. 3. Boundary functions (cf. Eq. (17)) encircling the regularization regions where
homoclinic bifurcations are frustrated in the 𝜙− 𝜀 parameter plane for 𝜔 = 1.6, 𝛺 = 2𝜔,
and two values of the ratio 𝛿∕𝛾 (and hence of the ratio 𝑅, cf. Eqs. (2) and (3)): (a)
𝑅 = 1.1, (b) 𝑅 = 1.35. The quantities plotted are dimensionless.

2.2. Numerical results

We now contrast the analytical predictions derived from MM with
the Lyapunov exponent (LE) calculations and bifurcation diagrams of
the angular velocity for the parametrically excited damped pendu-
lum (PEDP). Computer simulations of Eq. (1) showed that MM-based
predictions supply meaningful qualitative information on the control
scenario, even when the excitation amplitudes do not reasonably satisfy
the MM requirements [36–38]. In this respect, it is worth recalling that
even in the case of small amplitudes one cannot expect too good a
quantitative agreement between these two types of approaches, because
MM is a perturbative technique generally related to transient chaos,
while LE supplies information solely about steady states. However, we
shall show in this communication that MM-based predictions supply
meaningful information about both suppression and enhancement of
chaos for the present case of parametrically excited damped pendula
under multiplicative control.

To illustrate our findings, we shall use bifurcation diagrams which
were constructed by means of a Poincaré map at the parameters in-
dicated in the captions to the figures. Starting at a certain value of
the control parameter of interest (for instance, 𝜀 = 0), and taking the
transient time as 5 × 102 periods of the CI excitation after each of its
increments (typically, we took 1.5 × 103 values in the control parameter
range), we sampled 103 periods of the CI excitation by picking up
the first

.
𝜃 values of every pulse cycle. For each value of the control

parameter, we initialized on the last state found for the previous,
slightly smaller, parameter value (i.e., “following the attractor”), while
we typically chose the unstable equilibrium (𝜃 = 𝜋, �̇� = 0) as the initial
condition for its starting value.

We computed LEs using a version of the algorithm introduced
in [39], with integration typically up to 2×104 drive cycles for a set of
fixed parameters corresponding to an unavoidable situation (see Fig. 3
top in Ref. [19]) which is clearly outside the perturbative requirements
(𝛿 = 0.1, 𝛾 = 0.87, 𝜔 = 1.6). In the absence of any CC excitation (𝜀 = 0),
the PEDP exhibits a chaotic strange attractor characterized by a maxi-
mal LE 𝜆+ (𝜀 = 0) ≃ 0.075 b/s. The maximal LE was calculated for each
point on a uniform grid in the parameter plane 𝜙 − 𝜀.

2.2.1. Resonance 𝛺 = 𝜔
Fig. 4 shows the maximal LE distribution for the main resonance

between the two excitations implicated. One sees that complete regular-
ization

(

𝜆+ (𝜀 > 0) < 0
)

mainly appears in a region which corresponds
to the theoretically predicted area but over the complete range of the
modulation amplitude 𝜀 (cf. Figs. 1(b) and 1(d)). For sufficiently small
values of 𝜀, one finds enhancement of chaos over certain ranges of
𝜙 which are roughly centred at the predicted values 𝜙 = 𝜙enh,𝐼

𝑜𝑝𝑡,𝛺=𝜔 ≡
5.81 and 𝜙 = 𝜙enh,𝐼𝐼 ≡ 0.45. Far from the perturbative regime, the
4

𝑜𝑝𝑡,𝛺=𝜔
Fig. 4. Maximal LE 𝜆+ versus modulation amplitude 𝜀 and phase difference 𝜙 for
𝛿 = 0.1, 𝛾 = 0.87, 𝜔 = 𝛺 = 1.6, and a grid of 75 × 75 points in the parameter plane
𝜙 − 𝜀. The quantities plotted are dimensionless.

Fig. 5. Bifurcation diagrams of the angular velocity as a function of (a) the phase
difference for 𝜀 = 0.2 and (b) the relative amplitude for 𝜙 = 1. Inset in version (a):
Enlargement of the window in which a period-doubling cascade occurs. The remaining
parameters are the same as in Fig. 4. The quantities plotted are dimensionless.

LE calculations indicate that maximum enhancement of chaos solely
occurs over a narrow region roughly centred at 𝜙 = 3𝜋∕2. Fig. 5
shows illustrative examples of the regularization routes as 𝜀 and 𝜙 are
changed. Typically, the PEDP goes from the equilibrium 𝜃 =

.
𝜃 = 0,

which exists over a certain range starting at 𝜙 = 0, to a strange
chaotic attractor and, after an inverse period-doubling route, which is
preceded by an inverse interior crisis, then to one of the two coexisting
period-2 attractors, which exist over a wide range roughly centred at
𝜙 = 𝜙sup,𝐼

𝑜𝑝𝑡,𝛺=𝜔 ≡ 2.68, as the phase difference increases for a sufficiently
large fixed value of 𝜀. Further increase of 𝜙 leads to chaos via an infinite
sequence of period-doubling bifurcations followed by an interior crisis
(see the inset in Fig. 5(a)), with the chaotification route exhibiting
approximate mirror symmetry with respect to the optimal suppressory
value 𝜙sup,𝐼

𝑜𝑝𝑡,𝛺=𝜔 ≡ 2.68 (see Fig. 5(a)), and then to the destruction of this
strange chaotic attractor via a boundary crisis, with the equilibrium
𝜃 =

.
𝜃 = 0 being the single existing attractor from a certain value of the

initial phase difference onwards (cf. Fig. 5(a)). Also, for a fixed phase
difference 𝜙 such that the PEDP presents a strange chaotic attractor at
𝜀 = 0, this attractor is destroyed by a boundary crisis, again with the
equilibrium 𝜃 =

.
𝜃 = 0 being the single existing attractor from a certain

value of the modulation amplitude onwards (cf. Fig. 5(b)).
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Fig. 6. Maximal LE 𝜆+ versus phase difference 𝜙 and modulation amplitude 𝜀 for
𝛿 = 0.1, 𝛾 = 0.87, 𝜔 = 1.6, 𝛺 = 2𝜔, and a grid of 75 × 75 points in the parameter plane
𝜙 − 𝜀. The quantities plotted are dimensionless.

2.2.2. Resonance 𝛺 = 2𝜔
In this case, complete regularization

(

𝜆+ (𝜀 > 0) < 0
)

mainly appears
in a region which approximately coincides with the theoretically pre-
dicted area (cf. Fig. 3), even for values of the modulation amplitude
𝜀 clearly beyond the perturbative regime, as is shown in Fig. 6. One
sees however that the symmetry of the regularization region is solely
approximate from certain values of 𝜀 onwards and that this area starts
at much smaller 𝜀 values than those predicted from MM (cf. Figs. 3 and
6). Fig. 7 shows illustrative examples of the regularization routes as 𝜀
and 𝜙 are changed. Typically, the PEDP goes from a strange chaotic
attractor at 𝜙 = 0 to one of the two coexisting period-2 attractors at
𝜙 = 𝜙sup

𝑜𝑝𝑡,𝛺=2𝜔 ≡ 𝜋 as the phase difference increases for a (not necessarily
small) fixed value of the modulation amplitude (see Fig. 7(a)). The
overall evolution of the initial chaotic state is characterized by the
angular velocity undergoing an inverse period-doubling route as the
phase difference is increased from 0, which is preceded by an inverse
interior crisis. The regularization route presents approximate mirror
symmetry with respect to the optimal suppressory value 𝜙sup

𝑜𝑝𝑡,𝛺=2𝜔 ≡ 𝜋.
Also, even for a fixed phase difference relatively far from 𝜙sup

𝑜𝑝𝑡,𝛺=2𝜔 ≡ 𝜋,
such as that considered in Fig. 7(b) (𝜙 = 1.5), one finds a wide range of
values of the modulation amplitude in which the pendulum’s dynamics
is regularized. Note that the pendulum is chaotic for 𝜀 = 0 while it is
already regularized for 𝜀 ≈ 5 × 10−4 (see Fig. 7(b)).

2.2.3. Other resonances
As suggested by comparison of the above findings for the resonances

𝛺 = 𝜔 and 𝛺 = 2𝜔, one could guess that multiplicative control of the
PEDP would allow an even wider range of effective resonances. We
numerically found that this is indeed the case. Fig. 8 shows the maximal
LE distribution for the exemplary case of the resonance 𝛺 = 𝜔∕2.
In this case, complete regularization

(

𝜆+ (𝜀 > 0) < 0
)

mainly appears
over certain ranges of 𝜙 which are roughly centred at the values 𝜙 =
𝜙sup,𝐼
𝑜𝑝𝑡,𝛺=𝜔∕2 ≡ 𝜋∕2 and 𝜙 = 𝜙sup,𝐼𝐼

𝑜𝑝𝑡,𝛺=𝜔∕2 ≡ 3𝜋∕2, respectively, for a wide
range of 𝜀 values, while enhancement of chaos occurs over certain
ranges of 𝜙 which are roughly centred at the values 𝜙 = 𝜙𝑒𝑛ℎ,𝐼

𝑜𝑝𝑡,𝛺=𝜔∕2 ≡ 0
and 𝜙 = 𝜙𝑒𝑛ℎ,𝐼𝐼

𝑜𝑝𝑡,𝛺=𝜔∕2 ≡ 𝜋 for sufficiently large values of 𝜀.
Remarkably, such optimal values present the property

|

|

|

|

𝜙sup,𝐼
𝑜𝑝𝑡,𝛺= 𝜔

2
− 𝜙enh,𝐼

𝑜𝑝𝑡,𝛺= 𝜔
2

|

|

|

|

=
|

|

|

|

𝜙sup,𝐼𝐼
𝑜𝑝𝑡,𝛺= 𝜔

2
− 𝜙enh,𝐼𝐼

𝑜𝑝𝑡,𝛺= 𝜔
2

|

|

|

|

= 𝜋
2
. (19)

Fig. 9 shows that the regularization routes as the parameters 𝜀 and 𝜙
are independently changed are similar to those found for the resonances
5

Fig. 7. Bifurcation diagrams of the angular velocity as a function of (a) the initial phase
difference for 𝜀 = 0.2 and (b) the modulation amplitude for 𝜙 = 1.5. Insets: Enlargement
of the windows in which inverse and direct period-doubling cascades occur in versions
(a) and (b), respectively. The remaining parameters are the same as in Fig. 6. The
quantities plotted are dimensionless.

Fig. 8. Maximal LE 𝜆+ versus phase difference 𝜙 and modulation amplitude 𝜀 for
𝛿 = 0.1, 𝛾 = 0.87, 𝜔 = 1.6, 𝛺 = 𝜔∕2, and a grid of 75 × 75 points in the parameter plane
𝜙 − 𝜀. The quantities plotted are dimensionless.

Fig. 9. Bifurcation diagrams of the angular velocity as a function of (a) the initial
phase difference for 𝜀 = 0.2 and (b) the modulation amplitude for 𝜙 = 1. The remaining
parameters are the same as in Fig. 8. The quantities plotted are dimensionless.

𝛺 = {𝜔, 2𝜔}. But the regularization (enhancement) ranges are narrower
(wider) than those corresponding to resonances 𝛺 = {𝜔, 2𝜔} (compare
the corresponding versions of Figs. 5 and 9). Fig. 9(b) shows that
the pendulum is chaotic for 𝜀 = 0 while it is already regularized for
𝜀 ≈ 5 × 10−4through an inverse period doubling cascade.
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3. Controlling chaos in starlike networks

Previous studies have shown that chaos in coupled arrays of damped,
periodically driven, nonlinear oscillators can be suppressed by random
shortcuts [40], parametric disorder [41], global disordered driving
forces [42], impurities [43], and localized resonant forces [18]. Also,
in the context of networks of nonchaotic (overdamped) systems, such
as periodically driven bistable oscillators, diverse amplification phe-
nomena have been studied in the presence [44] and in the absence
of noise [45]. Recently, the problem of how network topology affects
a system’s controllability has been considered using a canonical linear
time-invariant dynamics [46]. We consider in the following the applica-
tion of the above control scenario to a topology consisting of a starlike
network (one hub and 𝑁 − 1 peripheral leaves) where each node is
occupied by a chaotic pendulum and where the CC excitation is solely
applied to a number, 𝑀 , of pendula:

..
𝜃𝑖 + sin 𝜃𝑖 = −𝛾

[

1 + 𝜎𝐻𝐹𝑐 (𝑡)
]

cos (𝜔𝑡) sin 𝜃𝑖

− 𝛿
.
𝜃𝑖 + 𝜆 sin

(

𝜃𝐻 − 𝜃𝑖
)

,
..
𝜃𝐻 + sin 𝜃𝐻 = −𝛿

.
𝜃𝐻 − 𝛾

[

1 + 𝜎𝑖𝐹𝑐 (𝑡)
]

cos (𝜔𝑡) sin 𝜃𝐻

+ 𝜆
𝑁−1
∑

𝑖=1
sin

(

𝜃𝑖 − 𝜃𝐻
)

, (20)

𝑖 = 1,… , 𝑁 − 1. These equations describe the dynamics of a highly
connected node (or hub), 𝜃𝐻 , and 𝑁 − 1 linked pendula (or leaves),
𝜃𝑖, with 𝐹𝑐 (𝑡) ≡ 𝜀 cos (𝛺𝑡 + 𝜑) being the (local) CC excitation, while 𝜎𝐻
(𝜎𝑖) is equal to 1 when the CC excitation acts on the hub (leaf 𝑖) and 0
otherwise, while 𝜆 is the coupling constant. Thus, with a fixed size of
the network, 𝑁 , fixed values of the parameters 𝛿, 𝛾, and 𝜔 correspond-
ing to a given initial chaotic state of the uncoupled pendula, and fixed
suitable (suppressory) values of 𝜀, 𝜙, and 𝛺 (cf. Sec. II), we study the
network regularization in the regime of both weak and strong coupling
(0 < 𝜆 ⩽ 2) as a function of two independent parameters, 𝑀 and 𝜆.
The dynamic equation of these networks [Eq. (20)] was numerically
integrated using a fourth-order Runge–Kutta algorithm, while the initial
conditions were chosen randomly and independently for each node of
the networks. To visualize the global spatiotemporal dynamics of the
networks, we calculate the average velocity

𝜎 (𝑗𝑇 ) ≡ 1
𝑁

𝑁
∑

𝑛=1

.
𝜃𝑛 (𝑗𝑇 ) , (21)

where 𝑗 is an integer multiple of the excitation period 𝑇 ≡ 2𝜋∕𝜔,
while the degree of synchronization is characterized by the correlation
function [14,47]

𝐶 ≡ 2
𝑁(𝑁 − 1)

∑

(𝑖𝑙)

⟨

cos
(

𝜃𝑖 − 𝜃𝑙
)⟩

𝑡 , (22)

with the summation being over all pairs of pendula, and where ⟨⋅⟩𝑡 indi-
cates time averaging over a predefined (sufficiently long) observation
window. Note that 𝐶 is 1 for the perfectly synchronized state while
desynchronization increases as 𝐶 decreases from 1.

Let us consider the effect of the multiplicative control on a single
peripheral pendulum 𝜃𝑗 (𝑀 = 1) while the remaining pendula, includ-
ing the hub, are free from control. Note that, a priori, this could be
the least favourable case in terms of completely regularizing the whole
network. Numerical simulations indicate, however, that regularization
to periodic states is possible over certain coupling intervals even for
relatively small 𝜀 values, although the scenario is strongly dependent
on the initial conditions.

For the sake of clarity, consider first the case where all pendula are
uncoupled (𝜆 = 0) and present a perfectly synchronized chaotic state
(scenario I). In this situation, one can apply the control excitation
to an isolated (peripheral when coupled) pendulum regularizing its
behaviour, then increase the coupling parameter to a small positive
value 𝜆 ≳ 0 and determine the new stationary state of such a peripheral
6

Fig. 10. Bifurcation diagrams of (a) the average angular velocity, (b) the correlation
function, and (c) the maximal LE 𝜆+ as functions of the coupling constant 𝜆, while a
single peripherical pendulum is subjected to multiplicative control (node 1). (d) Angular
velocities versus time for 𝜆 = 0.22 and (e) 𝜆 = 0.8. 𝜀 = 0.2, 𝜙 = 1, 𝑁 = 10, while the
hub corresponds to node 10. The remaining parameters are the same as in Fig. 4. The
quantities plotted are dimensionless and all pendula are synchronized at 𝑡 = 0.

pendulum (and of all of the remaining pendula of the starlike network).
After using this new state as initial condition, one further increases
the coupling parameter and follows the attractors of all the pendula as
𝜆 is increased. In general, we found that complete synchronization of
the pendula is not possible (see Figs. 10(b), 10(d), and 10(e)), while,
even for relatively small values of the coupling parameter, the single
peripheral pendulum can regularize the complete network, as shown in
Figs. 10(a), 10(c), and 10(d). This latter figure corresponds to a set of
parameters for which an isolated pendulum is chaotic in the absence of
any control excitation, while its behaviour is periodic for 𝜀 = 0.2, 𝜙 = 1
(cf. Figs. 4 and 5).

Let us consider now a different case where all pendula are un-
coupled (𝜆 = 0) and present an asynchronous chaotic state due to the
initial conditions of all pendula being independently and randomly
chosen (scenario II). After applying the same coupling procedure as in
scenario I, we typically found that the network remains asynchronous
and chaotic even for relatively large values of the coupling constant,
as is shown in Fig. 11(b), 11(c), and 11(d). Remarkably, there exists a
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Fig. 11. Bifurcation diagrams of (a) the average angular velocity, (b) the correlation
function, and (c) the maximal LE 𝜆+ as functions of the coupling constant 𝜆 while a
single peripherical pendulum is subjected to multiplicative control (node 1). (d), (e)
Angular velocities versus time for 𝜀 = 0.5, 𝜙 = 0.68, 𝑁 = 10, the hub being node 10,
and two values of the coupling constant: (d) 𝜆 = 0.5 and (e) 𝜆 = 1.3. The remaining
parameters are the same as in Fig. 4. The quantities plotted are dimensionless and all
pendula are desynchronized at 𝑡 = 0.

critical coupling value, close to 𝜆 = 1, for which the network reaches
a perfectly synchronized chaotic state, as in the instance shown in
Fig. 11(e), while for an even higher value of 𝜆 all pendula regularize,
as is shown in Fig. 11(a) and 11(c). In general, our numerical results
confirmed that the MM-based analytical predictions for an isolated
pendulum remain useful for the starlike network over significant ranges
of the coupling constant. We also found that desynchronization states
appear due to cluster synchronization of different sets of pendula over
almost the entire range of the coupling constant (cf. Figs. 10 and 11)
when the size of the network is large enough.

Next, it is interesting to study the cumulative effect of applying the
multiplicative control on an increasing number of peripheral pendula
(𝑀 > 1), while the hub remains free from control, in the weak coupling
regime where synchronization phenomena do not yet dominate the
networks’ dynamics.

We assume an initial situation where regularization is not possible
or any value of the modulation amplitude 𝜀 when the control is
pplied to a single peripheral pendulum 𝑀 = 1 and all the pendula are
7

( ) h
Fig. 12. (a),(b), (c): Bifurcation diagrams of the average angular velocity 𝜎 as a
function of the modulation amplitude 𝜀 corresponding to three cases of multiplicative
control: (a) 𝑀 = 1, (b) 𝑀 = 6 and (c) 𝑀 = 9. (d) Correlation function 𝐶 as a
function of the modulation amplitude 𝜀 for 𝑀 = 1 (solid blue line), 𝑀 = 6 (dashed
red line) and 𝑀 = 9 (dotted black line). Fixed parameters: 𝑁 = 10, 𝜆 = 0.1, 𝜙 = 1,
= 0.1, 𝛾 = 0.87, 𝜔 = 𝛺 = 1.6. The quantities plotted are dimensionless and all pendula
re initially synchronized.

ynchronized. Following a similar procedure to that described above for
cenario I, by increasing 𝑀 from unity, one typically obtains regulariza-
ion of the whole network for sufficiently large 𝜀 values on the one hand,
ogether with an improvement of the synchronization of the regularized
ynamics on the other, as in the instance shown in Fig. 12 for 𝜆 = 0.1
weak coupling regime). By again increasing 𝑀 from unity but with
ll pendula initially chaotic and asynchronous, we found a scenario
imilar to scenario II described above for a single peripheral pendulum.
pecifically, synchronization and regularization occur from a certain
alue of the coupling constant, 𝜆 = 𝜆(𝑀), which decreases with the
umber 𝑀 of nodes subjected to multiplicative control, as shown in
ig. 13, in which the parameters correspond to a situation where an
solated pendulum subjected to multiplicative control presents regular
ehaviour.

Finally, we studied the role played by the degree of connectivity
n the chaos-control scenario by applying the multiplicative control
o the central pendulum. In the case of a single control, one finds
hat controlling the most highly connected pendulum is by far the
ost effective control procedure, as shown in Fig. 14. Remarkably,

olely applying the multiplicative control to the hub (𝑀 = 1) is a much
etter choice than controlling even several peripheral pendula but not
he hub (compare the respective versions of Fig. 13(a)–(c) with those
f Fig. 14). The reason for this relatively good effectiveness stems
rom two facts. First, solely controlling the hub does not significantly
reak the synchronization of the whole network when 𝑁 is sufficiently
arge (compare Figs. 10(b) and 14(a)). Second, its maximum degree
f connectivity allows the hub to directly influence all the remaining
peripheral) pendula –in the sense of taming their chaotic dynamics–
ue to its behaving as a direct ordering source for all of them for
ufficiently large 𝜀 values (compare Figs. 11(a) and 14(b)).

Once the hub has been subjected to multiplicative control, one
ould expect a priori that additionally controlling other (peripheral)
endula should improve the network’s regularization. As expected,
hen all pendula are subjected to the same multiplicative control,

he network’s synchronization becomes perfect and the regularization
oute as the modulation amplitude is varied coincides with that of
n isolated pendulum subjected to the same remaining parameters,
nvolving typically several consecutive crises followed by an inverse
eriod doubling to finally reach the equilibrium

(

𝜃 = 0,
.
𝜃 = 0

)

when
he common amplitude modulation is sufficiently large.

Similar results have been obtained for other resonances, as shown in
igs 15 and 16 for the resonances 𝛺 = 2𝜔 and 𝛺 = 𝜔∕2, respectively. In
articular, one sees that the higher effectiveness of controlling only the
ub instead of a single peripheral pendulum, in the sense of obtaining
egularization of the starlike network for smaller values of the coupling,
olds beyond the main resonance case (𝛺 = 𝜔).
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Fig. 13. Bifurcation diagrams of the average velocity 𝜎 and correlation function 𝐶 as
functions of the coupling parameter 𝜆 for 𝜀 = 0.5, 𝜙 = 0.68, 𝑁 = 10, the hub being
the node 10. (a) 𝑀 = 1. (b) 𝑀 = 2. (c) 𝑀 = 3. (d) 𝑀 = 4. (e) 𝑀 = 5. (f) 𝑀 = 6. (g)
𝑀 = 7. (h) 𝑀 = 8. (i) 𝑀 = 9. The remaining parameters are the same as in Fig. 4. The
quantities plotted are dimensionless and all pendula are initially desynchronized.

4. Concluding remarks

We have shown theoretically and numerically that the application
of suitable amplitude modulations is a reliable procedure to control
(suppress and enhance) the chaotic behaviour of both isolated para-
metrically excited damped pendula and starlike networks of them
subjected to sinusoidal coupling. Effective regularization of the entire
network is typically obtained under localized control on an increasing
number of pendula when the coupling is large enough. Remarkably, this
reliable regularization has been demonstrated for several resonances
between the two excitations implicated, being a genuine feature of
the multiplicative control in contrast with additive control in which
the main resonance is by far the most effective. We have shown how
the effectiveness of this multiplicative control, when the amplitude
modulation is applied to a single node, strongly depends upon the
degree of the target node: applying the multiplicative control to the
highest-degree node is by far the best suppressory strategy, while
8

Fig. 14. Bifurcation diagrams of the average velocity 𝜎 and correlation function 𝐶 as
functions of the coupling parameter 𝜆 for 𝑁 = 10. (a) All pendula are synchronized
at 𝑡 = 0, 𝜀 = 0.2, 𝜙 = 1. (b) All pendula are asynchronous at 𝑡 = 0, 𝜀 = 0.5,
𝜙 = 0.68. The hub (node 10) is the single pendulum subjected to multiplicative control,
while the remaining parameters are the same as in Fig. 4. The quantities plotted are
dimensionless.

Fig. 15. Bifurcation diagrams of the average velocity 𝜎 and correlation function 𝐶 as
functions of the coupling parameter 𝜆, while all pendula are asynchronous at 𝑡 = 0.
Multiplicative control applied to (a) a single peripherical node and (b) the hub for
𝛺 = 2𝜔 = 1.6, 𝜀 = 0.2, 𝜙 = 1.5, and the same remaining parameters as in Fig. 6. The
quantities plotted are dimensionless.

Fig. 16. Bifurcation diagrams of the average velocity 𝜎 and correlation function 𝐶
as functions of the coupling parameter 𝜆, while all pendula are asynchronous at
𝑡 = 0. Multiplicative control at (a) a single peripherical node and (b) the hub for
𝛺 = 𝜔∕2 = 0.8, 𝜖 = 0.2, 𝜙 = 1.0, and the same remaining parameters as in Fig. 9. The
quantities plotted are dimensionless.
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applying it to low-degree nodes is the poorest choice. In the case of
applying multiplicative control to several low-degree nodes, we have
found a systematic improvement of the network’s regularization and
synchronization.

Finally, we hope that our results may be useful to optimally control
chaos in scale-free networks of damped-driven oscillators since a highly
connected node in such a network can be thought of as a hub of a
locally starlike part of the network, with a degree of connectivity that
belongs to the complete network’s degree-of-connectivity distribution.
Other problems that deserve to be explored are, on the one hand, the
robustness of the present multiplicative control against changes of the
amplitude-modulation waveform and, on the other, the presence of
time-varying coupling in temporal networks [48].
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