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Iñaki Garitano
Department of Electronics and Computing

Mondragon Unibertsitatea
Arrasate-Mondragón, Spain
igaritano@mondragon.edu

Abstract—In the era of Industry 4.0, expanding device con-
nectivity via 5G and Beyond 5G (B5G) networks introduces
significant security challenges, and advanced solutions for attack
detection and mitigation are needed. This study focuses on
the complexities of distributed architecture inherent to 5G/B5G
networks, underscoring the crucial role of network service
orchestration, Moving Target Defense strategies, and advanced
attack detection mechanisms. This research identifies cutting-
edge mechanisms for ensuring the security of service orchestra-
tion through an in-depth state-of-the-art analysis, focusing on ar-
tificial intelligence-driven solutions for zero-touch networks. By
minimizing human intervention, these networks offer enhanced
security and efficiency.

Index Terms—5G, B5G, Split Learning, MTD, Orchestration,
Zero-touch, Cybersecurity

Contribution type: Research in development.

I. INTRODUCTION

The Industrial Revolution 4.0 brings a massive escalation of
connected devices, known as the Internet of Things (IoT). The
need to provide these devices with reliable, secure, and high-
speed communication solutions means that 5th Generation
(5G) technology standard communications will play a crucial
role in this scenario [1]. 5G communications are characterized
by low latency and high bandwidth, which makes it possible
to connect IoT devices massively, i.e., massive Machine-Type
Communications (mMTC), at high speed [2].

In this scenario, orchestration tools enable scalable, fault-
tolerant, and distributed solutions. However, they are not
exempt from external threats. These threats can be caused by
inherited vulnerabilities in the software used, improper use
or misconfiguration of services and tools, or the absence of
security mechanisms in the developed solution [3].

The security of 5G and Beyond-5G (B5G) networks has
become a priority due to the growth of connected devices and
the reliance on critical infrastructures, particularly in industrial
IoT environments [2]. These environments are characterized
by complex networks of interconnected devices that play a
vital role in operational efficiency, real-time monitoring, and
automated decision-making. Ensuring the integrity, confiden-
tiality, and availability of services in industrial environments
contributes to developing innovative strategies to strengthen
the security and reliability of emerging networks [4].

In the context of 5G/B5G networks, their distributed nature
leads to multi-domain architectures that require orchestration
solutions due to their complexity. Networks orchestrated by
Artificial Intelligence (AI) are proposed to manage multi-
domain scenarios, minimizing human interaction [1], [5].

Standardization groups, such as ETSI ZSM ISG([6]), are
already working on specifications for these networks.

As threats are also increasing with the rise of connected
devices, an essential matter in communication networks is
attack detection and mitigation to minimize their impact on
network performance [7].

The document is structured in four sections: first, an
overview of the context is provided in section I, and for a
deeper insight section II explains the leading technologies.
Then, the relevant state-of-the-art is provided during sec-
tion III. After that, the main challenges of each technology are
described in section IV. Finally, the section VI summarizes
the conclusions of the conducted research.

II. BACKGROUND

The following sections introduce the technologies analyzed
during this paper to understand the following sections. Tech-
nologies such as 5G architecture, zero-touch networks, attack
detection using machine learning, and attack mitigation using
moving target defenses are explained.

A. 5G architecture

The architecture of the 5G network is described by 3GPP
TS 23.501 [6] and is distributed both geographically and
logically. These standards support the use of cloud and edge
computing to enhance network performance and resource
utilization. Core network services are hosted in the cloud
due to its superior computing and storage capacities, while
applications needing lower latency or stricter performance
metrics are placed at the edge, close to users. This setup
follows the Service-based Architecture (SBA) outlined in
3GPP TS 23.502 [8] and is supported by network slicing from
3GPP TS 23.501 [6], which allows the network to process data
efficiently and meet diverse service requirements. The logical
distribution of network functions as microservices (see Fig. 1)
within the SBA ensures the network is scalable and adaptable.

B. Attack detection

Attack detection aims to analyze network traffic and iden-
tify patterns, distinguishing between regular networks and
malicious behavior. Specifically, this analysis focuses on de-
tecting Distributed Denial of Service (DDoS) attacks perpe-
trated by one or more network clients, compromising network
availability. Shallow learning and deep learning algorithms
are utilized as subcategories of statistical methods for attack
detection. This is due to their widespread use and superior
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Figure 1: 5G Core Network and MEC integration architecture.

predictive performance. In this case, the detection problem is
classified as a classification problem.

1) Machine Learning for attack detection: ML is a field
of AI that focuses on developing systems and algorithms to
learn from experience or data and improve their performance.
The goal is for these models to generalize and apply their
knowledge to new or unseen situations, improving their per-
formance over time.

Furthermore, DL is preferred due to its ability to gener-
alize and learn when handling complex problems. In attack
detection, ML is commonly utilized for tasks such as pattern
recognition, classification, clustering, dimensionality reduc-
tion, computer vision, and natural language processing [9].

Indeed, several neural networks stand out for their contri-
butions. Autoencoders are useful for data classification and
privacy protection by encoding raw data [10]. Convolutional
Neural Networks (CNNs) excel in analyzing network traffic to
detect attack patterns through feature extraction [11]. Recur-
rent Neural Networks, with their short-term memory capabil-
ities, are optimal for sequential data analysis, impacting time-
based detection [12]. Restricted Boltzmann Machines and
Deep Belief Networks offer unique structures for probabilistic
analysis and data distribution, significantly enhancing threat
identification and classification in cybersecurity [13], [14].

2) Distributed Learning in B5G networks: As stated
in [15], B5G networks are transitioning towards ubiquitous
networking and computing. Federated Learning (FL) is an
interesting option for decentralized training, where the models
are trained in each domain, and their weights are shared with
a coordinator. This coordinator aggregates the different local
models and generates a global model that is then shared with
the network domains [16]. Although the model weights are
shared, training data is stored on local devices.

However, while FL distributes model training and en-
hances data privacy, it may not be the best approach for
resource-constrained devices such as Industrial IoT (IIoT)
devices. Therefore, a recent alternative to FL is Split Learning
(SL) [17]. This approach involves splitting a model by its
layers and distributing the training of those layers among
devices rather than training a complete model on different
devices and then sending their weights to an aggregator. The
server or device with more computing resources trains the
more complex or heavy layers. The layers’ outputs are com-
municated to the central server for aggregation and creation
of the final model. The layer responsible for cutting the model
for distribution is known as the cut layer. The data sent from
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Figure 2: Split Learning architecture.

the client to the server is called smashed data.
Split Federated Learning (SFL) pretends to join the best

features of both distributed learning methods as a hybrid
approach where FL and SL are combined. SFL trains the
client-side model in parallel mode FL, and the model is
split into different parts and sent to the clients, as in SL.
In SFL, a fed server is introduced on the client side, i.e., a
server dedicated to synchronizing the client-side model [18]
by aggregating them. The network is divided into two main
domains: client-side and server-side. As stated, the clients and
the fed server are placed on the client side. In the case of
server-side, the primary server is located in Figure 2.

C. Attack Mitigation

Attack mitigation aims to minimize the impact of threats on
the system [7]. Once detected, threats are contained through
defined steps or processes. This paper analyzes the following
two methods for mitigation: the use of Moving Target Defense
(MTD) techniques and zero-touch architectures as the basis
of a mitigation solution.

1) Moving Target Defense: Traditional defenses such as
IDS and IPS take static actions in attack mitigation or incident
response. Attackers can model these actions, allowing them
to change their attack strategy and adapt to those actions to
bypass the countermeasures [19]. The defender is at a disad-
vantage compared to the attacker because countermeasures are
not readily adaptable, and changing them frequently to match
the behavior of the attacker is costly. To address this issue
and level the playing field, MTD was developed to introduce
uncertainty for the attacker by periodically modifying the
attack surface when an attack is detected [20], [21].

MTD is a deception technique. This means that the system
will change in some way to make the attackers believe they
are attacking a real target, even if that target may not exist.
MTD is classified as Spatial MTD or Temporal MTD.

Spatial MTD, based on the type of the parameters that are
modified, the spatial MTD is classified as follows (see Fig-
ure 3):

• Shuffling MTD. Dynamically configure network system
information.

• Diversity MTD. Diversifies the configurations of net-
work information systems.
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Figure 3: MTD techniques based on attributes.

Temporal MTD is focused on time triggering. The MTD ac-
tions can be time-, event- or hybrid-driven. Time-driven strate-
gies ensure that any information obtained by the attacker will
expire quickly. Event-driven MTD implies that the switching
time is variable, and the attack surface changes based on the
attack event. The strategy is triggered by information such as
security alarms [22]. Hybrid MTD is triggered by both time
and event. Indeed, the network parameters are randomized in
a fixed period to trigger the transfer of the attack surface,
and an analysis engine collects real-time security events and
evaluates potential attacks by analyzing existing attacks [23].

2) Zero-touch Networks: Zero-touch networks focus on
network automation and self-managing, using AI to enhance
the functionalities offered by the networks [24]. To this end,
several projects are underway to standardize this type of
network, among which the following stand out, e.g., ETSI
ZSM (see Figure 4), ETSI ENI ISG, 3GPP SA TSG. In the
European Union, the group led by ETSI is one of the most
important ones, which defines a framework characterized by
its service-based, policy-driven, modular, extensible, scalable,
and fault-resistant architecture [24]. The logic behind zero-
touch networks is composed of closed-loop mechanisms.
Closed loops are means to achieve automatized configurations
without any external intervention. These loops are continu-
ously repeated, allowing them to receive continuous feedback
from the network. Because of that feedback, the network can
improve its configurations and optimize itself.

III. RELATED WORK

This section explains the current state of orchestration,
attack detection, and attack mitigation in 5G/B5G networks;
hence, the primary objective is to protect the networks from
cyberattacks. To address these, attack management focuses
on detection and mitigation mechanisms and orchestration
mechanisms provided by the zero-touch network architecture.
The zero-touch network architecture is also proposed as the
base architecture for B5G networks. The section is divided
into three main blocks, each addressing a specific topic.

A. Zero-touch architecture in B5G

Ortiz et al. [25], as part of INSPIRE-5G+ project, proposed
a network architecture based on ETSI ZSM [26], which results

E2E Management Domain

Management Domain

Domain Management Services

E2E Domain Management Services

Cross-Domain Integration Fabric

Storage
Service

Domain Integration Fabric

Data
Analyzer

Domain
Control

Decision
Engine

Data
Collector

Domain
Orchestration

Cross-Domain
Storage
Service

Close-loop

Close-loop

Storage
Service

E2E Domain
Control

E2E Data
Collector

Close-loop

Close-loop

E2E Domain
Orchestration

E2E Decision
Engine

Domain Integration Fabric

Offered ZSM
services

Comsumed
ZSM servicesE2E Data

Analyzer

Figure 4: ETSI ZSM architecture

in a solution integrating zero-touch networks, MTD mitigation
techniques, and FL-based attack detection [25]. In addition, it
also has a trust and repudiation module for the solution trusta-
bility, which uses Distributed Ledger Technologies (DLTs).
Mitigating the threats is done by fulfilling a Security Ser-
vice Level Agreement (SSLA) and applying security policies
through the relevant services to ensure compliance.

Several frameworks based on zero-touch architecture have
recently been implemented. One framework proposed by [7]
focuses on mMTC networks within 5G technology. The ar-
chitecture suggests detecting anomalous traffic to avoid DDoS
attacks. The system analyzes the Subscription Permanent
Identifier (SUPI). If anomalous traffic is detected, the user
identified with that SUPI is disconnected and added to a
blacklist. Chergui et al. [27] proposes a new framework
for managing massive and dynamic network segmentation in
5G/B5G networks. This framework complies with ETSI ZSM
and ENI standards and manages the resources needed for
network services during their life-cycle management through
Service Level Agreements (SLAs). The text proposes using
Federated Learning (FL) in a zero-touch architecture to predict
SLA policy violations.

In the European Union, several other projects have been
developed, including INSPIRE5G+ [25], 5GZORRO, and
ACROSS, all of which focus on 5G/B5G technologies.

Carrozzo et al. [28], as part of the European 5GZORRO
project, take zero-touch network architecture as a reference
and describe the use of DLTs together with Smart Contracts
as the technology to be used to ensure trustability.

Giannopoulos et al. [29] takes part in the ACROSS project,
which focuses on developing a secure architecture based on
zero-touch platforms aligned with the ETSI standard (ETSI
ZSM [26]). The architecture is a highly scalable solution that
manages distributed networks through instance orchestration
within a domain and multi-domain orchestration. One of its
features is traffic engineering, which predicts and reacts to
different network events. In addition, the goal is to achieve
a high degree of automation across different domains based
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on the zero-touch architecture. The section on orchestration
security proposes using three mechanisms: trusted execution
environments, improved security of AI models through de-
fenses against data and model manipulation, and software-
defined security (SD-SEC).

While the proposed solutions achieve a high degree of
automation by applying actions from previously declared
policies in SSLAs, these may not be efficient when execut-
ing attack mitigation mechanisms. Since SSLAs are static
agreements, they do not adapt when the state of the network
changes, potentially rendering the initial policies obsolete over
time. Moreover, if the network is overloaded or threatened, a
policy specified in the SSLA could worsen the situation. To
address these limitations, it is crucial to implement dynamic
monitoring and automated responses that not only detect
SSLA violations but also assess ongoing network status to
ensure that mitigation actions remain effective.

Table I provides a comprehensive summary of the key
topics and findings in the reviewed literature.

B. Attack detection in B5G networks

Naeem et al. [30] proposed a semi-supervised active learn-
ing framework in ZSM, which is based on the assumption
that the majority of data on the client side is not labeled.
Only a small portion of labeled data is available. In this
work, multiple-class attack classification is performed using
the attacks identified by the CSE-CIC-IDS2018 dataset. The
dataset includes network traffic where seven different attacks
are performed: brute force, heartbleed, botnet, DoS, DDoS,
web attacks, and network infiltration. Naeem et al. [30]
underscore the architecture detailed in [31] where because of
their perspective of security, the domain services are slightly
changed, from ETSI defined architecture [26].

Jaysasinghe et al. [32] proposes a hierarchical FL model for
ZSM networks. In this case, an anomaly detection process is
divided into two stages in the security management domain.
During the first stage, the anomalies from the users are de-
tected using ML algorithms just for superficial traffic filtering,
and the traffic is stored in a database to retrain the local model
in the future. The packets classified as anomalies will be
dropped from the network at stage 1, and then the second
anomaly detector will analyze the rest again. That second
detector has a more complex ML algorithm and database. For
anomaly detection UNSW-NB 15 [33] dataset is used, which
includes normal and malicious traffic. The malicious traffic is
divided into nine attacks: fuzzers, analysis, backdoors, DoS,
exploits, generic, reconnaissance, shellcode, and worms

Ben Saad et al. [34] also take zero-touch architecture as
the scenario for deploying an FL algorithm. In this case,
they develop a framework that protects the DL models from
poisoning attacks by detecting and mitigating them. Poisoning
attacks are critical for the ML/DL model due to their capacity
to compromise the future decisions of the model. While this
vulnerability affects all AI models generically, it should not
be dismissed because it impacts 5G/B5G networks. Modifying
the preconditions of the models could seriously compromise
the network’s security, leading to the misclassification of
attacks or detecting normal traffic as anomalous, rendering the
solution useless, or even gaining control over the network.

Despite SL is not currently used for attack detection,
given the orientation of 5G towards massive communications,
exploring Split Learning as a mechanism to train models may
be of interest. Similar to previous work, [35] compares FL
and SL through various experiments. The experiments show
that when the data is Independent and Identically Distributed
(IID) and balanced, models trained by SL converge faster than
those trained by FL , whereas FL is a more efficient choice for
non-IID data. Indeed, SL fails to learn in the latter case. Hafi
et al. [36] discuss the challenges, requirements, and future
directions of integrating split federated learning into B5G
networks. The paper proposes using SFL as an IDS for threat
detection, with the training phase split between different hosts.
For instance, each host learn the characteristics by training
an autoencoder, and then the model is trained on the central
server.

Besides, Hafi et al. [36] discuss the benefits of using
zero-touch networks in conjunction with SFL. This approach
reduce training time while maintaining high accuracy values
and data privacy in a multi-tenancy environment.

In Table II, the works on distributed learning and their
respective topics are presented.

C. Attack mitigation in B5G networks

After detecting attacks, it is necessary to mitigate the impact
of the attack on the system so that the damage caused is the
least possible and causes the least possible disruption to the
services offered to the end user.

Using MTD techniques, a combination of diversity and
shuffling techniques is proposed in [37]. Specifically, VM
Live Migration shuffling is proposed to change the location
of VMs and OS diversification. However, the paper mentions
that combining both MTD techniques substantially increase
the use of extra resources, so their applicability to an Industrial
IoT environment must be evaluated [4].

In [38], a framework is developed to mitigate DDoS
slow-rate attacks. The attacks are mitigated by Reinforce-
ment Learning (RL), where the model acts as a controller
that chooses what actions should be taken in the network.
The framework consists of six modules: traffic monitoring
modules, Intrusion Detection System (IDS), MTD module,
statistics and rule manager, Intrusion Prevention System (IPS),
and reactive forwarding rules module. Specifically, shuffling
techniques are used in the step where MTD is used.

Javadpour et al. discussed the SCEMA framework [39],
[40], which aims to reduce implementation costs while keep-
ing the security level unchanged or even higher. As the
previous work, Yunfaicela-Naula et al. [38], it uses Random
Route Mutation (RRM), which is based on backward attack
path to calculate the path cost and on a modification of Three-
tier Attack Graph (TAG) to calculate compromise probability
of a host. The critical paths more vulnerable than others are
selected, and then all the hosts in these paths are shuffled.
Some hosts are less critical than others and could be used as
part of the army of the attackers. Therefore, the critical ones
should be shuffled sooner than the host, whose impact could
be lower. Hence, the goal for attack mitigation is to design
a low-complexity MTD method that shuffles only the hosts
with more connections to the critical server.
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Table I: State-of-the-art of zero-touch networks.

 Addressed topic. #Not addressed topic. G#Partially addressed topic.

Ref. Attack Attack Standard Trustworthy Policy-based Remarks
Detection Mitigation Compliance Solution Mitigation

[25]  MTD    They use zero-touch architecture as the base
of the network using ETSI ZSM [26] defined
architecture.

[7]  Blacklisting G# # # DDoS attack detection. SUPI blacklisting based
on threshold

[28] # Undefined #  # The paper presents the conceptual architecture
based on zero-touch networks improved by AI
and DLT distributed security and trust.

[29]  AI/ML-based   # They aim to achieve a highly scalable orchestra-
tion based on zero-touch network architecture.

Table II: State-of-the-art of distributed learning approaches for attack detection.

 Addressed topic. #Not addressed topic. G#Partially addressed topic.

Ref. Federated Split Split Federated 5G/B5G Attack Remarks
Learning Learning Learning Application Detection

[17]     # They also provide information about other alternatives
inside SL, such as Parallel Split Learning.

[25]  # #   The paper contributes to INSPIRE5G+ project which
proposes a solution considering attack detection by FL,
mitigation by MTD and trustworthiness.

[30]  # #   An integrated scenario with zero-touch networks is con-
sidered, where the data is mostly unlabeled. Federated
semi-supervised learning is used to train the few labeled
data available.

[32]  # #   The detection process is divided into two stages, first a
simpler one to detect anomalies faster and the second
one to inspect thoroughly the remaining traffic.

[34]  # #  G# Poisoning attack detection is performed.
[36]     G# The paper is a survey and a theoretical approach, attack

detection is tackled just as a potential use case.

Similar to SCEMA [40], other works [41], [42], [43]
that seek to optimize the use of MTD with cost-effective
approaches use game theory, usually Markov Decision Process
(MDP), which identifies two main costs, the costs of the
attacker and the defender. The cost of the attacker refers to
the resources required to compromise a host of the defenders.
Likewise, defense cost refers to the effort or cost of the
defense action to prevent or mitigate the attack. The goal of
MTD techniques in game theory is to maximize the payoff of
the defender while minimizing the payoff of the attacker.

There has been limited research on integrating MTD in
5G/B5G networks. Soussi et al. propose MERLINS [44],
based on their previous work [45], an MTD framework that
employs Deep Reinforcement Learning (DRL) algorithms to
mitigate Advanced Persistent Threats (APT). Escaleira et
al. [46] propose an MTD-as-a-Service (MTDaaS) solution
using three MTD types: shuffling, diversity, and redundancy.
The focus is on exchanging between different versions of
an application, where more than one version can coexist
simultaneously to deceive attackers. For the decision-making,
DRL is used. However, despite using the three types simul-
taneously, the impact of the decision-making in the system
is barely measured, which in large deployments or resource-
consuming applications could result in network and host
overhead problems. Abdelhay et al. [47]suggest a solution for
privacy and security that uses MTD to shuffle IPs and mitigate
DDoS attacks in the 5G core network.

As illustrated in Table III, the characteristics of each

mitigation mechanism are summarized.

IV. OPEN CHALLENGES

This section discusses the primary challenges of zero-touch
networks, attack detection, and attack mitigation. For each
subsection, the challenges from the research conducted in this
paper are inferred, as well as future directions and next steps.

A. Zero-touch networks architecture

Concerning network orchestration, zero-touch networks
seem to be a clear direction in which technology is evolving.
These networks are intended to automate their management
to the point of not needing human interaction. Ortiz et al. [25]
propose a good starting point as it already suggests proof-of-
concept architecture integrating other services. However, this
solution uses predefined SSLAs and policies to decide what
reaction to take upon detection of an attack. Although SSLAs
define the minimum requirements that all mechanisms in the
network should fulfill when defining reactive action in case
any SLA is violated, it could deal with the automatization
issue in case the policies get deprecated, or the network suffers
an attack that was not previously considered. Therefore, other
dynamic mechanisms that can decide the reactive actions over
the network and service based on the SSLA requirements
might be a suitable option.

Within zero-touch networks, trustworthiness is still a crucial
issue. Generally, as Palma et al. [48] discuss in their paper,
blockchain mechanisms often address this problem. In the
case of [48], [28], DLTs are used to create Smart Contracts
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Table III: MTD as attack mitigation state-of-the-art.

 Addressed topic. #Not addressed topic. G#Partially addressed topic. MDP: Markov Decision Process. RRT: Renewal Reward Theory.
S: Shuffling. D: Diversity. R: Redundancy. APT: Advance Persistent Threats. HARM: Hierarchical Attack Representation Model.
CES: Cost-Effective Shuffling.

Ref. Decision Cost- MTD MTD Mitigated 5G/B5G Remarks
process effective technique trigger attack application

[37] HARM  S, D Undefined Undefined # The authors propose different shuf-
fling and diversity combination ap-
proaches and their impact on the
performance.

[38] DRL  S Event Slow-rate DDoS # The paper integrates DL-based at-
tack detection with DRL attack mit-
igation using MTD against slow-rate
DDoS attacks.

[39], [40] SCEMA  S Time DDoS # Based on TAG model, the main dif-
ference is in the third tier, where in
this work Petri networks are used.

[41], [43] MDP & CES  S Event & Payoff DDoS # They propose the use of Trilat-
eral Game, considering attacker, de-
fender, and user.

[42] RRT  S Time Covert Channel attacks # They use two cost measures: adapta-
tion and attack cost. It uses an adap-
tation analysis engine to measure the
adaptation cost and make shuffling
decisions.

[44], [45] DRL  S Hybrid APT  MERLINS mitigates APTs and can
operate under SLAs.

[46] DRL # S, D, R Time Zero-day attacks  They propose MTD-as-a-Service
(MTDaaS) approach for Cloud
Network Function (CNF) agnostic
architecture.

[47] Undefined # S Time DDoS  This approach also mentions the pri-
vacy topic, addressing it by SDP
zero-trust technique.

between the services, guarantee trust between them, and trace
the operations that are carried out.

Considering the zero-touch architecture and its potential
as the basis for future communication networks, Alotaibi
et al. [49] demonstrated that the proposed architecture for
hierarchical federated learning could be adapted to the ZSM
architecture [26]. However, looking forward to massive or
ultra-massive communications, FL could be less efficient than
other approaches, such as SL or SFL.

B. AI-driven attack detection

As discussed in section II, the target attacks of this
work are DDoS attacks perpetrated by one or more clients
against network services and infrastructure. Regarding attack
detection, two trends are straightforward: shallow and DL
algorithms. However, there are not many works where these
two streams are complementary. Combining both algorithms
makes it possible to reduce traffic prediction delays by using
A simpler and faster algorithm to split malicious and benign
traffic. Moreover, considering the distributed nature of 5G
networks, where services are in the cloud and at the edge, it is
logical to think about integrating these two streams of attack
detection with FL or SL, thus adapting to the reality of each
environment and being able to adjust the model periodically.

Furthermore, SL or SFL are interesting alternatives that
split the model between different devices. Considering the
zero-touch architecture, integrating SFL into these networks
could be beneficial. This involves training locally on the
devices in each domain, utilizing their computational capacity
for ubiquitous computing.

To the best of our knowledge, attack detection and network
traffic analysis using SL is still unexplored. However, CNNs-
based SL algorithms are widely used for image identifica-
tion [18], [35], [50], [51]. Since CNNs are used for both
imaging and attack detection [11], [12], the performance
efficiency of SL/SFL versus FL could be extrapolated to attack
detection. It should be noted that the training data in this case
may differ, so further analysis is required.

Additionally, in SL/SFL and FL, data privacy is ensured
using methods such as differential privacy [50]. Moreover,
considering its ability to allow the workload distribution
between devices when splitting the model (Figure 2), these
methods are an interesting alternative to investigate in the
5G/B5G network security field. Constrained devices are found
in this environment, and the reduced computational capacity
is a limitation when training AI models, such as IIoT devices.
Hafi et al. [36] also supports this possibility by establishing
attack detection as a potential use case for SL.

C. Mitigation techniques

In terms of mitigating attacks or threats, some studies
propose the development of a reactive module in zero-touch
networks as a way to respond to these attacks. Applying MTD
techniques to mitigate network attacks and automating their
execution using AI, such as RL, could be considered.

One effective method in implementing Moving Target De-
fense (MTD) strategies within 5G/B5G networks involves
integrating shuffling techniques, such as RRM and Random
Host Mutation (RHM), with diversity strategies. Evaluating
the cost-efficiency of this combined approach is crucial to
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ensure that the MTD mechanisms do not introduce excessive
overhead to the network infrastructure. Furthermore, while
some studies advocate for a trilateral game theory model
for MTD decision-making, the analyzed research favoring
5G solutions recommends utilizing DRL algorithms. This
preference underscores the importance of optimizing cost-
effectiveness while minimizing the impact on network per-
formance. Therefore, a thorough examination is necessary to
determine the most appropriate MTD approach for 5G and
B5G networks, focusing on balancing security enhancements
against potential performance drawbacks.

Furthermore, utilizing MTD mechanisms with zero-touch
networks are an interesting approach to assure a high degree
of automatization in the reaction performed when an SSLA
is violated or an attack is detected.

V. FUTURE WORK

Regarding future work for the research on zero-touch
networks, it involves testing the orchestration features of a
deployed zero-touch network to test relevant services and its
operation. Specifically, the role of RL in zero-touch networks
is a field to investigate. Beyond resource allocation, a promis-
ing research direction is to use RL to perform the decision-
making in the domain orchestration for attack mitigation
together with the zero-touch networks. The research is focused
on analyzing the role that SSLAs play in orchestrating zero-
touch networks and whether RL algorithms is complementary
to them. SSLAs play a crucial role in defining network
requirements and policies. In this way, predefined network
requirements are maintained, but policy reaction instructions
are replaced. The reaction is based on an RL model that makes
decisions depending on the violated policy and network state.
This approach aims to enhance decision-making flexibility and
enable dynamic updates in response to network incidents.

As future approaches for attack detection, SFL need to be
studied for DDoS attack detection and model training using
both SFL and FL to evaluate their effectiveness, advantages,
and disadvantages. DDoS attacks compromise network avail-
ability, bringing down critical services and leaving end users
without service. Due to the increase of connected devices and
the enablement of massive communications, DDoS attacks
play a significant role in 5G/B5G networks. Furthermore,
the integration of SFL and zero-touch architecture for traffic
analysis is a potential research line.

As stated in the previous section III, the integration of
MTD mechanisms in 5G and 6G is scarcely addressed. Thus,
this is a potential area for further research in attack mit-
igation beyond intrusion detection and prevention systems.
Specifically, various methods for calculating the cost of MTD
decision-making have been proposed in the area of MTD.
However, these methods are not equally weighted in each job
or considered. Therefore, the impact of this cost weighting on
MTD mechanisms requires investigation.

VI. CONCLUSIONS

Our comprehensive review highlights the necessity of or-
chestration in the security of 5G/B5G networks to address
the rise in cyber threats due to the increment of connected
devices. By integrating (1) zero-touch network principles
and leveraging artificial intelligence for (2) proactive attack

detection and (3) dynamic mitigation, we propose a novel
approach to network security. This approach adapts to the
complexities of distributed network architectures and offers
a base for future advancements in network management and
security. The analysis of SL and FL presents a promising
approach for enhancing attack detection capabilities with-
out compromising data privacy or system performance. As
the digital landscape evolves, adapting and integrating these
mechanisms into the orchestration of 5G/B5G networks will
ensure robust and resilient communication infrastructures.
Future research aims to improve these strategies, emphasizing
real-world applicability and scalability to protect against the
next generation of cyber threats effectively.
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