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Abstract—This work explores TabTransformers for operating
system fingerprinting, leveraging their ability to learn relation-
ships within data to make classification based on network traffic
features. We utilise the Nmap database as the training dataset
and evaluate a TabTransformer model on a hold-out test set.
The optimised model achieves an outstanding AUC-ROC score
of 0.9919, demonstrating its effectiveness in operating system
classification. Expanding the number of different classes is one
of the intriguing avenues for future work.

Index Terms—Operating System; Fingerprinting; Deep Learn-
ing; TabTransformer; Nmap

Contribution type: Research work in progress

I. INTRODUCTION

In the field of computer security it is very important to
recognise, as accurately as possible, specific characteristics
of a machine through the network. Knowing details such as
the Operating System (OS) family and version of a machine is
crucial for different tasks. Some examples of the defensive ap-
plications are network inventory or detection of unauthorised
and dangerous devices. There are also offensive applications,
such as the determination of the vulnerabilities of a target
host, exploit tailoring, or information gathering for subsequent
social engineering attacks.

OS fingerprinting is the procedure of identifying the family
and version of the OS of a machine connected to the network,
analysing its traffic. There are different techniques to achieve
this task, but the fundamental one is to analyse the small
differences existing in the network packets as a result of
the different implementations that each OS makes of the
communication protocol stack.

This task can be performed following two different ap-
proaches: the active or the passive scan. The active scan is
based on the idea of interacting with the target, sending some
predefined probes and analysing the responses to determine its
nature. The advantages of this approach are the speed of the
scan and the reliability of the process, while some negative
aspects are the need of interacting with the victim and the
possibility of being detected by a defensive system or the
target itself. Some of the most known and spread tools in this
context are Nmap [1], RING [2] and Xprobe2 [3]. Conversely,
the passive scan leverages the task without generating any

trace, just listening and analysing the normal traffic produced
by the target [4]. This kind of scan is much noiseless than
the active one as it does not produce any additional packets
in the network, reducing the possibilities of being detected.
However, it has the disadvantage of needing more time to
get successful results, as well as having poorer effectiveness.
Passive OS detection can be performed with p0f [5], Ettercap
[6] or NetworkMiner [7] tools.

Traditional rule-based OS fingerprinting approaches strug-
gle to adapt to the evolving landscape of OSs. Newly re-
leased systems, frequent updates, and customised configu-
rations can all render signature-based methods ineffective.
This necessitates a more robust solution capable of inferring
the OS even under these challenging circumstances. Artificial
Intelligence (AI) [8], specifically Machine Learning (ML) [9]
and Deep Learning (DL) [10], have demonstrably addressed
similar challenges in various domains. In the context of OS
fingerprinting, research has explored the potential of AI to
overcome the limitations of traditional methods [4].

In recent years, there has been a revolution in the field of
AI and ML. The Transformer architecture [11] has revolu-
tionised Natural Language Processing (NLP) by introducing
multi-head self-attention mechanism for efficient sequence
modelling. This enables Transformers to analyse long se-
quences and generalise across tasks. Large Language Models
(LLMs) like GPT4 or Gemini leverage pre-trained Trans-
formers, achieving State-of-the-Art (SoA) performance in
text generation, translation, and more. The Transformer’s
impact extends beyond NLP, with the Visual Transformer
(ViT) [12] as an effective example in image processing. In
this context, TabTransformer [13] is another version of the
Transformer architecture, adapted in this case to tabular data.
This adaptability positions the Transformer as a potentially
transformative force in network traffic analysis as well.

In this work, we initially explore the application of Tab-
Transformers to the network domain, specifically to the OS
fingerprinting task. We leverage the power of the official
TabTransformer implementation to analyse the Nmap OS
fingerprinting database, a widely recognised tool for network
security and monitoring tasks. By applying this model to the
OS fingerprinting task in a high-level approach, we aim to
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assess its effectiveness in accurately identifying the OS family
of a device based solely on its network traffic characteris-
tics. This exploration contributes to the ongoing research on
leveraging advancements in ML and DL for network security
tasks and, to the best of the authors’ knowledge, it represents
a pioneering effort in utilising a Transformer-based approach
for OS fingerprinting.

The rest of this paper is structured as follows: Sec-
tion II cites a group of previous works where ML and DL,
specifically Transformers, are applied to OS fingerprinting
and computer networks in general; Section III describes the
Transformer and the specific version for tabular data, the
TabTransformer; Section IV explains the DL pipeline followed
to solve the OS fingerprinting task using TabTransformers;
and finally, results and discussion are presented in Section V.

II. RELATED WORK

The field of OS fingerprinting has traditionally relied on
rule-based approaches, but these methods struggle to adapt
to the ever-evolving landscape of operating systems. Recent
research has explored the potential of ML and DL to address
these limitations [4].

Several studies have compared the performance of different
ML methods for OS fingerprinting. Song et al. [14] evaluate
K-Nearest Neighbors (K-NN), Decision Trees, and Artificial
Neural Networks (ANNs), demonstrating that ANNs achieve
the highest accuracy (94%) compared to a conventional rule-
based method. Similarly, Laštovička et al. [15] compare
Naive Bayes, Decision Tree, K-NN, and Support Vector
Machine (SVM) on real-world data, analyzing processing
time, memory requirements, and classification performance
metrics (accuracy, precision, recall).

Traditional fingerprinting techniques are well-suited for
static networks and managed environments, however, real-
world networks present additional challenges. In [16] authors
evaluate three fingerprinting methods applied to university
wireless network traffic, demonstrating its viability in the
context of evolving network traffic protocols (e.g., IPv6 or
HTTP/2.0) This task can be applied to specific environments
as well, as in [17], where authors classify diverse IoT devices
using a logistic regression model enhanced by supervised
learning (LogitBoost). Furthermore, fingerprinting can also be
applied at the hardware level to identify physical devices [18]
[19].

In this context, our team also has previous experience
applying ML to the OS fingerprinting task. In [20] we
explore the application of classical ML algorithms for OS
fingerprinting using the Nmap signature database, achieving
high accuracy (over 96%) with Random Forest. In a sub-
sequent work [21], we apply the previous set of classical
ML algorithms to other datasets, and implemented a tool that
allows their utilisation in active and passive way.

Although there is no previous work that applies the Trans-
former to OS fingerprinting field, this architecture is being
actively adapted and applied to the computer networks field
in recent works. There are studies that leverage textual
information for training in this field, with NetBERT [22]
outperforming BERT on network tasks. Other works employ
BERT for numerical representations of DNS data [23], or
combine this model with graph neural networks for feature

extraction from packet sequences [24]. Direct training on
network traffic data is another approach. In [25], a residual 1-
D Image Transformer achieves SoA performance in malware
classification and generalises to DDoS attack detection. On
the other hand, Flow Transformer [26] outperforms existing
methods for anonymity network classification by considering
temporal-spatial correlations in traffic data.

While Transformers are being applied in various network
security tasks, large or foundational network traffic models, as
in the case of NLP with LLMs, are scarce. In this sense, the
best effort in this line is netFound [27], a foundational model
for network security that leverages unlabelled network traffic
for pre-training and achieves superior performance in various
downstream tasks compared to existing methods. Addressing
this gap, [28] analyses the potential benefits of network traffic
foundational models from a theoretical perspective and [29]
proposes a Probe-of-Concept (PoC) of this kind of models.
However, challenges in generalizability remain, as exemplified
by ET-BERT [30], which achieves SoA performance on
encrypted traffic classification but lacks generalizability to
other tasks.

III. BACKGROUND

A. Transformer

The Transformer architecture, introduced by Vaswani et
al. in their seminal work “Attention is All You Need” [11],
has revolutionised various fields within AI. This encoder-
decoder architecture processes input sequences and generates
corresponding output sequences. Unlike traditional architec-
tures reliant on recurrent or convolutional layers, Transformers
leverage fully connected layers and a core mechanism known
as multi-head self-attention. This self-attention mechanism
empowers the model to analyse the importance of different
parts of the input sequence based on their contextual rele-
vance, effectively capturing various relationship aspects si-
multaneously through “multi-head” processing. Key strengths
of the Transformer architecture include:

• Efficient parallelisation: The parallel nature of the archi-
tecture allows for faster training compared to sequential
models.

• Long sequence processing: Self-attention mechanisms
enable the model to efficiently handle long sequences,
overcoming limitations observed in traditional Recurrent
Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks.

• Scalability: Transformers demonstrate impressive scala-
bility, allowing them to handle large datasets and com-
plex models, a crucial factor in training SoA models such
as Generative Pre-trained Transformers (GPTs).

• Generalizability: Transformers exhibit remarkable gen-
eralizability across diverse tasks. Pre-trained models can
be fine-tuned for specific applications without extensive
modifications, promoting efficient adaptation.

The training process for Transformers typically involves
two distinct phases: pre-training and fine-tuning. During pre-
training, the model undergoes self-supervised learning on a
large corpus of unlabelled data (e.g., textual information in
NLP) to learn inherent relationships and semantic nuances
within the data domain. The resulting models, often referred
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Figure 1. The architecture of TabTransformer. Source: [13]

to as foundational or base models, serve as a powerful starting
point for addressing various downstream tasks. In the subse-
quent fine-tuning phase, these base models are specialised for
specific tasks by exposing them to a smaller, labelled dataset
relevant to the target application. Research has consistently
shown that pre-trained Transformer models outperform those
trained through traditional AI pipelines [31].

The success of the Transformer architecture has led to
the development of numerous variants tailored for specific
modalities and tasks. Prominent examples include the GPT
series (e.g., GPT-3, GPT-4), which represent SoA Large Lan-
guage Models (LLMs) based on a decoder-only Transformer
architecture. Another notable variant is BERT [32], which has
achieved new benchmarks in various language understanding
tasks. Notably, the Transformer has been successfully adapted
for diverse modalities beyond text, including images, video,
and audio. The Visual Transformer (ViT) [12] exemplifies
this versatility, offering a competitive alternative to conven-
tional Convolutional Neural Networks (CNNs) for image
classification. This remarkable adaptability has solidified the
Transformer architecture as a standard tool in AI research,
impacting not only language modelling but also diverse fields
like image processing. Considering its success in various
domains, the application of the Transformer to network traffic
data presents a promising avenue for exploration, potentially
leading to significant advancements in network security tasks.

B. TabTransformer
TabTransformer [13] builds upon the foundation of the

powerful Transformer model. This architecture allows the
processing of tabular data by introducing specific mechanisms
to handle the inherent characteristics of tables, such as rela-
tionships between rows and columns. This adaptation makes
TabTransformer a perfect fit for network traffic analysis,
where features like source IP address, destination port, and
protocol reside in a tabular format [4].

The process begins by converting each category within the
data (e.g., TCP options) into a numerical representation called
an embedding. This embedding essentially acts as a unique
identifier for that category within the network traffic data.
These embeddings are then fed through multiple Transformer
layers. As the data progresses through these layers, TabTrans-
former performs its magic. It starts to learn the “context”
of each feature, essentially uncovering how it interacts and
relates to other features within the network traffic data. For
instance, TabTransformer might learn that a specific order
in TCP options might distinguish different network stack
implementations.

Finally, these contextual embeddings, rich with the learned
relationships between features, are combined with any con-
tinuous features present in the data (e.g., TTL value). This
combined information is then fed into a final layer, often a
Multi-Layer Perceptron (MLP), which utilises this compre-
hensive representation to make predictions. In the context
of network security, this prediction might involve identifying
OSs, malicious traffic patterns or flagging suspicious network
activity.

A diagram of the architecture of TabTransformer can be
found in Figure 1. In essence, TabTransformer leverages the
strengths of Transformers, particularly their ability to learn
complex relationships within sequential data. By applying
this capability to tabular network traffic data, TabTransformer
can automatically discover hidden patterns and interactions
between various features. This newfound understanding of
network traffic dynamics has the potential to significantly
improve performance in network security tasks, leading to
more robust and adaptable security solutions.

In this work we use the official implementation of Tab-
Transformer available in [33].
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IV. METHODOLOGY

A. Dataset
Our research utilised the signature database from the latest

version (7.94) of Nmap [1] as the foundation for our dataset
construction. This text file encompasses the entire collection
of community-gathered fingerprints, categorised by Nmap
since 1998. Each fingerprint represents the combined results
of predefined tests that Nmap executes against response data
received from a known operating system. To streamline our
approach, we filtered the fingerprints, selecting only those
belonging to a predefined group of the most prevalent contem-
porary OS families: Android, BSD, Linux, Solaris, Windows,
iOS, and macOS. We have grouped operating systems into
three groups (Windows, Linux, and Other) to simplify the
initial tests performed in this work.

These features encompassed various information types,
including numerical and boolean values, alongside specific
categories. For all data types, we implemented a coding
scheme that converted the data into numerical representations.
Additionally, conditions involving multiple values, expressed
using combinations of boolean OR value ranges, “greater
than” or “less than” operators, were accommodated. We rep-
resented the OR operator as a linear combination between all
possible feature values within a single fingerprint, generating
a new row for each viable alternative. Conversely, the range
operator was addressed by assigning a random value within
the specified range for each row within the same fingerprint.
Due to their minimal presence in the database, the “greater
than” and “less than” operators were disregarded.

To enhance the effectiveness of subsequent stages, the
dataset underwent further preprocessing steps, including the
removal of duplicate entries. This process resulted in a final
dataset comprised of 4.397 instances and 260 features. These
features are classified in numerical (53), categorical (206) and
the target label of the OS (1).

B. Deep Learning Pipeline
OS fingerprinting task is layed out as a multiclass clas-

sification problem. Our methodology begins with data pre-
processing. Here, we study how the data is encoded in the
Nmap database, the types of features present (categorical and
numerical), and any applicable feature engineering techniques.
Normalisation was applied to numerical features, and one-hot
encoding technique was used for labels. As categorical fea-
tures will be encoded as embeddings in the Transformer, they
are not one-hot encoded but ordinal encoded, transforming
their values from string to integer type. This preprocessing
step is crucial for preparing the data for effective utilisation
within the transformer model.

The final step of data pre-processing involves splitting
the prepared data into training and testing sets, in a 80-20
portion. A stratified splitting strategy is employed to guarantee
that the class distribution is mirrored across both sets. This
ensures the model encounters a representative sample of all
operating systems during training and that the evaluation on
the testing set reflects real-world class imbalances. To ensure
the reproducibility of the results, the random state seed is set
during the splitting process.

Once the data is pre-processed, a hyperparameter opti-
misation framework comes into play to identify the ideal

configuration for the TabTransformer model. The optimisation
process explores various hyperparameters:

• The learning rate controls the magnitude of updates the
model makes to its internal parameters during training.
A well-tuned learning rate steers the model towards the
optimal solution without getting stuck in local minima
or overshooting the minimum. In this case, we try with
the values 0.001, 0.01 and 0.1.

• The embedding dimension refers to the dimensionality
of the vector representation learned for each feature
by the transformer architecture. This essentially dictates
the level of detail captured for each feature within
the model. The optimisation process searches through
a predefined list of discrete values for the embedding
dimension, allowing the exploration of different levels
of feature granularity to determine what works best for
the specific fingerprinting data. The values used for this
hyperparameter are 8, 16 and 32.

• The depth of the transformer architecture, specified by
the number of encoder-decoder layers, determines the
model’s capacity to learn intricate relationships between
the features. A deeper architecture allows for more
complex feature interactions to be captured, but also
increases the risk of overfitting. The optimisation process
considers a predefined list of discrete depths, enabling the
selection of an architecture that strikes a balance between
capturing complex relationships and generalizability. The
number of layers used during this process are 1, 2 and
3.

• The number of attention heads in the self-attention layers
of the transformer architecture signifies the level of par-
allelism employed in identifying relationships between
features. More attention heads allow for capturing a
wider range of feature interactions simultaneously, but
can also increase computational complexity. The optimi-
sation process explores a predefined list of discrete values
for the number of attention heads to determine the setting
that yields the most effective balance between capturing
feature relationships and computational efficiency. The
values used in this case are 2, 3 and 4.

• Dropout rates are hyperparameters that introduce a ran-
dom element during training. During each training step,
a certain percentage of neurons are randomly dropped
out, preventing the model from overfitting to the training
data. The optimisation process considers a predefined
list of dropout rates for both the attention layers and
feed-forward layers, searching for the dropout rates that
promote effective learning while mitigating overfitting.
The values of both dropouts are 0.01, 0.1 and 0.5.

The optimiser used for updating the model’s parameters
in response to the computed gradients is AdamW, which is
a variant of the Adam optimiser [34]. Adam is a popular
choice for training deep learning models because it combines
the advantages of two other extensions of stochastic gradient
descent: AdaGrad and RMSProp. The “W” in AdamW refers
to weight decay, a form of L2 regularisation that can help
prevent overfitting.

The loss function measures the difference between the
model’s predictions and the actual values. The loss function
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Figure 2. Evolution of the loss during training

used here is Binary Cross Entropy with Logits Loss. It
combines a Sigmoid layer and the BCELoss in one single
class. This version is more numerically stable than using a
plain Sigmoid followed by a BCELoss as, by combining the
operations into one layer, we take advantage of the log-sum-
exp trick for numerical stability.

A Tree-structured Parzen Estimator (TPE) sampling method
guides the exploration of these hyperparameters. TPE is
an efficient algorithm that iteratively allocates resources to-
wards trying promising hyperparameter configurations while
avoiding redundant evaluations. A maximum of 50 trials
are allocated for this exploration, and multiple threads are
leveraged to concurrently evaluate different hyperparameter
settings, accelerating the optimization process.

Within each trial, the AUC-ROC (Area Under the Receiver
Operating Characteristic Curve) metric is used to assess the
model’s performance on a validation set (10%) derived from
the training data. AUC-ROC is a single metric for assessing
binary classification models. It considers the trade-off be-
tween correctly identifying positive cases (true positive rate)
and mistakenly classifying negative cases as positive (false
positive rate) across all possible classification thresholds. For
multiclass the metric is calculated by iteratively treating each
class as the positive class and all other classes as the negative,
which is referred to as the one-vs-rest approach, calculating
the average over all classes.

After the search is finished, we take the best combinations
of hyperparameters and retrain the model with the training
set. After it, we evaluate its performance against the initially
hold-out test set.

V. RESULTS & DISCUSSION

The hyperparameter optimization process provided valuable
insights into the model’s behaviour under various configura-
tions. We visualised the training and validation loss curves
across epochs in Figure 2. The training loss steadily decreases
with epochs, indicating the models successfully learned the
underlying patterns within the data. The validation loss curve
closely follows the training loss curve, suggesting the models

Table I
BEST HYPERPARAMETER VALUES

Hyperparameter Value

Learning Rate 0.001
Embedding Dimension 8

Depth 1
Heads 3

Attention Dropout 0.5
Feed Forward Dropout 0.01

achieved a good balance between learning and generalizabil-
ity.

The hyperparameter optimization process identified a spe-
cific configuration that yielded the best performance for the
TabTransformer model. This optimal configuration included
the values shown in Table I.

The final stage of the evaluation involved assessing the
model’s performance on unseen data. We employed the
models with the identified optimal hyperparameters on the
testing set. The achieved AUC-ROC score on the testing set
was 0.9919, signifying exceptional performance in correctly
classifying operating systems between the predefined set:
Windows, Linux or Other.

The results are encouraging and demonstrate the effective-
ness of TabTransformer model for operating system finger-
printing when equipped with carefully chosen hyperparame-
ters. The outstanding AUC-ROC score of 0.9919 on the testing
set highlights the model’s remarkable ability to distinguish
between different operating systems.

However, It’s crucial to acknowledge limitations of the
performed experiments. The evaluation was conducted on a
single dataset, and the generalizability of these findings to
other datasets might require further investigation. Addition-
ally, exploring the impact of different feature engineering
techniques or preprocessing steps, as well as expanding the
classes of the classification task to different OSs families and
versions, are interesting avenues for future work.
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[4] M. Laštovička, M. Husák, P. Velan, T. Jirsı́k, and P. Čeleda, “Passive
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[20] R. Pérez-Jove, C. R. Munteanu, A. P. Sierra, and J. M. Vázquez-Naya,
“Applying Artificial Intelligence for Operating System Fingerprinting,”
Engineering Proceedings, vol. 7, no. 1, p. 51, 2021. [Online].
Available: https://doi.org/10.3390/engproc2021007051
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