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A B S T R A C T   

Artificial shorelines often differ from natural reefs in shape, composition, and habitat complexity. They promote 
higher accumulation of pollutants and increased physiological stress, which lead to changes in species distri-
butions and ecosystem functioning. This can promote trophic shifts and reduced genetic diversity of gastropod 
populations inhabiting artificial shorelines and might promote morphological changes, which may influence 
behaviour, vulnerability to predation, feeding efficiency, sex ratios, reproductive development, and overall 
fitness. This study explores inter- and intraspecific shell morphometric variations in Patella rustica and P. caerulea 
between breakwaters (ripraps) and natural reefs in three sites of Ceuta (North Africa, Spain), including a 
physicochemical assessment of the studied locations: shore orientation, inclination and wave exposure, and 
substratum nature, heterogeneity and roughness. Limpets on artificial substrata had a slightly smaller extra- 
visceral cavity and flattened shell profile, which suggests that the desiccation and temperature stress driven 
by the lithological composition and roughness of the studied substrata might have influenced the registered shell 
shape variation. However, the high morphometric variation registered for both species across sites and substrata 
suggests that limpets’ morphology might be responding to a complex interaction of environmental and ecological 
factors rather than solely rock type. The findings of this study highlight the complex interplay between rock type 
and local environmental conditions in shaping patellid limpets’ shell morphology and provide insights into the 
adaptive mechanisms that drive shell shape variation in limpet populations in the face of coastal sprawl and 
anthropogenic global change.   

1. Introduction 

Coastal sprawl has dramatically altered intertidal ecosystems 
worldwide, resulting in changes in species distributions, community 
structure and ecosystem functioning (Connell and Glasby, 1999; Seitz 
et al., 2006; Bishop et al., 2017; Masucci and Reimer, 2019). Artificial 
structures are poor surrogates of natural ecosystems and often lack 
spatial heterogeneity at diverse spatial scales, causing an overall 
reduction in habitat complexity (Moschella et al., 2005; Firth et al., 
2015; Cacabelos et al., 2018; Ostalé-Valriberas et al., 2018). At the 
intertidal level, surface orientation, inclination and heterogeneity 
determine the composition of the community and can determine the 
availability of refuge against desiccation and temperature stress, as well 
as grazing and predation pressure (Moreira et al., 2006; Bulleri and 

Chapman, 2010; Aguilera et al., 2019; Amstutz et al., 2021). Moreover, 
roughness, along with other substratum characteristics, such as colour, 
shape, pH and lithology, could influence species settlement and the 
physical stress experienced by the communities inhabiting rocky sur-
faces (Rivera-Ingraham et al., 2013; Hanlon et al., 2018; Semper-
e-Valverde et al., 2023). Furthermore, faunal populations inhabiting 
artificial hard substrata can show higher accumulation of heavy metals 
and other pollutants, higher stress levels, shifts in the trophic niche and a 
reduced genetic diversity when compared to natural habitats (Sedano 
et al., 2020a, 2020c; Seitz et al., 2006; Espinosa et al., 2021). Due to 
these constraints, many local native species have trouble colonizing 
artificial substrata, which can lead to altered population structure and 
reduced genotypic and phenotypic diversity of marine organisms, pro-
moting the fragmentation of native species populations and contributing 
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to the loss of coastal biodiversity (Fauvelot et al., 2009, 2012; Firth 
et al., 2013, 2016; Bishop et al., 2017; Alter et al., 2020). 

Limpets are common inhabitants of intertidal habitats and play 
important ecological roles in rocky intertidal communities as primary 
consumers and ecosystem engineers, influencing ecosystem dynamics 
(Burgos-Rubio et al., 2015). Due to their ecological importance and 
ability to respond to changes in habitat structure, limpets have been 
widely studied in the context of coastal urbanization and artificial 
substrata (e.g., Espinosa et al., 2009, 2011, 2021; Fauvelot et al., 2009; 
Chapman and Underwood, 2011). Although coastal structures always 
have a negative ecological impact because they replace natural habitats, 
the introduction of seawalls, breakwaters and jetties can have both 
positive and negative effects on limpet populations (e.g., Moreira et al., 
2006; Rivera-Ingraham et al., 2011a; Bonnici et al., 2013; Cacabelos 
et al., 2016). Artificial substrata provide colonizable surfaces that might 
sustain high density of limpets, leading to increased population numbers 
for certain limpet species (Rivera-Ingraham et al., 2011a; Bonnici et al., 
2013; Ostalé-Valriberas et al., 2023). However, artificial shorelines can 
also provide low-quality habitats, lacking refugia, causing trophic shifts 
and favouring non-indigenous species, which can negatively impact 
native limpets reproductive potential to the extent of not being able to 
sustain viable limpets’ populations (Burgos-Rubio et al., 2015; Sedano 
et al., 2020a; Espinosa et al., 2021; Branch et al., 2023; Earp et al., 
2023). Moreover, artificial substrata can lead to reduced genetic di-
versity within limpets’ populations and an increased genetic differen-
tiation from populations in natural areas, which suggests that artificial 
habitats may select for distinct and narrower range of genotypic traits 
than natural areas (Fauvelot et al., 2009, 2012). This would have 
conservational implications, as these limpets could be less resistant to 
environmental stressors and ecological impacts. Nonetheless, this 
reduced genetic diversity and increased differentiation could also be due 
to a founder effect, as the populations might be still settling on the 
recently deployed artificial habitat (Bishop et al., 2017 and references 
therein). In any case, the effects of substratum type and shape on limpet 
populations are complex and context-dependent, and further research is 
needed to better understand these effects and to develop effective 
management strategies for conserving limpet populations in urbanized 
coastal environments (Lima et al., 2016; Sedano et al., 2020a, 2020b; 
Espinosa et al., 2011, 2021; Fauvelot et al., 2012; Ostalé-Valriberas 
et al., 2022). 

Gastropod shells are widely used as indicators of environmental 
changes in marine ecosystems, and limpets’ shell parameters, such as 
height, thickness, and length, can be negatively affected by pollution 
stress (Nakhle, 2003; Márquez et al., 2011, 2017; Gharred et al., 2019; 
Harayashiki et al., 2020; Landro et al., 2021). Therefore, the analysis of 
shell shape can provide valuable insights into the overall health of 
marine ecosystems and the impact of abiotic and biotic stressors, such as 
urban proximity (Doyle et al., 2022; Maltseva et al., 2022). Overall, 
limpets’ shell shape is determined by an interplay of genetic and envi-
ronmental factors (Batelli, 2016; Nuñez et al., 2018; Nuñez and 
Fernández Iriarte, 2022), and limpets’ shells are characterized by high 
phenotypical plasticity in shape, which has been linked to habitat 
adaptation (Puig, 2016; Bouzaza and Mezali, 2018, 2019; Echeverry 
et al., 2020; Vasconcelos et al., 2021; Belmokhtar et al., 2022). For 
example, limpets in higher tidal levels and warmer latitudes tend to have 
a taller shell profile, which reduces desiccation and temperature stress 
by reducing heat transfer from sunlight radiation and conduction with 
the substrate (Vermeij, 1973; Prusina, 2013). Similarly, a more centred 
shell apex and circular base increase adhesion strength to the substrate 
and could be an adaptation to areas with high wave action (Denny and 
Blanchette, 2000; Paulo Cabral, 2007; Bouzaza and Mezali, 2019). 
Varying urbanization pressure can also impact limpets shell shape 
(Gharred et al., 2019; Landro et al., 2021). For example, Tablado and 
Gappa (2001) described bigger panpulmonate limpets with higher shell 
profiles inside a harbour than nearby habitats exposed to wave action. It 
was hypothesized that the differences in size could be due to the 

availability of longer foraging periods due to the absence of wave 
disturbance inside the port. Similarly, Landro et al. (2021) and Nuñez 
et al. (2012) found histological alterations, shells with globular mal-
formations, decreased shell thickness and hardness, and a taller shell 
profile in areas under anthropogenic impact. In addition, the taller shell 
profiles detected inside harbours in these studies might be a response to 
lower wave action or to differences in substratum orientation and other 
environmental parameters of relevance for limpets that could have 
differed between the studied locations (Tablado and Gappa, 2001; 
Seabra et al., 2011; Nuñez et al., 2012; Landro et al., 2021). However, 
more research is needed to understand the adaptation of limpets to 
different habitats and how substratum type can influence limpets’ 
morphology. 

Geometric morphometrics can provide more insight into complex 
shape variation than classical techniques (Zelditch et al., 2012). Geo-
metric morphometrics uses multivariate methods to identify subtle 
shape variations between populations and species by the analysis of 
intricate details, like curvature and sculpture patterns, which could help 
segregate species or understand ecological adaptations (Faria et al., 
2017; Matos et al., 2020; Mamet et al., 2021). Using geometric mor-
phometrics, this study aims to explore morphometric variations in 
limpet shell shape between artificial and natural substrata in different 
sites of Ceuta (N Africa, Spain) and the possible influence of a series of 
physicochemical variables in the observed shell shape patterns. To this 
end, the following alternative hypotheses have been tested. H1: the shell 
shape of P. rustica and P. caerulea vary between artificial breakwaters 
(ripraps) and natural rocky reefs; H2: this shell variation has the same 
change direction in different sites within the area of study; and H3: the 
shell form (shape + size) variation registered among sites and between 
substrata is coincident with differences in physicochemical parameters 
related to substratum type, wave exposure and spatial configuration of 
the studied sites and substrata. 

2. Methods 

2.1. Study area and species selection 

The Strait of Gibraltar is a region of high biodiversity and ecological 
importance due to its location between biogeographical regions, making 
it key area for connectivity of populations that are vulnerable to impacts, 
and a priority area for conservation (Rivera-Ingraham et al., 2013; 
Ostalé-Valriberas et al., 2022). Patella rustica and P. caerulea are two 
common intertidal limpet species that are widely distributed throughout 
the Mediterranean Sea and the NE Atlantic Ocean. In Ceuta (Strait of 
Gibraltar), limpet species have been found in greater densities on arti-
ficial than natural substrata (see Ostalé-Valriberas et al., 2018, 2022). 
This is due to a reduced human collection pressure (fenced or hardly 
accessible), and higher shoreline heterogeneity on artificial than natural 
shorelines (Espinosa et al., 2009; Rivera-Ingraham et al., 2013; 
Ostalé-Valriberas et al., 2022, 2023). 

Surveys were made in three Ceuta sites, each with dolomitic lime-
stone ripraps and natural rocky shores (less than 650 m apart) (Fig. 1. A). 
The ripraps studied in North Bay, Chorrillo, and Fuentecaballos were 
older than 16 years and were constructed in 1935, 1988, and 2006, 
respectively (Ostalé-Valriberas et al., 2018). Therefore, artificial sub-
strata are expected to host climax benthic communities in terms of 
species composition and richness (Hawkins et al., 1983; Coombes, 2011; 
Dong et al., 2016). Additionally, these substrata are anticipated to 
support mature limpet populations, as the average lifespan of the stud-
ied species is less than 10 years (Espinosa et al., 2008; Henriques et al., 
2012; Prusina et al., 2015). 

2.2. Environmental study 

The physicochemical description of the studied areas was carried out 
in July 2022 by haphazardly deploying two horizontal 10 m transects at 
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the upper midlittoral level in each of the studied sites and substrata 
(Fig. 1. A). Substratum inclination, heterogeneity and roughness were 
measured at each transect. Heterogeneity was calculated by horizontally 
deploying a flexible measuring tape along the upper midlittoral, 
following the rock contour (profile) along the whole length of the 
transect (10 m linear distance). Roughness and inclination were 
measured at the beginning, in the middle, and at the end of each tran-
sect. Roughness was measured following the same method as hetero-
geneity but along three horizontal 25 cm linear distance transects and 
using a profile gauge with 0.5 mm pins to obtain the rock profile (Frost 
et al., 2005). Both heterogeneity and roughness indexes were calculated 
by dividing the obtained profiles by the linear distance of the sampled 
transect (see Rivera-Ingraham et al., 2011b; Sedano et al., 2020b). 
Inclination was measured placing a 3 m stick on the rocky shore, 
perpendicular to the shoreline and spanning from the infralittoral to the 
supralittoral level, to measure the inclination angle of the stick with a 
digital clinometer. 

The chemical and lithological composition of each transect rock was 
studied by collecting two rock chips per site and substratum. These were 
used to confirm the dolomitic nature of the artificial breakwater in the 
studied areas (see Ostalé-Valriberas et al., 2023) and the information 
provided by the Geological and Mining Institute of Spain, which iden-
tifies the natural rock in the area as mainly metamorphic, with as 
gneisses (biotite schists), migmatites and porphyritic granitoids at North 
Bay, gneisses and migmatitic gneisses at Chorrillo, and phyllites and 
deformed conglomerates at Fuentecaballos (Pineda et al., 2013). Rock 
chips were milled and used to calculate the rock elemental composition 
by X-ray fluorescence (XRF) using an AXIOS spectrometer. Rock 
mineralogical composition was estimated by X-ray diffraction (XRD) 
using a powder diffractometer (Bruker D8 Advance) equipped with a 
high temperature chamber (Anton Paar XRK 900) and a fast 

response/high sensitivity detector (Bruker Vantec 1) with radial Soller 
slits (Valverde et al., 2015). 

Wave exposure and shore aspect (orientation) were obtained at each 
site and substratum with Google Earth. Wave exposure was quantified 
using the Fetch index, which has been successfully employed to predict 
intertidal community patterns (e.g., Burrows et al., 2008), and derives 
from an average between the maximum and effective fetch indices 
(Howes et al., 1994). Effective fetch (Fe) is calculated using the equation 
Fe = [

∑
(cos Өi) × Fi]/

∑
cos Өi, with Өi representing angles between 

shore-normal and directions 0◦, 45◦ left, and 45◦ right, and Fi as the 
distance in Km along the relevant vector, with a limit value of 1000 km 
conventionally used for open ocean. Maximum fetch is the maximum Fi 
recorded when calculating Fe. Finally, the wave exposure class of each 
coastline section is determined based on five categories: very protected 
(Fetch <1), Protected (1–10), semi-protected (10–50), semi-exposed 
(50–500), and exposed (>500) (Howes et al., 1994; Terrón-Sigler 
et al., 2016). 

2.3. Morphometric study 

Adult individuals of Patella rustica and P. caerulea, with sizes ranging 
from 1.5 to 4.0 cm (Frenkiel, 1975; Prusina, 2013), were randomly 
collected in May 2022 from two substrata: artificial limestone break-
waters and natural rock flats at three sites in Ceuta, Strait of Gibraltar, 
Spain (Fig. 1. A). At each site and substratum, a total of 25 individuals of 
each species were collected from the upper midlittoral (P. caerulea) and 
lower supralittoral (P. rustica) within a 25 m transect parallel to the 
shoreline (50 individuals per species and site). Limpets were collected 
ensuring that their shells were not excessively eroded to the extent of 
losing their original shape. 

After collection, shells were cleaned and photographed from ventral 

Fig. 1. A: Study sites, indicating the location of the sampled artificial and natural substrata in Ceuta (North Africa, Spain). B: Landmarks (LM) and semi-landmarks 
(S-LM) configuration for the lateral and ventral views depicting the consensus shape for all sampled individuals. The lateral view is a non-symmetric shape with LM1 
located at the front end, LM8 on the apex and LM15 at the back end of the shell. These LM are respectively coincident with the LM16, LM 4 and LM23 of the ventral 
view. The ventral view is a symmetrical configuration with the axis of symmetry crossing LM16 (front of the shell), LM1 (front of the head), LM4 (apex), LM10 
(posterior end of the hepatopancreatic cavity) and LM23 (back end of the shell). This LM and S-LM configuration was selected to reflect the shape contour of the 
border of the shell and the border of the hepatopancreatic cavity. 
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and lateral perspectives. The analysis of shell shape was performed using 
landmark-based (2D) geometric morphometric techniques. The apex, 
shell outline and hepatopancreatic outlines were captured from the 
lateral view using a non-symmetric configuration with 3 landmarks and 
22 semi-landmarks (Fig. 1B), and from the ventral view using a sym-
metric configuration with 9 landmarks and 20 semi-landmarks (Fig. 1C). 
All specimens were digitized by the same observer (JS-V) using TpsDig2 
v.2.17. The semi-landmarks used to capture contours were layered 
evenly along contour curves between landmarks and were homologated 
mathematically in an iterative process (sliding) using TpsRelw v.1.53. In 
this method, the S-LM coordinates are slid along the contour to minimize 
the bending energy of the landmark configuration (Slice, 2005). Then, a 
generalized Procrustes analysis was applied in which landmark config-
urations were rotated, translated to a common origin, and scaled to a 
unitary centroid size to obtain the Procrustes aligned coordinates, used 
as shape data (Rohlf and Slice, 1990). 

2.4. Statistical analyses 

Possible differences in shell size among sites and substrata for 
P. rustica and P. caerulea were tested using ANOVAs on centroid size 
data, after exploring the data for normality with a Kolmogorov-Smirnov 
test, and homoscedasticity with a Levene’s test. These analyses were 
carried out using IBM SPSS Statistics 22. To account for allometry, 
multivariate regressions were performed in MorphoJ v1.06 b (Klingen-
berg, 2011) for both species and each species separately (Zelditch et al., 
2012). The term “allometry,” was used as defined by Mosimann (1970): 
the pattern of covariation among morphological traits or the relation-
ship between shape and size components. MorphoJ regressions are 
computed and plotted after Drake and Klingenberg (2008), and origi-
nate from the regression equation y = xb + e, where y is the random 
vector of dependent variables, which in our case are the shape variables 
represented by the Procrustes coordinates (lateral view) and the sym-
metric component (ventral view), x is the random vector of independent 
variables, which in our case is the centroid size (shell size), b is the 
matrix of regression coefficients, and e is the random vector of error 
effects. The multivariate regression scores are then accounted with the 
variable si = ybiT(biTbi)− 0.5, to obtain the shape score s, which is the 
shape variable that is most strongly associated with the i-th independent 
variable (xi) (see Klingenberg, 2011). The statistical significance of the 
regression was tested with a permutation test (10,000 rounds) against 
the null hypothesis of independence. The presence of allometry was 
considered if the regression was significant (p-value <0.05) and the 
regression coefficient higher than 5 %. In these cases, the vector of 
regression scores computed by MorphoJ for all the observations in the 
sample was visualized along with the shape variations represented by 
the multiple regression, which were plotted by reconstructing hypo-
thetical forms of a wire frame connecting landmarks (wireframe plot). 
Whenever present, allometry component was eliminated during further 
analyses by working with the regression’s residuals (Klingenberg, 2016; 
Outomuro and Johansson, 2017). 

Shape data (PCscores) was used to perform conglomerate ordina-
tions on Mahalanobis distances among species, sites and substrata using 
InfoStat (Di Rienzo et al., 2020). Subsequent ordinations and tests were 
made with MorphoJ software, using Discriminant Function Analyses 
with cross validation to explore variation between two groups of ob-
servations (species and substrata) and Canonical Variate Analyses as a 
general analysis to find the shape features that best distinguish among 
multiple groups of specimens (variation among sites) (Klingenberg, 
2011 and references therein). Discriminant Function and Canonical 
Variate Analyses are classical techniques of multivariate statistics, and 
details can be found in most textbooks of multivariate statistics and 
morphometrics (e.g., Rohlf and Bookstein, 1990; Timm, 2002). In 
multivariate morphometrics, these are used to identify shape compo-
nents that maximize the differences in shape between and among group 
of observations that are known a priori (Viscosi and Cardini, 2011). For 

the resulting ordinations, shape differences between group means and 
along canonical axes were plotted using wireframe plots. Following 
these routines, differences between groups were analysed using per-
mutation tests (10,000 permutations) on Procrustes distances (Mahala-
nobis distances) to calculate the Hotelling T-square statistic for the null 
hypothesis of equal group means. 

3. Results 

3.1. Environmental study 

The physicochemical characterization of the sampling areas high-
lighted a higher macroscale heterogeneity and surface roughness of 
artificial substrata within all sites, except for roughness in Fuenteca-
ballos (Table 1). Overall, shore aspect was similar for the artificial and 
natural areas of each site. At North Bay and Fuentecaballos, natural 
shores were slightly steeper than artificial shores; in contrast at Chorillo 
the artificial shore was much steeper. Furthermore, all sites and sub-
strata were semi-exposed according to Fetch index classification, 
although the sites facing south, particularly Chorrillo, were the most 
wave exposed site while North Bay site was the least exposed one. 
Finally, substrata had different elements and lithological composition, 
with artificial substrata being dolomitic riprap rocks, and natural rocks 
showing the profile of graphite, quartz and muscovite-rich metamorphic 
rocks (Supplementary Table 1). 

3.2. Morphometric study 

No individuals of Patella caerulea were found on the natural sub-
stratum in North Bay, so the morphometric study was carried out with a 
total of 275 individuals. The centroid sizes of P. rustica and P. caerulea 
followed a normal distribution for all sites and substrata (Kolmogorov- 
Smirnov: P > 0.05 in all test outputs) and were homoscedastic (Levene: 
P. rustica: F5,269 = 0.57; P = 0.722; P. caerulea: F4,269 = 1.75; P = 0.143). 
No differences in centroid size were found between substrata for 
P. rustica (ANOVA: MS = 0.85; F1,269 = 2.31; P = 0.131) and P. caerulea 
(MS = 0.16; F1,269 = 0.40; P = 0.527) and among sites for P. caerulea 
(MS = 1.01; F2,269 = 2.55; P = 0.082). However, centroid size was higher 
in North Bay than Fuentecaballos and Chorrillo for P. rustica (MS = 6.88; 
F2,269 = 18.65; P < 0.001) (see means and standard deviations at Sup-
plementary Table 2). 

Allometric changes in shell shape predicted less than 5 % of the 
overall shape variation when considering both species (Table 2). How-
ever, when considering species separately, allometric shell growth 
occurred in P. rustica lateral view, with shell height increasing more 
rapidly than length as size increased, and the ventral contour of 
P. caerulea, in which the inner contour grew more rapidly around the 
body than the head (Table 2; Supplementary Fig. 1). Therefore, allom-
etry was considered present for P. rustica lateral view and P. caerulea 
ventral view and subsequent analyses were carried out with the re-
siduals of these regressions, considered as new size-unrelated shell shape 
variables. 

Overall, differences in shape between species were higher than their 
intraspecific variation for both lateral and ventral views, and higher for 
the lateral than the ventral view (see Fig. 2). On the lateral view, the 
mean shell shape of P. rustica is more conical, with the shell less pro-
jected on anterior-posterior axis, and more projected apex along the 
dorsal-ventral axis, than P. caerulea (Discriminant Function Analysis: N 
= 275; Mahalanobis distance = 4.28; T-square = 1248.5; P (perm) <
0.001; see Supplementary Table 3; Supplementary Fig. 2). On the 
ventral view, the shell contour of P. rustica was generally rounder, while 
P. caerulea had a more pentagonal shell contour shape, and the inner 
hepatopancreatic contour was slightly rounder, and the apex more 
displacement to the posterior part in P. rustica than P. caerulea (N = 275; 
Mahalanobis distance = 2.98; T-square = 757.7; P (perm) < 0.001; see 
Supplementary Table 3; Supplementary Fig. 2). 
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Table 1 
Results for the environmental variables measured in each sampled location. * Rock type was inferred from the lithological results included at Supplementary Table 1. 
Cell shading in the table is indicative of cell values, with darker shading applied to higher values.  

Site North Bay Chorrillo Fuentecaballos 

Substratum Artificial Natural Artificial Natural Artificial Natural 

Heterogeneity 1.53 1.17 1.59 1.25 1.28 1.23 
Roughness 32.80 29.60 32.41 31.17 31.37 31.78 
Inclination 17.41ᵒ 21.11ᵒ 21.14ᵒ 13.44ᵒ 16.36ᵒ 18.79ᵒ 
Fetch index 71.46 54.49 203.13 213.42 99.11 176.29 
Shore aspect N NW S S SE S 
Rock type* Dolomite Graphite Dolomite Quartz-muscovite Dolomite Muscovite  

Table 2 
Regressions results between centroid size as shell size (predictor variable), and the Procrustes coordinates (lateral view) and symmetric component (ventral view) as 
shape variables (response variables) to account for allometry, for all specimens (N = 275) and for each species separately: Patella rustica (n = 150) and P. caerulea (n =
125). SS = Total square sum; Residual = Residual square sum; % pred = regression coefficient. Bold values indicate the cases in which allometry is accepted (significant 
P-value and a regression coefficient higher than 5 %).   

Lateral view Ventral view 

SS Residual % pred P-value SS Residual % pred P-value 

All specimens 0.970 0.945 2.53 <0.001 0.536 0.511 4.79 <0.001 
P. rustica 0.477 0.427 10.52 <0.001 0.243 0.235 3.43 <0.001 
P. caerulea 0.357 0.346 3.17 0.010 0.233 0.220 5.76 <0.001  

Fig. 2. Conglomerate ordinations depicting the Mahalanobis average distances among the sampling locations for all individuals (P. rustica and P. caerulea) using the 
lateral and ventral views shape data. The wireframes of the consensus shapes are included for P. rustica and P. caerulea along with their respective sample groups. 
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Table 3 
Canonical Variate Analysis (CVA) on Procrustes coordinates, showing Mahalanobis distances (Md) and P-values from permutation tests (P (perm)) between pairs of 
sites for the lateral and ventral views of P. rustica and P. caerulea. NB = North Bay; Ch = Chorrillo; Fc = Fuentecaballos.   

Lateral view Ventral view 

Patella rustica Patella caerulea Patella rustica Patella caerulea 

Md P (perm) Md P (perm) Md P (perm) Md P (perm) 

NB vs. Ch 2.01 <0.001 2.68 <0.001 1.84 <0.001 2.22 <0.001 
NB vs. Fc 1.88 <0.001 3.63 <0.001 2.08 <0.001 2.79 <0.001 
Ch vs. Fc 2.01 <0.001 1.80 <0.001 2.12 <0.001 1.95 <0.001  

Table 4 
Discriminant analyses on Procrustes coordinates between substrata (artificial vs. natural) for the lateral and ventral views of Patella rustica and P. caerulea. M-distance 
= Mahalanobis distance; T-square = Hotelling’s t-statistic; P (perm) = P-values from permutation tests.   

Lateral view Ventral view 

Mahalanobis distance Hotelling’s t-statistic P (perm) Mahalanobis distance Hotelling’s t-statistic P (perm) 

P. rustica 2.05 158.22 <0.001 1.44 77.54 0.001 
P. caerulea 2.03 123.35 0.012 1.48 65.29 0.011  

Fig. 3. Canonical Variate Analyses (CVAs) on Procrustes coordinates among sites for the lateral view of P. rustica (A) and P. caerulea (B) and the ventral view of 
P. rustica (C) and P. caerulea (D). The coloured circumferences in the CVAs represent 95 % confidence ellipses for the average of each site. The wireframe diagrams 
show the variation obtained in each CVA axis, showing both the positive and negative direction of the deformation, with a scale factor of ±4. Light blue indicates the 
consensus shape, while dark blue indicates the ± shape extreme variations. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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Mahalanobis distances among individuals revealed intraspecific 
differences among sites and substrata for both studied species (Table 3; 
Table 4). Overall, individuals had a specific shell shape at each site. 
These differences occurred for the lateral view in the position of the 
apex, which was closer to the centre of the shell at the sites in South Bay: 
Chorrillo and Fuentecaballos, and more displaced to the front of the 
animal in North Bay for both P. rustica (Fig. 3. A) and P. caerulea (Fig. 3. 
B). From the ventral view, the relative size of the hepatopancreatic 
contour around the head was smaller in Fuentecaballos and bigger in 
Chorrillo for both species (Fig. 3. C and D). In P. caerulea, the ventral 
shape varied from a rounder shell perimeter and elongated hep-
atopancreatic contour in North Bay to a more pentagonal outer shell 
perimeter and more globular inner contour in Fuentecaballos (Fig. 3. D). 

Shell shape varied between artificial and natural substrata for 
P. rustica and P. caerulea (Table 4), although this variation was generally 
small and only P. rustica ventral view showed a clear distinction between 
substrata (Table 5). Nonetheless, both species showed a similar shell 
shape variation between substrata (Fig. 4). For the ventral view, 
P. rustica had a wider hepatopancreatic contour (inner contour) around 
the head and narrower around the body, which leaded to a wider space 
between the foot and the contour of the shell in natural than artificial 
substrata (Fig. 4). For the lateral view, P. rustica showed a higher shell in 
natural than artificial substrata. Seemingly, the relation between the 
hepatopancreatic contour around the body and the outer shell profile 
(outer contour) was also smaller and the lateral shell profile was slightly 
higher in natural than artificial substrata for P. caerulea (Fig. 4), which 
also leaded to a wider gap between the foot and the outer shell contour 
in natural than artificial substrata. 

4. Discussion 

A consistent morphological differences between artificial and natural 
substrata for both studied species and across sites (hypotheses H1 and 
H2) suggests that there is a common factor influencing shell morphology 
that segregates populations from natural versus artificial substrata. In 
the present study, rock lithology, heterogeneity and roughness were the 
environmental parameters that more clearly segregated natural and 
artificial substrata and could have influenced the observed differences in 
shell morphology (H3). These factors can influence the abundance and 
population structure of patellid limpets, particularly when comparing 
artificial and natural substrata (Espinosa et al., 2011; Rivera-Ingraham 
et al., 2011a; Batelli, 2016; Cacabelos et al., 2016; Ostalé-Valriberas 
et al., 2023). Nevertheless, rock type has a secondary role in structuring 
benthic communities (Cacabelos et al., 2016, 2019; Sempere-Valverde 
et al., 2023). Its effects on limpets’ morphology are still poorly under-
stood, and some authors found no differences in shell length and height 
when comparing different substrata (Batelli, 2016; Amer et al., 2018). 

In this study, the artificial substrata (limestone boulders) could be 
promoting a lower desiccation stress than the natural metamorphic 
rocks. First, because the higher heterogeneity of artificial substrata (10 
m scale) suggests that ripraps could have more nooks and crannies, 

shadowed areas that limpets might be using to ameliorate desiccation 
and temperature stress during low tide (Prusina, 2013; Firth et al., 
2015). Second, because a higher heterogeneity of the substratum surface 
at small scales (e.g., roughness) allows less heating and more water 
retention during low tide, even though heterogeneity in the field exists 
on many scales besides those tested in the present study (Aguilera et al., 
2019; Sempere-Valverde et al., 2023; Ambrose et al., 2021). Third, 
because the differences in rock lithology determine their weathering 
rates, roughness, shape, texture, wettability and albedo, and can in turn 
influence desiccation stress during low tide (Sempere-Valverde et al., 
2023 and references therein). Roughness differences are due in part to 
rock minerology and erosional history, to which intervene biological 
weathering coupled with bioerosion by endolithic algae bore into 
calcareous substrata through chemical processes (Schönberg and Wis-
shak, 2014; Sempere-Valverde et al., 2018; Ambrose et al., 2021). This 
might have contributed to an increased roughness of the studied 
calcareous rock in a microscopic scale and might provide an additional 
feeding resource for grazing organisms, in addition to microbial films on 
the surface (Hills and Hawkins, 1991), macro-algae (Della Santina et al., 
1993) and macro-algal detritus (Notman et al., 2016). Moreover, 
calcareous rock types generally have a higher surface free energy than 
silica-rich ones, which results in a higher wetting (Callow and Fletcher, 
1994; Ambrose et al., 2021). Finally, the calcareous artificial dolomite 
was lighter (higher albedo) than the natural rocks in the studied areas 
(JS-V pers. Obs.), which would imply lower thermal absorption by the 
former from sunlight. In conclusion, all these factors could have 
contributed to reduce the thermal and desiccation stress experienced on 
artificial substrata, influencing limpets’ phenotype. It is interesting to 
note that earlier studies have suggested that artificial substrata could 
create hotter and drier conditions compared to natural substrata 
(Aguilera et al., 2019). This might be linked to the unique features of the 
surfaces examined in this study, as other artificial substrata, such as 
concrete, would not be as heterogeneous as the studied ripraps. More-
over, natural rock exhibits significant geographical heterogeneity, 
leading to a range of environmental conditions, while artificial sub-
strates tend to show more uniformity across locations when compared to 
natural rock. Therefore, more research on different substrata and their 
effects across geographical scales would be needed before drawing 
conclusions about the ecological effects of substratum type. 

Regardless of the high spatial and residual variability in Patella rus-
tica and P. caerulea, which reflects the high phenotypical variability of 
both studied species (Belkhodja and Romdhane, 2012; Prusina, 2013; 
Bouzaza and Mezali, 2018), there was a common trend by both species 
towards a slightly increased shell height and a narrower hep-
atopancreatic contour on natural substrata. These are strategies adopted 
by limpets against thermal and desiccation stress (Vermeij, 1973; Harley 
et al., 2009). A taller shell has a smaller basal surface area per volume 
unit, which reduces temperature transfer by conduction with the sub-
stratum, reduces the area exposed to sunlight radiation, and might in-
crease heat loss by convection (Harley et al., 2009). It also reduces the 
basal perimeter of the shell, which in turn minimizes water loss through 

Table 5 
Classification/misclassification tables for cross validation of discriminant functions between artificial and natural substrata for Patella rustica (n = 150) and P. caerulea 
(n = 125) lateral and ventral views.   

Origin 
Patella rustica Lateral view Patella rustica Ventral view 

Allocated to Allocation accuracy Allocated to Allocation accuracy 

Artificial Natural Artificial Natural 

Artificial 52 23 69.3 % 56 19 74.7 % 
Natural 31 44 58.7 % 18 57 76.0 %   

Patella caerulea Lateral view Patella caerulea Ventral view 
Artificial 52 23 69.3 % 52 23 69.3 % 
Natural 22 28 56.0 % 23 27 54.0 %  
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the border of the shell during low tide (Vermeij, 1973). Moreover, a 
higher shell implies a higher lateral area in relation to basal area, which 
in turns increases the capacity of the extra-visceral cavity (Vermeij, 
1973). This cavity is further increased by a narrower hepatopancreatic 
contour that increases the gap between the foot and shell perimeter and 
determines the amount of water that can be retained around the foot 
during low tide (Vermeij, 1973; Prusina, 2013). All this would help 
limpets better survive temperature and desiccation stress in the inter-
tidal environment (Vermeij, 1973; Paulo Cabral, 2007; Harley et al., 
2009), indicating that artificial substrata have lower temperatures and 
hence desiccation stress than those natural substrata in our study. 
Nevertheless, substratum type had a clear secondary role in influencing 
shell morphology, since shell shape variation is most likely determined 
by adaptation to the local environment. In field, environmental 

conditions are determined by a complex interaction of factors that vary 
across sites and locations, such as shore aspect, inclination, local hy-
drodynamics, wave action, limited resources availability (e.g., food and 
refugia), as well as pollution, collection, competition and predation 
pressure (Denny and Blanchette, 2000; Tablado and Gappa, 2001; Riv-
era-Ingraham et al., 2011a; Amer et al., 2018; Bouzaza and Mezali, 
2019; Vasconcelos et al., 2020; Espinosa et al., 2021; Ostalé-Valriberas 
et al., 2022, 2023). Therefore, further studies incorporating experi-
mental manipulations would be necessary to further elucidate the un-
derlying mechanisms driving patterns of shell variation in limpet 
species. 

This study recorded the morphotypes that characterize P. rustica and 
P. caerulea, the high intraspecific variability in shell shape of these 
species, and their allometric growth patterns (Belkhodja and Romdhane, 

Fig. 4. Discriminant analyses on shell shape differences (Procrustes coordinates) for the lateral and ventral views of P. rustica and P. caerulea between natural and 
artificial substrata. The wireframe diagrams show the variation obtained along the discriminant scores, showing both the positive and negative direction of the 
deformation, with a scale factor of ±3.0. Therefore, the dark blue wireframe indicates a three-times exaggerated average shape on natural substrata, while the light 
blue indicates the same for artificial substrata. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

J. Sempere-Valverde et al.                                                                                                                                                                                                                     



Estuarine, Coastal and Shelf Science 297 (2024) 108617

9

2012; Prusina, 2013; Puig, 2016; Bouzaza and Mezali, 2018). Among 
intertidal limpets, there is a well-known inter- and intraspecific increase 
in shell height/basal area ratio with increasing shore level (Vermeij, 
1973; Paulo Cabral, 2007; Rivera-Ingraham et al., 2011b). However, 
these changes can also occur throughout the ontogenetic development of 
these organisms. In the Mediterranean Sea, P. rustica shells exhibit 
allometric shell growth, with height increasing more rapidly than 
length, to reduce evaporative water loss (Paulo Cabral, 2007; Prusina, 
2013; Amer et al., 2018), and with the shell base becoming more circular 
and the apex becoming more centred (Bensaâd-Bendjedid et al., 2022), 
which has been related to a faster and stronger adhesion to the sub-
stratum and might be an adaptation to a high hydrodynamic stress 
environment (Denny and Blanchette, 2000; Paulo Cabral, 2007; Bouzaza 
and Mezali, 2019). The same allometric growth, with the shell base 
becoming more circular and the apex becoming more centred, was 
found for P. caerulea in this study. In P. caerulea, Boukhicha et al. (2010) 
described an allometric increase in shell height, which along with a 
rounder basis would help to fight desiccation stress (Paulo Cabral, 
2007). Finally, Boukhicha et al. (2010) described an allometric increase 
in radular length in P. caerulea, which has also been proposed as an 
adaptation to grazing higher shore levels, where algae are less abundant 
and more frequently encrusting (Paulo Cabral, 2007; Boukhicha et al., 
2010). Finally, this allometric growth might as well be accompanied by 
a displacement of the home-scar to upper littoral levels, which are often 
inhabited by greater individuals of P. Rustica in the study area, while the 
small individuals are usually in lower tidal levels (JS-V Pers. Obs.). This 
shift in shore level between juveniles and adults occurs in other species, 
and it is frequent to find juveniles of limpets occupying different niches, 
such as tidepools and lower shore levels, than those inhabited by adults 
(Rivera-Ingraham et al., 2011b; Espinosa and Rivera-Ingraham, 2017; 
Livore et al., 2018; Seabra et al., 2020, 2023). Nonetheless, isometric 
growth and a negative allometric radular growth has also been recorded 
for P. rustica in the colder climate of NE Atlantic Portugal (Paulo Cabral, 
2007), where the thermal and desiccation stress might be a less deter-
minant factor for survival. 

5. Conclusion 

Our study highlights the complex interplay between rock type and 
local environmental conditions in shaping the morphology of patellid 
limpets and provide insights into the adaptive mechanisms that drive 
shell shape variation in limpet populations on substrata differing in 
heterogeneity, roughness and lithology. Coastal sprawl might have 
broad ecological and evolutionary implications on intertidal grazers, 
and it is important to understand the ecological impacts of coastal 
development on coastal ecosystems and in the ability of limpets to 
respond and adapt to changing environmental conditions (Espinosa and 
Rivera-Ingraham, 2017). Therefore, further research incorporating 
experimental manipulations, such as Vasconcelos et al. (2021), is 
needed to better understand the complex nature of limpets’ morpho-
logical responses to environmental conditions. Given that artificial 
substrata might promote population isolation and trigger selective 
pressures in the long term, with different populations adapting to spe-
cific substratum characteristics (Nakano and Ozawa, 2005; Fauvelot 
et al., 2009; Rivera-Ingraham et al., 2011b; Sedano et al., 2020b; Espi-
nosa et al., 2021), this study underscores the need for understanding the 
mechanisms that drive and maintain phenotypical and genotypical di-
versity as a basis for conserving such populations. Finally, the positive 
impact of artificial structures on limpet populations in this case study 
and others in the studied area, such as Rivera-Ingraham et al. (2011b), 
García-Gómez et al. (2014), and Ostalé-Valriberas et al. (2022, 2023), 
are geographically and structure-type (dolomitic breakwater) context 
specific, and they must not be used to advocate deployment of artificial 
substrata (Firth et al., 2020). Actually, coastal sprawl can have an 
overall negative impact on native biodiversity and may result in uniform 
selection pressures that negatively impact the limpet populations 

inhabiting them (Moreira, 2006; Moreira et al., 2006; Fauvelot et al., 
2009, 2012; Bulleri and Chapman, 2010; Burgos-Rubio et al., 2015; 
Bishop et al., 2017; Sedano et al., 2020a; Alter et al., 2020; Espinosa 
et al., 2021). In the Strait of Gibraltar there are some benefits of artificial 
structures for limpet populations and conservation of rare and endan-
gered species (REF), but this is unlikely to always be the case. 
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Márquez, F., González-José, R., Bigatti, G., 2011. Combined methods to detect pollution 
effects on shell shape and structure in Neogastropods. Ecol. Indicat. 11 (2), 248–254. 
https://doi.org/10.1016/j.ecolind.2010.05.001. 

Márquez, F., Primost, M.A., Bigatti, G., 2017. Shell shape as a biomarker of marine 
pollution historic increase. Mar. Pollut. Bull. 114 (2), 816–820. https://doi.org/ 
10.1016/j.marpolbul.2016.11.018. 

Masucci, G.D., Reimer, J.D., 2019. Expanding walls and shrinking beaches: loss of 
natural coastline in Okinawa Island, Japan. PeerJ 7, e7520. https://doi.org/ 
10.7717/peerj.7520. 

Matos, A., Matthews-Cascon, H., Chaparro, O., 2020. Morphometric analysis of the shell 
of the intertidal gastropod Echinolittorina ineolate (d’Orbigny, 1840) at different 
latitudes along the Brazilian coast. J. Mar. Biol. Assoc. U. K. 100 (5), 725–731. 
https://doi.org/10.1017/S0025315420000624. 

Moreira, J., 2006. Patterns of occurrence of grazing molluscs on sandstone and concrete 
seawalls in Sydney Harbour (Australia). Molluscan Res. 26 (1), 51–60. https://www. 
mapress.com/mr/content/v26/2006f/n1p060.htm. 

Moreira, J., Chapman, M.G., Underwood, A.J., 2006. Seawalls do not sustain viable 
populations of limpets. Mar. Ecol. Prog. Ser. 322, 179–188. https://doi.org/ 
10.3354/meps322179. 

Moschella, P.S., Abbiati, M., Åberg, P., Airoldi, L., Anderson, J.M., Bacchiocchi, F., 
Bulleri, F., Dinesen, G.E., Frost, M., Gacia, E., Granhag, L., Jonsson, P.R., Satta, M.P., 
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