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AUTOMORPHISMS, DERIVATIONS AND GRADINGS OF THE

SPLIT QUARTIC CAYLEY ALGEBRA.

VICTOR BLASCO AND ALBERTO DAZA-GARCIA

Abstract. The split quartic Cayley algebra is a structurable algebra which
has been used to give constructions of Lie algebras of type D4. Here, we calcu-
late it’s group of automorphisms, it’s algebra of derivations and it’s gradings.

1. Introduction

Structurable algebras are a class of algebras with involution introduced by Allison
in 1978 [Ali78] as a generalization of Jordan algebras. They are a generalization
in the sense that they also have a Tits-Kantor-Koecher (TKK) construction of a
Lie algebra. One of these algebras is the split quartic Cayley algebra which is used
for example in [Ali91] to give constructions of Lie algebras of type D4. Here, we
calculate its group of automorphism, the algebra of derivations and it’s gradings
up to isomorphism.

The structure is as follows: in section 2 we define the split quartic Cayley algebra
and give a multiplication table, in section 3 we calculate it’s group of automorphisms
and it’s algebra of derivations and in section 4 we calculate it’s automorphisms.

We are going to work over an algebraically closed field F of characteristic different
from 2, 3 and 5. Groups are going to be considered abelian and it’s neutral element
will be denoted by e, unless we work with specific groups with their own notation.

2. The split quartic Cayley algebra

This section is devoted to introduce the split Cayley algebra. In order to do so,
we recall a modified Cayley Dickson process introduced in [AF84] starting with the
algebra B = F ⊕ F⊕ F⊕ F. Take µ ∈ F

×. We denote by t the trace of B. Define
bθ = −b+ 1

2 t(b)1 for all b ∈ B. Let A = B⊕ sB = {b1+ sb2 | b1, b2 ∈ B}. We define
a product and an involution in A by:

(b1 + sb2)(b3 + sb4) = (b1b3 + µ(b2b
θ
4)

θ) + s(bθ1b4 + (bθ2b
θ
3)

θ)

b1 + sb2 = b1 − sbθ2

We call this algebra CD(B, µ). Notice, that since we are in an algebraically closed
field, the morphism b1 + sb2 7→ b1 +

√
µsb2 is an isomorphism from CD(B, µ) to

CD(B, 1). Hence, from now on, we are going to work with the algebra CD(B, 1). We
call this algebra the split quartic Cayley algebra check with the isomorphism
in [AF84, Proposition 6.5] and the definition in [Ali90].

Call x1 = (1, 1,−1,−1), x2 = (1,−1, 1,−1), x3 = (1,−1,−1, 1). CallK = F1⊕Fs

which is a subalgebra of A isomorphic to F × F via the automorphism given by
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2 V. BLASCO AND A. DAZA-GARCIA

1 7→ (1, 1), s 7→ (1,−1). Then, the action ◦ : K × A → A given by g ◦ x = xg

for all g ∈ K, x ∈ A, endows A with a structure of left K-module, which is a free
K-module spanned by 1, x1, x2, x3. If we identify K with F × F and call ex the
involution given by ex(x, y) = (y, x),the multiplication and the involution follows
from the following rules:

(f1)(g1) = (fg)1, (gxi)(f1) = (fg)xi = (f1)(fxi)

(fxi)(gxi) = (fg)1, (fxi)(gxj) = (fgxk)
(2.1)

for all f, g ∈ K and {i, j, k} = {1, 2, 3} and

f01 + f1x1 + f2x2 + f3x3 = ex(f0)1 + f1x1 + f2x2 + f3x3 (2.2)

for all f0, f1, f2, f3 ∈ K.

Remark 2.1. Notice that if we define the subspaces S = {x ∈ A | x = −x},H =
{x ∈ A | x = x},M = {x ∈ H | sx+ xs = 0}, we get that:

S = Fs, H = F1⊕
(

3
⊕

i=1

Kxi

)

, M =

3
⊕

i=1

Kxi, AlgF(S) = K

Remark 2.2. There is a Z
2
2 grading of A given by A(0̄,0̄) = K, A(0̄,1̄) = Kx1,

A(1̄,0̄) = Kx2 and A(1̄,1̄) = Kx3. We call this grading the standard quartic

grading and denote it by ΓSQ.

3. Automorphisms and derivations

In this section we calculate the groups of automorphisms and the algebra of
derivations of (A, − ) (i.e. those automorphisms and derivations which commute
with the involution). We begin with some easy properties:

Lemma 3.1. Let ϕ ∈ Aut(A, − ) and d ∈ Der(A, − )

(1) ϕ(S) = S, ϕ(H) = H, d(S) ⊆ S and d(H) ⊆ H

(2) ϕ(K) = K, ϕ(M) = M, d(K) = 0 and d(M) ⊆ M.

Proof. Each conteinment ’⊆’ in (1) is due to the fact that the involution
commutes with ϕ and d. The equalities follow from the fact that ϕ is
invertible.

Since ϕ(S) = S, There is λ ∈ F
× such that ϕ(s)e = λs. Since ϕ(1) = 1,

we get ϕ(K) = K. If m ∈ H and sm + ms = 0, applying ϕ we get that
λ(sϕ(m) + ϕ(m)s) = 0. Hence ϕ(M) ⊆ M. We get the equality since ϕ is
invertible. Since d is a derivation d(1) = 0. Using (1), there is β such that
d(s) = βs. Since 0 = d(1) = d(s2) = 2β1, we get that d(K) = 0. Finally, if
m ∈ M 0 = d(sm+ms) = sd(m) + d(m)s. Using (1) it follows d(M) ⊆ M.

�

Now, we will start calculating the automorphisms. In order to do so, we let S3

be the symmetric on 3 elements, and we will need the following lemma.

Lemma 3.2. Let ϕ ∈ Aut(A, − ). There is a permutation in S3 which we denote
σϕ such that ϕ(Kxi) = Kxσϕ(i) for all i ∈ {1, 2, 3}.
Proof. Due to lemma 3.1 there are r1, r2, r3 ∈ K such that ϕ(xi) = r1x1 + r2x2 +
r3x3. Let i be such that ri 6= 0. Then since 1 = ϕ(xi)

2 = r1r1+r3r3+r3r3+r2r3x1+
r1r3x2 + r1r2x3. That, due to remark 2.2 means that r1r2 = r2r3 = r3r1 = 0 since
up to scalar, the only zero divisors in F× F are (1, 0) and (0, 1), this implies that
rj , rk = 0 for {i, j, k} = {1, 2, 3}. Hence ϕ(x1) = rixi and riri = 1. Since due to
lemma 3.1 ϕ(Kxi) = ϕ(K)ϕ(xi) = Krixi, then we have proved that there is a map
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σϕ : {1, 2, 3} → {1, 2, 3} such that ϕ(Kxi) = Kxσ(i) for all i ∈ {1, 2, 3}. Since ϕ is
invertible this map is a permutation. �

Remark 3.3. Let σ be a permutation in S3. We denote by fσ : A → A the map
defined as fσ(r01 + r1x1 + r2x2 + r3x3) = r01 + r1xσ(1) + r2xσ(2) + r3xσ(3). Using
(2.1) is not hard to check that this is an automorphism of (A, − ). Moreover the
map θ : S3 → Aut(A, − ) defined by σ 7→ fσ is a monomorphism of groups and we
denote it’s image by H .

If we have an algebra with involution (B, − ), a group G and a grading Γ: B =
⊕

g∈G Bg, we denote Aut(B,Γ, − ) := {ϕ ∈ Aut(B, − ) | ϕ(Bg) = Bg ∀g ∈ G},
Lemma 3.4. Aut(A, − ) ∼= Aut(A,ΓSQ, − )⋊H

Proof. Let ϕ ∈ Aut(A, − ). We are going to show that ϕ ◦ f−1
σϕ

∈ Aut(A,ΓSQ, − ).

Since θ as defined in Remark 3.3 is an automorphism f−1
σϕ

= fσ−1
ϕ
. By defini-

tion ϕ(Kxi) = Kxσϕ(i) for all i. Hence, ϕ ◦ f−1
σϕ

∈ Aut(A,ΓSQ, − ). Therefore,

Aut(A, − ) = Aut(A,ΓSQ, − )H . Finally, fσ ∈ Aut(A,ΓSQ, − ) if and only if
σ = id. therefore Aut(A,ΓSQ, − ) ∩ H = {id} finally it is not hard to show that
Aut(A,ΓSQ, − ) is a normal subgroup so the result follows.

�

We denote by S1 the subgroup of K× whose underlying set is {r ∈ K× | rr = 1}
and we denote by C2 the ciclic group of order 2 generated by σ. We can define an
action on K by σ(s) = −s. Like this we identify C2 with Aut(K).

Lemma 3.5. Aut(A,ΓSQ, − ) ∼= (S1 × S1)⋊C2 with product given by (r1, r2, g) ⋆
(s1, s2, h) = (r1g(s1), r2g(s2), gh).

Proof. Consider the morphism θ : (S1 × S1) ⋊ Aut(K) → Aut(A,ΓSQ, − ) given
by θ(r1, r2, ψ)(s0 + s1x1 + s2x2 + s3x3) = ψ(s0) + ψ(s1)(r1x1) + ψ(s2)(r2x2) +
ψ(s3)(r3x3). Where r3 = r1r2. Using (2.1) and (2.2) it is clear that θ(r1, r2, ψ)
is an automorphism. Since ri(rixi) = xi we can check that θ(r1, r2, ψ)

−1 =
θ(ψ−1(r1), ψ

−1(r2), ψ
−1).

Clearly θ is injective. Moreover, if ϕ is an element of Aut(A,ΓSQ, − ), then, let
ψ = ϕ|K1, ϕ(x1) = r1x1, ϕ(x2) = r2x2 and ϕ(x3) = r3x3. Since x

2
i = 1 for i = 1, 2,

we get that riri = 1. Since x1x2 = x3 we get that r3 = r1r2. Hence, it’s easy to
show that θ(r1, r2, ψ) = ϕ. Since Aut(K) consist on the identity and the involution
sending s to −s, it’s easy to check that it is isomorphic to C2. �

We can finish calculating the automorphisms with the following proposition:

Theorem 3.6. Aut(A, − ) ∼= ((S1 × S1)⋊ C2)⋊ S3

Proof. This is a consequence of Lemma 3.4 and Lemma 3.5 �

Finally, we calculate the derivations. In order to do so, for two given numbers
λ, β ∈ F we define the map d(λ,β) : A → A by d(r0 + r1x1 + r2x2 + r3x3) =
λr1(sx1) + βr2(sx2)− (λ + β)r3(sx3).

Theorem 3.7. Der(A, − ) = {dλ,β | λ, β ∈ F}
Proof. From Lemma 3.1 we get that for any d ∈ Der(A, − ), d(M) ⊆ M. Therefore,
for i, j, k = {1, 2, 3} we get that d(xi) = rixi + rjxj + rkxk for some ri, rj , rk ∈ K.
Since 0 = d(1) = d(x2i ) = xid(xi) + d(xi)xi we get that ri + ri + 2(rjxk + rkxj) =
0. Therefore, there is some λi ∈ F such that d(xi) = λi(sxi). Moreover, since
λ3(sx3) = d(x3) = d(x1x2) = x1d(x2) + d(x1)x2, it follows that λ3 = −λ1 − λ2.
Finally, since d(K) = 0 and using the properties of the derivations, it follows that
d(r0+r1x1+r2x2+r3x3) = λ1r1(sx1)+λ2r2(sx2)−(λ1+λ2)r3(sx3). Now, checking
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that d1,0 and d0,1 are derivations is easy and since they span {dλ,β | λ, β ∈ F} we
get the equality.

�

4. Gradings

Given an algebra with involution (A, − ) and a group G, a G-grading Γ on A

is a vector space decomposition:

Γ: A =
⊕

g∈G

Ag

satisfying that AgAh ⊆ Agh and Ag ⊆ Ag for all g, h ∈ G. If the grading is fixed
we refer to A as a G-graded algebra with involution. We say that an element x
is homogeneous if there is some g ∈ G such that x ∈ Ag. In this case we say that
x has degree g and we denote it as deg(x) = g. We say that a subspace V of A is a
graded subspace if V =

⊕

g∈G(V ∩Ag) in this case we will denote Vg = V ∩Ag.

Remark 4.1. For a G grading Γ, S and H are graded subspaces (see [AC20, lemma
3.8]). Moreover, since S = sF and s2 = 1, we have that deg(s)2 = e where e is the
neutral element of G.

Given two G-graded algebras with involution (A, − ) and (B, − ) we say that
they are isomorphic if there exist an isomorphism of algebras with involution
ϕ : A → B satisfying that ϕ(Ag) = Bg.

Given a G-grading Γ and a H-grading Γ′ of (A, − ) we say that Γ′ is a coars-

ening of Γ (or that Γ is a refinement of Γ′) if for every h ∈ H there is a g ∈ G

such that Ag ⊆ Ah.
The basic facts about gradings can be found in [EK13].

Example 4.2. Given the split quartic Cayley algebra (A, − ) and {i, j, k} =
{1, 2, 3} we can define the Z2-grading Γi

S : A = A0̄ ⊕ A1̄ with A0̄ = K ⊕ Kxi
and A1̄ = Kxj ⊕Kxk.

These gradings are a coarsening of the standard quartic grading ΓSQ. Moreover,
given i 6= j and a permutation σ with σ(i) = j we get that Γi

s is isomorphic to Γj

via the automorphism fσ with the notation of 3.3

In this section we are going find up to isomorphism the gradings on (A, − ). We
start with a lemma:

Lemma 4.3. For a G-grading Γ: A =
⊕

g∈G Ag on (A, − ), the subspaces K and
M are graded subspaces.

Proof. In any algebra with involution S and F1 are graded subspaces. Hence,
K = F1⊕ S is a graded subspace.

Let m ∈ M and let ag ∈ Ag be such that m =
∑

g∈G ag. Let g0 be the degree
of s and for every g ∈ G denote by πg the projection on Ag with respect to the
decomposition given by the grading. Since 0 = sm+ms and 0 = πg(sm +ms) =
sag + ags, we get that for every g ∈ G, ag ∈ M. Therefore, M is a graded
subspace. �

Since s2 = 1, it’s easy to deduce using (2.1) that for any m ∈ M s(sm) = m.
Therefore, we can define two subspaces of M:

Mσ = {m ∈ M | sm = σm} for σ = ±
And M = M+ ⊕M−.
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Lemma 4.4. For a G grading Γ, deg(s) = e if and only if M+ and M− are graded
subspaces.

Proof. Let deg(s) = e. In this case, if m ∈ Mg, for some g ∈ G then, there are
m+ ∈ M+ and m− ∈ M− such that m = m++m−. Since sm = m+−m− ∈ Mg we
get that mσ

1
2 (m+(σsm)) ∈ Mg for σ = ±. Hence, Mg = (M+∩Mg)⊕ (M−∩Mg).

From that is easy to check that M+ and M− are graded. If M+ and M− are
graded, let g = deg(s). Then, let m ∈ (M+) for some h ∈ G it should happen that
h = deg(m) = deg(sm) = gh and so g = e. �

Remark 4.5. Notice that M+ = 1
2 (1 + s)M and M− = 1

2 (1 − s)M so we are going

to call e+ = 1
2 (1 + s) and e− = 1

2 (1− s).

We denote as b : M ×M → F the bilinear form which satisfies xy = b(x, y)1 +
λs+m for λ ∈ F and m ∈ M.

Lemma 4.6. For any G grading on A, b is a non-degenerate homogeneous bilinear
form (i.e. b(Mg,Mh) = 0 if and only if gh = e).

Proof. In order to show that b is non degenerate, we take m ∈ M. then, there are
r1, r2, r3 ∈ K such that m = r1x1 + r2x2 + r3x3. Without loss of generality, we
suppose that r1 6= 0. Then, either r1 = βeσ for σ = ± or r1r1 = βx1 in both cases
with β 6= 0. In the first case b(x, e−σx1) = β and in the second case b(x, r1x1) = β.

In order to show you that it is homogeneous, we take x ∈ Mg and y ∈ Mh. Then,
xy ∈ Agh. Suppose that gh 6= e. If deg(s) = gh, then, Agh = Fs⊕M ∩Agh and in
other case Agh = M ∩Agh

�

Example 4.7. Let G be an abelian group, i ∈ F such that i2 = −1 and ζ ∈ F a
primitive cubic root of unit.

(1) For g1, g2 ∈ G denote by ΓSQ(G, g1, g2) the grading on (A, − ) given by
deg(s) = e, deg(e+x1) = g1, deg(e+x2) = g2, deg(e+x3) = (g1g2)

−1,
deg(e−x1) = g−1

1 , deg(e−x2) = g−1
2 and deg(e−x3) = g1g2.

(2) For g, g1, g2 ∈ G with g an element of order 2, denote by ΓSQ(G, g, g1, g2)
the grading given by deg(s) = g, deg(x1) = g1, deg(x2) = g2, deg(x3) =
g1g2, deg(sx1) = gg1, deg(sx2) = gg2 and deg(sx3) = gg1g2

(3) For λ ∈ F
× and h, g, f ∈ G such that g2 = f2 = h−1 and g 6= f , we

denote by ΓS(G, λ, h, g, f) the grading in which deg(s) = e, deg(e+x1) =
h = deg(e−x1)−1, deg(e+(x2 + λx3)) = g, deg(e+(−λ−1x2 + x3)) = f

(4) For h, g ∈ G with h of order 2, we denote by Γ1
S(G, h, g) the grading induced

by deg(s) = h, deg(e+x2 + e−x3) = g and deg(e−x2 + e+x3) = g−1.
(5) For h, g ∈ G such that h has order 2 and g has order 4 we denote by

Γ2
S(G, h, g) the grading for which deg(s) = h, deg(x1) = g2 and deg(x2 +
ix3) = g.

(6) For h, g, f ∈ G with h, g and f of order 2, we denote by Γ3
S(G, h, g, f) the

grading for which deg(s) = h and deg(x2 + x3) = g and deg(x2 − x3) = f .
(6) For g1, g2 ∈ G of order 3 and g1 6= g2 6= (g1g2)

−1, we denote by Γ(G, g1, g2)
the grading given by deg(s) = e, deg(e+(x1+ζx2+ζ

2x3)) = g1, deg(e+(x1+
ζ2x2 + ζx3)) = g2, deg(e+(x1 + x2 + x3)) = (g1g2)

−1

(7) For h, g1 ∈ G such that h has order 2 and g has order 3, we denote by
Γ(G, h, g) the grading given by deg(s) = h and deg(x1 + ζx2 + ζ2x3) = g.

Given a G-grading Γ: A =
⊕

g∈G Ag and a H-grading Γ′ : A =
⊕

h∈H Ah, we

say that the gradings are compatible if A =
⊕

(g,h)∈G×H Ag ∩Ah.
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Proposition 4.8. If Γ is a grading is compatible with ΓSQ, then it is isomorphic
to either ΓSQ(G, g1, g2) for some g1, g2 ∈ G as in example 4.7or to ΓSQ(G, g, g1, g2)
for some g, g1, g2 as in example 4.7.

Proof. If Γ: A =
⊕

g∈G Ag is such a grading with deg(s) = e. Since it is compatible
with ΓSQ, for every i = 1, 2, 3 there should be a gi such that Agi ∩Kxi = Kxi or
gi and gi

′ such that (Agi ∩ Kxi) ⊕ (Ag′

i
∩ Kxi). In the first case, deg(e+xi) =

deg(e−xi) = gi. In the second case, since s(Ah ∩Kxi) = (Ah ∩Kxi) for h = gi or
h = g′i, we can assume that Agi ∩ Kxi = e+xi and that Ag′

i
∩ Kxi = e−xi. Since

(e+xi)(e−xi) = e+, we get that in both cases deg(e+xi) deg(e−xi) = e. Finally,
since (e−x1)(e−x2) = e+x3, we get that g3 = g−1

1 g−1
2 . Hence Γ = ΓSQ(G, g1, g2).

If Γ: A =
⊕

g∈GAg is such a grading with deg(s) = g for g an order 2 ele-

ment. Since each Kxi are graded, if for σ = ±, eσxi is homogeneous, deg(eσxi) =
deg(s(eσxi)) = g deg(eσxi). Hence, for every i = 1, 2, 3 there is a group element gi
there is an invertible ri ∈ K such that deg(rixi) = gi since the field is algebraically
closed, we can assume that riri = 1. Since (rixi)

2 = 1, g2i = e. Moreover, since
(r1x1)(r2x2) = (r1r2)x3, we can assupe that r3 = r1r2 and that g3 = g1g2. Hence,
Γ is isomorphic to ΓSQ(G, g, g1, g2) via the morphism θ(r1, r2, Id) with the notation
of 3.5.

�

Proposition 4.9. If Γ: A =
⊕

g∈G Ag is a grading compatible with Γi
S for some

i = 1, 2, 3 but not with ΓSQ then either it is isomorphic to ΓS(G, λ, h, g, f) with
elements as in example 4.7 or it is isomorphic to Γi

S(G, h, g) for i = 1, 2 with the
notation as in example 4.7.

Proof. Up to isomorphism we can suppose that it is compatible with Γ1
S . Due to

lemma 4.3, Kx1 is a graded subspace.
If deg(s) = e, since sKx1 = Kx1, then e+x1 and e−x2 are homogeneous. Let

deg(e+x1) = h. Since (e+x1)(e−x1), we get that deg(e−x1) = h−1. We are going
to prove that e+x2 cannot be homogeneous. We prove it by contradiction. If it
is homogeneous of degree g, (e+x2)(e+x1) = e−x3 is homogeneous of degree gh.
Necesarily, there should be a λ ∈ F such that e+(λx2+x3) is homogeneous of degree
f . Necessarily f 6= g otherwise e+x3 is homogeneous and multiplying by e+x1, we
get that e−x1 is homogeneous and that means that the grading is compatible with
ΓSQ. Now, multiplying by e+x1 we get that e(x2 + λx3) is homogeneous of degree

fh. Since b(e−(x2+λx3), e+x2) =
1
2 and b(e−(x2+λx3), e+(λe2, e3)) = λ and since

ker(b(e−(x2 + λx3)), · )|(Kx2⊕Kx3
)∩M+

has to be a graded subspace, then λ = 0.
Therefore, e+x3 is homogeneous and as we saw before, this leads to a contradiction
with the fact that Γ is not compatible with ΓSQ.

Due to the previous discussion, we can assume (because we can multiply by
scalar) that there are λ, β ∈ F

× such that e+(x2 + λx3) is homogeneous of degree
g and e+(βx2 + x3)) is homogeneous of degree f and both are linearly indepen-
dent. Multiplying by e+x1 you get that e−(λx2 + x3) is homogeneous of degree
gh and that e−(x2 + βx3) is homogeneous of degree fh. Call ϕ = b(e−(λx2 +
x3), · )|(Kx2⊕Kx3

)∩M+
. Since ker(ϕ has to be a graded subspace of x2⊕Kx3

)∩M+

and ϕ(e+(x2 + λx3)) = λ 6= 0, necessarily, 0 = ϕ(e+(βx2 + x3)) =
1
2 (λβ + 1). In

order to see that g2 = f2 = h−1, we see that the square of (e+(x2 + λx3)) and
of e+(−λ−1x2 + x3) are nonzero multiples of e−x1. Therefore, β = −λ−1 and
therefore, Γ is isomorphic to ΓS(G, λ, h, g, f).

If deg(s) = h for h 6= e, clearly h2 = e. By lemma 4.4 we know that there
is an invertible r1 ∈ K such that r1x1 is homogeneous of degree f . Using the
automorphism θ( 1√

r1r1
r1, 1, Id) we can assume that r1 = 1. We are going to prove
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by contradiction that for no r2 ∈ K, r2x2 is homogeneous. Suppose it is. If r2 is
multiple of eσ for some σ = ±, then h deg(r2x2) = deg(s(r2x2)) = deg(r2x2) which
would be a contradiction. If r2 is invertible, since s(r2x2) = (sr2)x2, x1(r2x2) =
r2x3 and (sr2)x3 are homogeneous, Γ would be compatible with ΓSQ. Hence, there
are r2, r3 ∈ K\0 such that r2x2+r3x3 is homogeneous of degree g, then multiplying
by x1 we get that r3x2 + r2x3 is homogeneous of degree gf .

If there is no r2x2 + r3x3 homogeneous with r2, r3 invertible, then for an ho-
mogeneous element like this, (r2x2 + r3x3)

2 = 2r2r3x1 = 0 since r2r3 ∈ Feσ for
some σ = ±. We can suppose then that r2 = λeσ and r3 = βe−σ. Moreover,
by scaling the element we can suppose that λ = 1. Call x = r2x2 + r3x3. Since
x1x has is a linear combination of x and sx then, either x1x = x in which case
β = 1 and deg(x1) = e or x1x = sx, in which case β = −1 and deg(x1) = deg(s).
Using θ(s, 1, Id) if necessary, we can suppose that β = 1 and deg(x1) = e. Hence,
x = e+x2 + e−x3 is homogeneous of degree g and since there should be an homo-
geneous element which doesn’t belong to span{x, sx, x1x, (sx1)x} = span{x, sx},
using the same arguments we see that y = e−x2 + e+x3 is homogeneous. Since
xy = 1+x1, we get that b(x, y) 6= 0 and so y is homogeneous of degree g−1. Hence,
Γ is isomorphic to Γ1

S(G, h, g)
Finally, assume that r2x2+ r3x3 is homogeneous with r2, r3 invertible, using the

automorphism θ(1, 1√
r2r2

r2) and multiplying by scalar we can assume that r2 = 1.

Since (x2+r3x3)
2 = 2r3x1 and it is homogeneous, we can assume that r3 ∈ F1∪Fs.

Using if necesary the automorphism θ(s, 1, id) we can suppose that r3 = λ1 for some
λ ∈ F

×. If deg(x1) 6= e, since b(x, x1x) 6= 0 we get that b(x, x1x) = 0 and that
means that λ2 = −1. Since in this case −λx1x = x2−λx3, any choice of λ would be
an homogeneous element. Hence the grading is isomorphic to Γ2

S(G, h, g). Finally,
if deg(x1) = e, λ = ±1. Since Kx+K(x1x) = Fx⊕ Fsx we need to complete with
another homogeneous element. By the same argument it has to be y = x2 − x3 so
the grading is Γ3

S(G, h, g, f) where deg(x2 + x3) = g. �

Proposition 4.10. Let Γ: A =
⊕

g∈G Ag be a grading on (A, − ) which is not

compatible with any Γi
S. Then it is isomorphic either to Γ(G, g1, g2) for g1, g2 of

order 3 or to Γ(G, h, g) for h of order 2 and g of order 3.

Proof. If deg(s) = e we start by proving that eσxi cannot be homogeneous. Since we
can use the automorphisms fτ and θ(1, 1, ex), we can prove it for i = 1 and σ = +.
In this case, ker(b(e+x1, · ))∩M− = Fe−x2⊕Fe−x3 is homogeneous. Then, since b
is non degenerate, there should be an homogeneous element of degree g, x = e−(x1+
λ2x2 + λ3x3) with λ2, λ3 ∈ F. Since b(e+x1, x) and b(x2, x) are not 0, it follows
that e+x1 and x2 have the same degree. Since y = 1

2x
2 − λ2λ3e+x1 = e+(λ3x2 +

λ2x3), if λ2λ3 6= 0 then, since y2 is homogeneous, then e−x1 is homogeneous and
then ker(b(e+x1, · )) ∩ ker(b(e−x1, · )) = Kx2 ⊕ Kx3 is graded and because of
that this grading is compatible with Γ1

S . If λ2 6= 0 but λ3 = 0. Since x2(e+x1)
is homogeneous, e−x2 is homogeneous. Hence z = x(e−x2) = e+(λ3x1 + x3) is
homogeneous. Since b(x, z) = λ3 6= 0 it follows that z and e+x1 have the same
degree and so z−λ3e+x1 = e+x3 is homogeneous. Therefore, (e+x2)(e+x3) = e−x1
is homogeneous and it follows as before that it is not compatible with Γ1

S . If
λ2 = λ3 = 0 we have it because of the same argument.

Let x = e+(λ1x1+λ2x2+λ3x3) be an homogeneous element of degree g. It follows
that λ1λ2λ3 6= 0. Hence, by scalar multiplication we can assume that λ1λ2λ3 = 1.
Take another homogeneous element y = e+(β1x1 + β2x2 + β3x3) of degree h with
β1β2β3 = 1 such that g 6= h (which should exist since the grading is not compatible
with Γ1

S). We can check that (x2)2 = 4x and (y2)2 = 4y. That means that
g3 = e and h3 = e. Moreover, its easy to see that b(x, x2) = 6λ1λ2λ3 6= 0 and
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b(y, y2) = 6β1β2β3. And because h2g 6= e we deduce that b(x, y2) = b(y, x2) = 0.
That implies that

λ1λ2β3 + λ2λ3β1 + λ3λ1β2 = β1β2λ1 + β2β3λ1 + β3β1λ2 = 0 (4.1)

Moreover, since hg 6= g2 and gh 6= h2, we deduce that xy 6= x2 and xy 6= y2.
Since xy = e+[(λ2β3 + λ3β2)x1 + (λ1β3 + λ3β1)x2 + (λ2β1 + λ1β2)x3] using (4.1)
we see that xy = e+(−λ2λ3β1λ−1

1 x1 − λ1λ3β2λ
−1
2 x1 − λ1λ2β3λ

−1
3 x3). Therefore, if

we call z′ = −xy we can see that it’s coefficients products equals to 1. Hence, for

z = 1
2z

′2 we get that z2 = 2z‘ and (z2)2 = 4z. And we can check that the map

sending x 7→ deg(e+(x1 + ζx2 + ζ2x3)) = g1, y 7→ deg(e+(x1 + ζ2x2 + ζx3)) = g2
and z 7→ deg(e+(x1 + x2 + x3)) = (g1g2)

−1 is an isomorphism and so the grading
is isomorphic to Γ(G, g, h).

If deg(s) = h, as before, Kxi cannot be a graded subspace.
If all the homogeneous elements x = r1x1 + r2x2 + r3x3 such that r1, r2 and r3

are non zero, then, the projection of x2 in M is y = r2r3x1+ r1r3x3 + r1r2x3 which
is homogeneous. If r1 and r2 are not invertible, then this is in Mσ for σ = ± and
it would happen that deg(y) = deg(sy) which can’t happen unless r3 = 0. If r1 is
not invertible but r2 and r3 are invertible, we use y to show a contradiction. Hence
r1, r2 and r3 are invertible. Using the map θ( 1√

r1r1
r1,

1√
r2r2

r2) we can assume that

r1 and r2 are scalars. If deg(x) = g, since (x2)2 = (r1r2r3)x, we can assume that
either r3 ∈ Fs or r3 ∈ F1. Since we can scale we can suppose that r1r2r3 = 1 or
r1r2r3 = s. In the first case and in the second case g3 = e g3h = e if g3h = e we
can multiply by s and use the automorphism θ(s, s, id) and we are in the first case.
Now, either there is an element like this whose degree has order 3 or there are 3
linearly independent elements whose degree is 3. In the second case, necessarily,
since K has dimension 2, there must be an element of degree 3 such that r1, r2 or r3
is 0 so we don’t consider it here. Now, since the projections of x, x2, x2x, sx, s(x2x)
on M span M, necessarily, b(x, x2) = 6r1r2r3 6= 0 and that implies r3 ∈ F1. Now,
up to scalar, we can suppose that r1r2r3 = 1 and we can check that the map sending
x→ x1+ ζx2+ ζx3 induces an isomorphism of algebras. Therefore, Γ is isomorphic
to Γ(G, h, g).

Finally, we will show that these are all the possibilities. Indeed, if there is an
homogeneous element x = r1x1+r2x2 of degree g for r1 and r2 different from 0, since
x2 = 2r1r2x3 necessarily, we get that r1r2 = 0. Hence, we can suppose that there
is λ1, λ2 ∈ F such that x = λ1e+x1 + λ2e−x2. Moreover, sx = λ1e+x1 − λ2e−x2
is also homogeneous of degree gh. We can show that all homogeneous elements
y = t1x1 + t2x2 + t3x3 with t1, t2, t3 ∈ K have t1, t2 or t3 equal to 0. Otherwise,
xy = e−t2 + e+t3 + (e+t3)x1 + (e−t3)x2 + (e−t2 + e+t3)x3 so either y or xy has
coefficients which are not invertible and arguing as before, this is impossible. Hence,
all the homogeneous elements in M should be of the form λieσxi±λje−σxj for i 6= j

and λi, λj ∈ F. We can finally show, that if x = λ1e+x1 + λ2e−x2 is homogeneous,
there should be β2, β3 ∈ F

× such that y = β2e+ + β3e− is homogeneous. But since
xy = λ2β2e−+λ1β2e−x3+λ2β3e+x1 and that would imply that e− is homogeneous
since K and M are homogeneous subspaces. But this would be a contradiction with
the fact that deg(s) 6= deg(1). �
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