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Abstract: The hypersaline soils of the Odiel Saltmarshes Natural Area are an extreme environment
with high levels of some heavy metals; however, it is a relevant source of prokaryotic diversity that we
aim to explore. In this study, six strains related to the halophilic genus Pseudidiomarina were isolated
from this habitat. The phylogenetic study based on the 16S rRNA gene sequence and the fingerprint-
ing analysis suggested that they constituted a single new species within the genus Pseudidiomarina.
Comparative genomic analysis based on the OGRIs indices and the phylogeny inferred from the
core genome were performed considering all the members of the family Idiomarinaceae. Additionally,
a completed phenotypic characterization, as well as the fatty acid profile, were also carried out.
Due to the characteristics of the habitat, genomic functions related to salinity and high heavy metal
concentrations were studied, along with the global metabolism of the six isolates. Last, the ecological
distribution of the isolates was studied in different hypersaline environments by genome recruitment.
To sum up, the six strains constitute a new species within the genus Pseudidiomarina, for which the
name Pseudidiomarina terrestris sp. nov. is proposed. The low abundance in all the studied hypersaline
habitats indicates that it belongs to the rare biosphere in these habitats. In silico genome functional
analysis suggests the presence of heavy metal transporters and pathways for nitrate reduction and
nitrogen assimilation in low availability, among other metabolic traits.

Keywords: Pseudidiomarina; hypersaline soils; phylogenomics; genome functional analysis; rare
biosphere

1. Introduction

The genus Pseudidiomarina is one of the three genera classified within the family
Idiomarinaceae, along with the genera Aliidiomarina and Idiomarina. It is included in the
order Alteromonadales, class Gammaproteobacteria, phylum Pseudomonadota [1]. Currently, the
genus Pseudidiomarina includes 18 species: Pseudidiomarina aestuarii [2], P. andamanensis [3,4],
P. aquimaris [5,6], P. atlantica [6,7], P. donghaiensis [8], P. gelatinasegens [9], P. halophila [6,10],
P. homiensis [11,12], P. insulisalseae [6,13], P. mangrovi [4,14], P. marina [12], P. piscicola [15],
P. planktonica [16], P. salinarum [12,17], P. sediminum [18], P. tainanensis [12], P. taiwanen-
sis [19], and P. woesei [6,20]. They have been isolated mostly from marine-related envi-
ronments [2,3,5,7–9,11,12,15,18–20], as well as other hypersaline habitats such as solar
salterns [10,17], hypersaline lakes [16], and saline soil [13]. In addition, they have also
been isolated from sediments of Terra Nova Bay, Antarctica [9], cultured European seabass
Dicenthrarchus labrax [15], and the rhizosphere soil of a mangrove Avicennia marina for-
est [14]. They are Gram-stain-negative rods, non-endospore forming, and slight to moderate
halophiles, with NaCl requirements for optimal growth between 1 and 7.5% (w/v). The pH
and temperature to thrive range between 6 and 10 and 25 and 40 ◦C, respectively. They are
unable to grow under anaerobic conditions. Their predominant fatty acids are iso-C15:0,
and their G+C content range is 41.2–56.4 mol% [2,3,5,7–20].
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The Odiel Saltmarshes Natural Area is settled between the Odiel and Tinto rivers in
the province of Huelva (southwest Spain). Its hypersaline soils have been a source for
exploring unknown prokaryotic species such as the haloarchaea Halonotius terrestris [21]
and Natronomonas aquatica [22], and the bacteria Fodinibius salsisoli [23] and Aquibacillus
salsiterrae, as well as the novel genus Terrihalobacillus [24]. Some of these species have been
shown to encode relevant pathways for the biosynthesis of cobalamin and biotin vitamins
in their genome [21,23].

The present study details the isolation of six new strains related to the genus Pseudid-
iomarina from this hypersaline spot. Their taxonomic position was first explored from the
16S rRNA gene-based phylogenetic point of view, deepened by a thoughtful comparative
analysis based on the whole genome sequence, together with chemotaxonomic and pheno-
typic studies. Due to the physicochemical characteristics of the soils, we also performed
an in-depth genome functional analysis of mechanisms to tolerate high concentrations of
heavy metals and salinity. Additionally, their ecological distribution and abundance were
determined by using a genome recruitment strategy against several metagenomes from
saline habitats.

2. Materials and Methods
2.1. Bacterial Isolation and Culture Conditions

The six strains in this study come from larger research on hypersaline soils of the Odiel
Saltmarshes Natural Area, located in the southwest of Spain (37◦12′25′′ N 6◦57′54′′ W).
The collected samples were diluted and inoculated in a low-nutrient medium (SMM)
and a high-nutrient medium (R2A), with pH adjusted to 7.2–7.5. The SMM medium has
the following composition (%): casein digest, 0.5, and sodium pyruvate, 0.11. The R2A
medium has the following composition (%): yeast extract, 0.05; proteose–peptone no. 3,
0.05; casamino acids, 0.05; dextrose, 0.05; starch, 0.05; sodium pyruvate, 0.03; K2HPO4,
0.03; MgSO4, 0.005. Both media were supplemented up to 7.5% (w/v) salt concentration
from a 30% seawater (SW) stock with the following composition (g L−1): NaCl, 234.0;
MgCl2·6H2O, 39.0; MgSO4·7H2O, 61.0; CaCl2, 1.0; KCl, 6.0; NaHCO3, 0.2; and NaBr, 0.7.
When needed, the media were solidified with 2.0% (w/v) agar. Plates were incubated at
28 ◦C for up to a week. After that time, the colonies were subcultured three times to obtain
a pure culture. For long-term preservation, pure cultures were mixed 1:1 with 40% (v/v)
glycerol and stored at −80 and −20 ◦C. The media of isolation was used for routinary
cultivation, specifically, an SMM medium for strains 1APP75-27aT, 1APP75-32.1, 1ASP75-5,
and 1ASP75-14, and an R2A medium for strains 1APR75-33.1 and 1ASR75-15.

In order to test the phenotypic features between our strains and currently described
species of the genus Pseudidiomarina, the following type strains from closely related species
were obtained from culture collections: Pseudidiomarina andamanensis JCM 31645T, Pseudid-
iomarina atlantica KCTC 42141T, Pseudidiomarina halophila KACC 17610T, Pseudidiomarina
homiensis DSM 17923T, Pseudidiomarina insulisalseae LMG 23123T, Pseudidiomarina piscicola
CECT 9734T, Pseudidiomarina plaktonica JCM 19263T, Pseudidiomarina salinarum DSM 21900T,
and Pseudidiomarina taiwanensis DSM 19709T. The SMM medium supplemented with 7.5%
(w/v) SW, as described above, was used to grow them. Additionally, the strain Pseudidioma-
rina andamanensis JCM 31645T was also selected for whole genome sequencing, given its
unavailability in public databases at the beginning of this study.

2.2. Phylogenetic-Based Identification

The DNA of the six strains under study, as well as Pseudidiomarina andamanensis
JCM 31645T, was extracted using the method described by Marmur [25] modified for
small volumes, and the 16S rRNA genes were amplified with universal primers 27F (5′-
AGA GTT TGA TCM TGG CTC AG-3′) and 1492R (5′-GGT TAC CTT GTT ACG ACT
T-3′) [26] by PCR. After purification with MEGAquick-spinTM plus (iNtRON Biotechnology,
Seongnam, Republic of Korea), the product was sequenced using the Sanger method by
Stab Vida (Caparica, Portugal). The 16S rRNA gene sequence was compared against the
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EzBioCloud database for prokaryotes [27] and among themselves using BLASTn v.2.2.28+.
The phylogenetic tree was calculated by the ARB v.7.0 software [28] using the closest
related species available in the SILVA [29] and GenBank [30] databases. The alignment
was performed at the primary and secondary structure levels using the fast aligner tool
integrated into the ARB v.7.0 package [28]. The tree reconstruction was carried out by
three algorithms, i.e., neighbor-joining [31], maximum-parsimony [32], and maximum-
likelihood [33], with the Jukes–Cantor model selected to correct the distance matrix [34].
The branching topology was assessed via 1000-replicate bootstrap analysis [35]. Imaging
and editing of the tree were performed using the script “gitana” (https://github.com/
cristinagalisteo/gitana, accessed on 1 December 2023).

In order to confirm that the isolates were not clones from the same strain, we carried
out two Repetitive Extragenic Palindromic sequence-based Polymerase Chain Reaction (rep-
PCR) amplifications. The first one used the BOX-A1R primer (5′-CTACGGCAAGGCGACG
CTGACG-3′), while the second one used the ERIC_1R forward (5′-ATGTAAGCTCCTGGG
GATTCAC-3′) and the ERIC_DOS reverse (5′-AAGTAAGTGACTGGGGTGAGCG-3′)
primers. The PCR reaction mixture was as follows: 5.0 µL reaction buffer (10×); 2.5 µL
MgCl2; 8.0 µL dNTPs mix (10 mM); 5.0 µL BOX-A1R primer or 2.5 µL for each ERIC_1R
and ERIC_DOS primers; 1.0 µL DNA; 0.5 µL Taq DNA polymerase; and 28.0 µL miliQ H2O.
The thermocycler program comprised initial denaturation (95 ◦C for 3 min) followed by
30 cycles (95 ◦C for 2 min, 94 ◦C for 3 s, 92 ◦C for 3 s, and 40 ◦C for 1 min) and a final
extension of 65 ◦C for 8 min, as described by León et al. [36]. The electrophoresis was
carried out in 1.5% (w/v) agarose gel and run at 12 V for a period of 16 h inside a 4 ◦C room.

2.3. Whole Genome Sequencing, Phylogenomic, and Comparative Genomic Analyses

Shogun sequencing of the genome of the six isolates and Pseudidiomarina andamanen-
sis JCM 31645T, whose genome was not available at the beginning of this study, was
performed using the Illumina NovaSeq PE150 platform by Novogene Europe (Cam-
bridge, UK). SPAdes v.3.13.0 [37] (options “--careful -k 21, 33, 55, 77, 99, 127”) was
employed to assemble the filtered reads. The quality of the assembly was evaluated
by QUAST v.2.3 [38] and CheckM v.1.0.5 [39]. Prodigal v.2.60 [40] was used to extract
the coding sequences (CDS), and Prokka v.1.12 [41] to annotate the outputting stan-
dard GenBank files. The detailed functional annotation was performed using the online
tool BlastKOALA [42], which assigned functional KEGG Orthology (KO) numbers and
KEGG pathways. The “iep” program included in the EMBOSS package v.6.5.7.0 [43] al-
lowed for the calculation of the isoelectric points of the predicted translated CDS. The
amino acid frequency was estimated by means of the “countingAAS.py” homemade script
(https://github.com/AliciaGR5/The_Metagenomics_dispatch, accessed on 1 December
2023). SuperPang [44] was used to determine the pangenome of the six isolates, and the
graph was analyzed by Bandage [45].

In order to establish the placement of the six isolates within the family Idiomarinaceae, a
phylogenomic tree was reconstructed based on the translated core CDS from the type strains
of the species of the three genera of the family Idiomarinaceae (i.e., Aliidiomarina, Idiomarina,
and Pseudidiomarina) available in the RefSeq database. First, orthologous genes were found
and extracted by BLASTp v.2.2.28+ and the Markov Cluster Algorithm, as implemented
in the Enveomics toolbox [46]. The aforementioned genes were aligned using Muscle
v.3.8.31 [47], and subsequently, the approximately maximum-likelihood phylogenomic tree
was inferred with FastTreeMP v.2.1.8 [48], considering the Jones-Taylor-Thornton model of
amino acid evolution [49]. The Shimodaira–Hasegawa test [50] was performed to check
the robustness of the nodes. The tree was visualized and edited using the online tool
“iTOL” v.6.5.8 [51]. According to the minimal standards for the use of genome data for
prokaryotic taxonomy [52], the following overall genome relatedness indexes (OGRIs) were
calculated: digital DNA–DNA hybridization (dDDH), Average Amino acid Identity (AAI)
and Average Nucleotide Identity for orthologous sequences (orthoANI). The Genome-to-
Genome Distance Calculator (GGDC v.3.0) from the Leibniz Institute DSMZ (Braunschweig,
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Germany) [53] allowed for determining the dDDH values, while Enveomics toolbox [46]
and OAU software v.1.2 [54] permitted the estimate of AAI and orthoANI percentages,
respectively.

2.4. Chemotaxonomic and Phenotypic Characterization

The selected type strain 1APP75-27aT was grown on Marine Agar (MA) supplemented
with 10% (w/v) NaCl, pH adjusted to 7.5, at 28 ◦C for 3 days. The cellular fatty acid
composition was determined using gas chromatography (Agilent 6850) following the
standardized protocol (MIDI Microbial Identification System) [55]. This analysis was
carried out by the Spanish Type Culture Collection (CECT), Valencia, Spain.

The pigmentation and morphology of the colonies were observed after 24 h of growth
at 37 ◦C on SMM (strains 1APP75-27aT, 1APP75-32.1, 1ASP75-5, and 1ASP75-14) and
R2A (strains 1APR75-33.1 and 1ASR75-15) media, supplemented with 7.5% (w/v) salt
concentration and pH adjusted to 7.2–7.5. The AnaeroGenTM system (Oxoid, Horsham, UK)
was used to determine anaerobic growth under the same conditions. Cells were observed
by phase contrast with an Olympus CX41 microscope.

The physiological growth conditions of the type strain 1APP75-27aT were determined
via absorbance measurements at 600 nm every 2 h for 24 h using an Infinite M Nano
microplate reader (Tecan, Grödig, Austria), adjusted to 37 ◦C with linear shaking. SMM
liquid medium was supplemented with 0, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, 12, 15, 17, 20, 22, and
25% (w/v) salts (pH adjusted to 7.2–7.5) in order to determine the range and optimum
growth salinities. To define the range and optimum pH supporting growth, we used
an SMM liquid medium supplemented with the optimal salt concentration and the pH
adjusted to 3.0, 4.0, 5.0, 6.0, 7.0, 7.5, 8.0, 9.0, and 10.0 using a buffered system to maintain pH
conditions [56]. The SMM liquid medium supplemented with the optimal salt concentration
and pH adjusted to the optimum was incubated at 2, 3, 4, 5, 6, 8, 10, 15, 28, 37, 40, 43, 44,
and 45 ◦C for the determination of the range and optimum growth temperatures. In the
latter case, the absorbance was measured using a Spectronic 20D+ (ThermoSpectronics,
Cambridge, UK).

The phenotypic features of the six isolates, together with the reference strains P. an-
damanensis JCM 31645T, P. atlantica KCTC 42141T, P. halophila KACC 17610T, P. homiensis
DSM 17923T, P. insulisalseae LMG 23123T, P. piscicola CECT 9734T, P. plaktonica JCM 19263T,
P. salinarum DSM 21900T, and P. taiwanensis DSM 19709T, were studied. For all tests, cultures
were incubated at 37 ◦C for 24 h. To examine catalase activity, a drop of 3% (w/v) H2O2
solution was added to young colonies. Oxidase activity was determined with 1% (v/v)
tetramethyl-p-phenylenediamine [57,58].

The determination of hydrolysis of aesculin, casein, DNA, gelatin, starch, Tween 80 as
well as methyl red and Voges–Proskauer tests, the production of indole, H2S, phenylalanine
deaminase and urease, nitrate and nitrite reduction, and Simmons’ citrate were carried out
following the methods described by Cowan and Steel [58]. The production of acid from
carbohydrates was carried out using the phenol red base medium supplemented with 7.5%
(w/v) NaCl and 0.05% (w/v) yeast extract. Each substrate was added by filter sterilization
to obtain a final concentration of 1% (w/v) [58,59]. To test the utilization of a wide range of
substrates as sole sources of carbon, nitrogen, and energy, the isolates and the reference
strains were inoculated in the medium described by Koser [60], as modified by Ventosa
et al. [59]. The final concentration was 2 g L−1 for carbohydrates and 1 g L−1 for alcohols,
organic acids, and amino acids.

2.5. Genome Recruitment Analysis

To estimate the abundance of the six strains in the studied soils, as well as in other
hypersaline environments, we performed a genome fragment recruitment analysis from
several available metagenomes. The metagenome datasets, which are detailed in Table S1,
were filtered to retain only reads ≥30 bp. Subsequently, genome contigs were concatenated,
and the rRNA genes were masked. BLASTn v.2.2.28+ search was performed for high-quality
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metagenome reads against the reference genomes. Only those results with identity values ≥
95%, e-value ≤ 10−5, and alignment length ≥ 50 bp were kept, following the recommenda-
tion of Mehrshad et al. [61]. The relative abundance values were normalized to RPKG (Reads
recruited Per Kilobase of genome per Gigabase of metagenome) [62]. Terrihalobacillus insolitus
3ASR75-11T (GCF_028416575.1), Haloquadratum walsbyi C23T (GCF_000237865.1), Salinibacter
ruber DSM 13855T (GCF_000013045.1), and Spiribacter salinus M19-40T (GCF_000319575.2)
were used as references for comparative purposes.

3. Results and Discussion
3.1. Harsh Conditions in the Soils from the Odiel Saltmarshes Natural Area

The Odiel River is well known for its extreme concentrations of heavy metals, i.e.,
arsenic, cadmium, copper, lead, and zinc [63,64]. The hypersaline soils of the Odiel Salt-
marshes Natural Area from which the strains of this study were isolated presented the
following values of heavy metals (mg kg−1): arsenic, 13.04; cadmium, 0.46; copper, 96.25;
lead, 21.5; and zinc, 108.5. Arsenic and zinc were clearly above the limits set by the Gov-
ernment of the region of Andalucía for non-contaminated soils (mg kg−1): arsenic, 2–5;
cadmium, 0.4–0.8; copper, 17–100; lead, 10–50; and zinc, 10–70 [65]. In addition, copper was
close to the upper limit but did not exceed it. Similarly high values of these heavy metals
were also observed in previous studies in this area [23,24,66]. The pH of the soil was 8.2,
and the electrical conductivity (EC) was 12.80 mS cm−1 at 25 ◦C, trespassing the criteria to
delineate saline soils (4 mS cm−1 at 25 ◦C) [67].

3.2. Affiliation of the New Isolates Based on Amplified Gene Sequences

Six strains of this study were isolated from the hypersaline soils of the Odiel Salt-
marshes Natural Area (Huelva, Southwest Spain). Strains 1APP75-27aT (selected as type
strain), 1APP75-32.1, 1ASP75-5, and 1ASP75-14 were isolated on SMM medium supple-
mented with 7.5% (w/v) salts, and strains 1APR75-15 and 1APR75-33.1 on R2A medium
supplemented with 7.5% (w/v) salts.

The percentages of identity among all 16S rRNA gene sequences of the six isolates
(1471–1496 bp) were equal to or above 99.80% (99.80–100%) (Table S2), which implies that
the six strains are very closely related and probably belong to the same species. Identity
values lower than 98.65% for the comparison of the 16S rRNA gene sequences with those
of already described species indicated that the six new strains could constitute a novel
species [68]. Pseudidiomarina homiensis PO-M2T was found to be the best hit for the six
isolates, with values lower than the species delineation threshold, ranging from 97.81%
(strain 1APP75-33.1) to 97.18% (strain 1ASP75-14). The following best hits also belonged
to the genus Pseudidiomarina: P. halophila (96.90–97.54%), P. atlantica (96.91–97.40%), and
P. salinarum (96.90–97.40%) (Table S2). Thus, the 16S rRNA gene sequence identity values
when searching against the EzBioCloud prokaryotic database suggest that the six isolates
are related to the genus Pseudidiomarina and, additionally, they could constitute a new
species within this genus.

The phylogenetic tree based on 16S rRNA gene sequences from the new isolates
and all the species belonging to the family Idiomarinaceae provided an enhanced view of
the relationship between the strains (Figure 1). In fact, the six isolates clustered together
with the type strains of species of the genus Pseudidiomarina. However, they formed an
independent branch separated from their closest neighbor, Pseudidiomarina piscicola CECT
9734T. The position of the six isolates was supported by the three algorithms used to infer
the tree topology, i.e., neighbor-joining, maximum-parsimony, and maximum-likelihood.
Nevertheless, most of the nodes harboring the species of the genus Pseudidiomarina exhibited
bootstrap values below 70%, and thus, we carried out further taxonomic analyses to
accurately establish the taxonomic position of the six isolates.
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Figure 1. Neighbor-joining phylogenetic tree based on the comparison of the 16S rRNA gene
sequences of the six new isolates and the members of the family Idiomarinaceae. Bootstraps (based
on 1000 pseudoreplicates) equal to or higher than 70% are shown. Black-filled circles at the nodes
indicate that these nodes were also obtained with the maximum-parsimony and maximum-likelihood
algorithms. Thalassomonas viridans XOM25T and Colwellia psychrerythraea ATCC 27364T were selected
as the outgroup. Bar, 0.01 substitutions per nucleotide position.

Genomic fingerprinting can provide better taxonomy resolution at strain level than the
16S rRNA gene sequence [69]. It allows the differentiation between clones and strains of
the same species and has important relevance at clinical and environmental levels [70–72].
In the case of this study, the six strains have been isolated from the same sample, so it was
possible that they corresponded to the same individual. The agarose gel electrophoresis
revealed the same band patterns for the six isolates after BOX-PCR amplification. However,
several differences could be observed in the gel corresponding to the ERIC-PCR; for instance,
some bands were missing, and none of the strains showed exactly the same pattern as any
of the others (Figure 2). This result corroborates that the six isolates constitute different
strains, or, in other words, neither of them are clones.
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Figure 2. BOX-PCR (left) and ERIC-PCR (right) genomic fingerprints on 1.5% agarose gel elec-
trophoresis. Lanes: M, Marker SiZer 1000 plus (iNtRON Biotechnology, Seongnam, Republic of
Korea); 1, strain 1APP75-27aT; 2, strain 1APP75-32.1; 3, strain 1ASP75-14; 4, strain 1ASP75-5; 5, strain
1APR75-15; 6, strain 1APR75-33.1.

3.3. Genome-Based Comparative Analysis

The genomes of the six isolates were assembled, each one of them in less than 25 scaf-
folds. Genome sizes were similar among them, from 2,634,306 to 2,725,130 bp, with a G+C
content between 51.59 and 51.81 mol%. The species Pseudidiomarina andamanensis JCM
31645T, whose genome was also sequenced, had a genome size of 2,397,397 bp and a G+C
content of 47.02 mol% (Table S3). The genomes of the new isolates showed a size slightly
above the interquartile range for the other members of the genus Pseudidiomarina and a
greater resemblance to the genomes of the species of the genera Idiomarina and Aliidiomarina
(Figure 3A). Moreover, the G+C content was different from that of the other members of
the family Idiomarinaceae, above the 51.00–46.93 and 50.82–46.34 mol% ranges for Idiomarina
and Aliidiomarina, respectively. However, the G+C content fell still within the range for
the species of Pseudidiomarina, 52.96–47.02 mol% (Figure 3B). The six isolates, along with
the two species of the genus Pseudidiomarina with the highest G+C content, P. salinarum
(52.96 mol%) and P. insulisalsae (52.34 mol%), were isolated from hypersaline environments.
These habitats suffer from high solar radiation, and therefore, those higher G+C contents
might be a genome adaptation in order to avoid the dimerization of thymine caused by UV
radiation [73,74]. Further information on the genome sequences of the species of the family
Idiomarinaceae included in this study is detailed in Table S3.
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six isolates and the species of the genera Pseudidiomarina, Idiomarina, and Aliidiomarina included in
this study, all affiliated to the family Idiomarinaceae.
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With the aim to faithfully establish the evolutionary relationships among the strains
under study, we computed a phylogenomic tree based on 1065 translated orthologous
single-copy genes extracted from the core genome of the six new strains and all the species
within the family Idiomarinaceae with available genome sequences (Figure 4). Unlike the
tree inferred from the 16S rRNA gene sequences, the phylogenomic tree branches were
mostly supported by bootstrap values of 100%, including that grouping the six novel strains.
Furthermore, the evolutionary distance among the new isolates was very short, as could be
expected for strains belonging to the same species. As suggested by the phylogenetic tree,
the genome-based tree also affiliated the novel isolates to the genus Pseudidiomarina.
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Figure 4. Maximum-likelihood phylogenomic tree based on the 1065 concatenated core protein
sequences of the six new isolates and all the representatives of the genera Pseudidiomarina, Idiomarina,
and Aliidiomarina, belonging to the family Idiomarinaceae, whose genomes were available. Accession
numbers are indicated in brackets. Bootstrap values ≥ 70% are indicated above the branch. Bar,
0.1 substitutions per amino acid position.

The phylogenomic tree inference was clearly supported by the following overall
genome relatedness indexes (OGRIs). Firstly, Average Nucleotide Identity for orthologous
sequences (orthoANI) and digital DNA–DNA hybridization (dDDH) determine that species
with values equal to or above 95% and 70%, respectively, belong to the same species [75–78].
Regarding the six isolates, they showed orthoANI and dDDH values of 98.80–99.61% and
98.5–97.3%, respectively, among themselves (Figure 5). Although these percentages are high,
they are below 100%, indicating that the isolates belong to the same species but constitute
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different strains. Regarding the other species of the family Idiomarinaceae, the six isolates
showed the highest orthoANI values with Pseudidiomarina halophila BH195T (78.93–79.30%)
and the highest dDDH percentages with Idiomarina baltica OS 145T (27.2–24.5%). These
results clearly confirm that the new isolates do not belong to any of the previously described
species, as the percentages are far below the thresholds. Secondly, Average Amino acid
Identity (AAI) establishes that species sharing values above 65–72% belong to the same
genus [79,80]. The known species of the genus Pseudidiomarina exhibited 94.9–64.9% AAI
values among themselves, while these percentages were below 63.6% with respect to
the type species of the genera Idiomarina and Aliidiomarina (Figure 6). The six isolates
showed 98.62–99.68% AAI with each other, again revealing that they belong to the same
species. The results obtained versus the species of the genus Pseudidiomarina were above
the 65–72% range for genus delineation (86.53–66.3%), while the percentages regarding
Aliidiomarina taiwanensis AIT1T and Idiomarina abyssalis KMM 227T were 58.01–57.83% and
63.70–63.56%, respectively (Figure 6). Thus, these results allow us to conclude that the six
isolates constitute a new species within the genus Pseudidiomarina.
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Figure 5. Digital DDH (lower triangle) and orthoANI (higher triangle) values (%) among the
six isolates, the type strains of the species of the genus Pseudidiomarina, and the type species of
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species delineation among themselves but below it with respect to the other species of the family
Idiomarinaceae, indicating that they constitute a different separate species.
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Figure 6. AAI values among the six new isolates, the species of the genus Pseudidiomarina, and the
type species of the genera Aliidiomarina and Idiomarina. The six novel strains, together with the species
of Pseudidiomarina, shared AAI values above the 65% cutoff for genus delineation.

The pangenome of the new species comprising six isolates has a size of 3,292,679 bp,
of which 2,406,033 bp (73.1%) belonged to the core, and 886,646 bp (26.9%) belonged to
the accessory genome (Figure 7). The 18.1% of the non-branching paths (NBPs) of the
pangenome were identified as the core genome, whereas 28.3% belonged to singletons. The
isolate 1APR75-33.1 presented the highest number of singletons NBPs (7.4%), followed by
strains 1ASP75-5 (6.7%), 1ASP75-14 (6.2%), and 1APP75-27aT (4.5%). Concerning the 2574
translated gene sequences that constitute the pangenome, 2267 were shared among the six
isolates. On the other hand, strains 1APP75-32.1 and 1APR75-15 shared 70 translated gene
sequences, which were not present in any other isolate. The most relevant protein functions
are detailed in the “Functional Overview Based on KEGG Annotation” Section.
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Figure 7. Graphic representation of the pangenome of strains 1APP75-27aT, 1APP75-32.1, 1ASP75-5,
1ASP75-14, 1APR75-15, and 1APR75-33.1, isolated in this study. The color of the lines represents
depth (sequence coverage): red for higher values and black for lower values. The core is represented
in red, as it is common for the six strains, and so is the accessory genome shared by a high number of
strains. Each node indicates a diversification of the genome lecture for one or more strains.

3.4. Fatty Acid Profile and Phenotypical Features

The major fatty acids detected for the type strain 1APP75-27aT included iso-C17:0
(21.1%), iso-C17:1 ω9c and/or 10-methyl C16:0 (20.2%), and iso-C15:0 (16.0%), showing a
profile similar to the other species of the genus Pseudidiomarina (Table S4).

The six new strains presented regular, non-pigmented colonies with a size of
0.5–2.0 mm. Cells were Gram-stain-negative motile rods with a size of 0.4–0.6 × 1.0–1.3 µm.
They were non-endospore-forming and did not grow under anaerobic conditions. They
were catalase- and oxidase-positive. The six strains hydrolyzed gelatin but not casein, DNA,
and starch, whereas some of the strains could also hydrolyze aesculin and Tween 80. None
of the nine species of Pseudidiomarina closely related to our isolates could hydrolyze starch.
The six strains, in addition to the analyzed species of Pseudidiomarina, were negative for
Simmons’ citrate, Voges–Proskauer test, phenylalanine deaminase, and indole production.
In comparison with P. halophila (the closest related species of Pseudidiomarina), our isolates
were able to hydrolyze casein, but they did not present urease activity. Furthermore, the
new species showed optimum growth at a higher NaCl concentration (6.0% [w/v]) than
P. halophila (2.0–3.0% [w/v]). Further phenotypical features of strain 1APP75-27aT and
the other strains isolated in this study, as well as the closest related species of the genus
Pseudidiomarina, are described in Table S5. Slightly dissimilar results of the new isolates for
substrate utilization may be related to variances in the growth conditions.

3.5. Functional Overview Based on KEGG Annotation

The BlastKOALA online tool annotated a total of 1498 KEGG Orthology identifiers
(KO numbers) within the genomes of the six new isolates. Each of the genome sequences
possessed at least 10 KO numbers that were missing from the other strains, with the
exception of isolate 1ASR75-15. Therefore, no functional differences could be explained by
the genomic information of the isolates.

The most relevant KEGG pathways found in the genomes of the isolates are shown in
Figure 8. Among them, we could highlight universal and essential mechanisms such as
two-component signal transduction systems, ribosomes, and purine metabolism, as well as
the ability to synthesize biofilms. Functions related to nitrogen metabolism were identified,
such as NarX, NarL, NarG, NarH, NarI, and NarJ (K07673, K07684, K00370, K00371,
K00374, and K00373), which include the ability to reduce nitrate as also corroborated by
wet lab experiments (Table S5). Furthermore, the six genomes presented KO numbers
related to nitrogen assimilation in low availability, i.e., GlnL, GlnG, GlnA, GlnD, and GlnB
(K07708, K07712, K01915, K00990, and K04751). Moreover, ABC transporters for molybdate
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(ModA, ModB, and ModC; K02020, K02018, and K02017), trivalent iron (AfuA, AfuB,
and AfuC; K02012, K02011, and K02010), phospholipids (MlaC, MlaD, MlaE, MlaB, and
MlaF; K07323, K02067, K02066, K07122, and K02065), phosphate (PstS, PstC, PstA, and
PstB; K02040, K02037, K02038, and K02036), sodium ion (NatA and NatB; K09697 and
K09696), lipoprotein (LolC/LolE and LolD; K09808 and K09810), heme (CcmD, CcmC,
CcmB, and CcmA; K02196, K02195, K02194, and K02193), and lipopolysaccharide (LptF,
LptG, and LptB; K07091, K11720, and K06861) were found. Last, 78 KO numbers related to
bacterial motility were identified in accordance with the motility observed by microscopy
under laboratory conditions. In any case, the metabolism of the isolates and the previously
described species of the genus Pseudidiomarina was very similar, and no relevant functions
were found among the annotated proteins of the six new strains.
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Figure 8. KEGG Orthology identifiers annotated for the genomes of the six new isolates, the rep-
resentative genomes of the species of the genus Pseudidiomarina, and the type species of the gen-
era Aliidiomarina and Idiomarina. The KEGG pathways are sorted according to their abundance
in strain 1APP75-27aT and only the 50 most abundant ones are shown, grouped by KEGG cate-
gories: signal transduction (dark blue), energy metabolism (blue), translation (orange), nucleotide
metabolism (yellow), carbohydrate metabolism (black), membrane transport (dark red), cell motility
(light blue), amino acid metabolism (light red), cellular community (light green), glycan biosynthe-
sis and metabolism (dark green), lipid metabolism (green), metabolism of cofactors and vitamins
(pink), and biosynthesis of other secondary metabolites (purple). 1, strain 1APP75-27aT; 2, strain
1APP75-32.1; 3, strain 1APR75-33.1; 4, strain 1ASP75-14; 5, strain 1ASP75-5; 6, strain 1ASR75-15;
7, Pseudidiomarina aestuarii KYW314T; 8, Pseudidiomarina aquimaris SW15T; 9, Pseudidiomarina at-
lantica MCCC 1A10513T; 10, Pseudidiomarina donghaiensis 908033T; 11, Pseudidiomarina gelatinasegens
R04H25T; 12, Pseudidiomarina halophila BH195T; 13, Pseudidiomarina homiensis PO-M2T; 14, Pseudidioma-
rina insulisalseae CSV-6T; 15, Pseudidiomarina marina PIM1T; 16, Pseudidiomarina piscicola CECT 9734T;
17, Pseudidiomarina plaktonica TS-T11T; 18, Pseudidiomarina salinarum ISL-52T; 19, Pseudidiomarina
sediminim c121T; 20, Pseudidiomarina tainanensis PIN1T; 21, Pseudidiomarina taiwanensis PIT1T; 22,
Pseudidiomarina woesei DSM 27808T; 23, Aliidiomarina taiwanensis AIT1T.
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3.6. Salt Adaptation Mechanisms Encoded in the Genome Sequence

The survival of microorganisms in hypersaline habitats is favored by one of the
two known osmoregulation strategies: (a) salt-in, frequent in extreme halophiles (i.e.,
haloarchaea and some species from the bacterial genera Salinibacter and Halorhodospira) that
are able to accumulate higher ion concentrations inside the cell [81,82]. Their proteome is
slightly more acidic to compensate for the cytoplasmic KCl accumulation and to guarantee
the stability and activity of their proteins. Structural adaptation makes this strategy suitable
for a small range of salinities [83]. (b) Salt-out is the most extended osmoregulation strategy,
as it allows resiliency to a large salinity range [83]. Some of the microorganisms that exhibit
this mechanism also have an acidic proteome.

The six strains isolated and analyzed in this study showed the same isoelectric profile
as other members of the genus Pseudidiomarina. Figure 9 displays a more similar isoelectric
point distribution between our strains and Spiribacter salinus, which uses a salt-out strat-
egy [84], than with respect to Haloarcula vallismortis, which is a representative example of a
haloarchaea with a salt-in mechanism [83]. On the other hand, the novel strains had the
same amino acid frequencies as the already described members of the family Idiomarinaceae.
Leucine (L), 10.16–10.92%, and alanine (A), 10.62–8.75%, are the most abundant amino acids,
while cysteine (C), 0.82–0.91%, and tryptophane (W), 1.31–1.43%, are the least ones. Even if
the proteome of representatives of this family is acidic, it seems that their osmoregulation
strategy is salt-out. They have been mostly isolated from sea environments, where the salt
concentration is lower than in other hypersaline habitats, such as salterns. In addition,
the species of the genus Pseudidiomarina can grow in a wide range of salt concentrations,
0.5–15% (w/v) [2,5,7–13,15–20], where the salt-out strategy fits better than the salt-in. As
we shall describe below, strain 1APP75-27aT is able to grow between 0.5 and 17% (w/v)
salt concentration.
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as references strains for salt-in and salt-out strategies, respectively (green).

We further studied the genome sequence of the six novel strains with the aim of
detecting the presence of genes involved in the de novo biosynthesis of the two most
universally compatible solutes, ectoine and glycine betaine, but KEGG identifiers were
not found for any of the routes. However, the potassium transporters KtrA (K03499) and
KtrB (K03498) were annotated. These proteins provide a fast mechanism to cope with
osmotic shocks, allowing the K+ uptake from the medium into the cytoplasm [85,86]. On
the contrary, the identified mechanosensitive channels, MscS (K03442) and MscL (K03282),
allow ions and compatible solutes to diffuse rapidly out of the cell when the salinity
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drops [87,88]. Therefore, the isolated bacteria had been shown to thrive at low and medium
salinities (Table S5), but their osmoadaptation strategy cannot be deducted from their
genomic information.

3.7. In Silico Study of Heavy Metal Tolerance in the New Isolates

As stated before, the sampled soils feature extreme heavy metal concentrations, par-
ticularly of arsenic and zinc. Previous studies have revealed the existence of heavy metal
tolerance strategies in the genomes of bacterial strains isolated from the Odiel Saltmarshes
Natural Area [23,24], a characteristic also confirmed by wet lab experiments [89,90].

The genomes of the six strains isolated in this study encoded the ArsA (K01551)
transporter, which pumps out arsenite (the most toxic species of arsenic in nature) with
energetic cost [91–93]. Additionally, the CzcCBA transporter (K15725, K15726, and K15727)
for cadmium, zinc, and copper was detected, as well as CopA (K17686), a copper P-type
ATPase increasing the microbial tolerance to this heavy metal [94,95]. Finally, cusA and
cusB genes (K07787 and K07796) coding for the CusABC copper/silver efflux system
protein [96] were also annotated. These functions were not present in the genomes of other
studied species of the genus Pseudidiomarina. CzcCBA was missing from P. aestuarii and
P. planktonica and incomplete in P. salinarum. Moreover, CopA was not detected in any of the
strains mentioned above, and ArsA could not be annotated for P. piscicola and P. taiwanensis.
Therefore, our results indicate that the novel species of the genus Pseudidiomarina, isolated
from heavy metal-contaminated soils in the Odiel Saltmarshes Natural Area, has developed
strategies for heavy metal tolerance, specifically copper and, to a lesser extent, cadmium,
zinc, and silver.

Additionally, it has been stated that biofilm production may be involved as a protec-
tive barrier in habitats contaminated with arsenite and copper [97–99]. The new isolates
harbored in their genomes the potential capacity for biofilm formation, which might offer
them an additional mechanism for survival in these polluted environments.

3.8. Ecological Distribution of the New Species in Hypersaline Environments

In order to assess the abundance of the new species in hypersaline environments,
we analyzed 13 metagenomic datasets previously reported from terrestrial and aquatic
hypersaline habitats (Table S1). The distribution of each of the six isolates was very similar
and also comparable to that of the reference species Terrihalobacillus insolitus, which has been
previously identified as a member of the “rare biosphere” due to its low abundance [24].
Figure 10 shows that the type strain 1APP75-27aT is rarely found in environments with
extremely high salinity, such as a Chilean solar saltern (Cáhauil) [100], Spanish solar salterns
located in Isla Cristina (IC21) [101] and Santa Pola (SS33 and SS37) [102,103], hypersaline
lakes from Australia (Tyrrell 0.1 and Tyrrell 0.8) [104] and Iran (Urmia) [105], as well as the
salt crust from the Qi Jiao Jing Lake in China (Xinjiang) [106]. However, it seems that its
abundance increases with decreasing salinity, as can be observed in the intermediate salinity
ponds of Santa Pola (SS19 and SS13) [102,103], the hypersaline soils of the Odiel Saltmarshes
Natural Area (SMO1 and SMO2) [66], and the hypersaline sediments of the Arctic Spring
(Arctic Spring) [107]. Previous metagenomic studies conducted in the hypersaline soils
of the Odiel Saltmarshes Natural Area assigned 2.2% of the 16S rRNA genes identified in
the SMO2 dataset to the genus Pseudidiomarina [108]. Nevertheless, the relative abundance
of isolate 1APP75-27aT in all the studied hypersaline environments was below the 0.1%
threshold, usually accepted to consider a taxon as a “rare biosphere” [109]. Particularly,
the relative abundance of the strain 1APP75-27aT in SMO1 and SMO2 metagenomes was
0.0743–0.0241%. Thus, the new species Pseudidiomarina terrestris can be classified as a “rare
biosphere” given its scarce presence in these habitats.
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Figure 10. Genome recruitment (expressed as RPKG values) for the isolate 1APP75-27aT and four
species of halophilic microorganisms with known distributions (i.e., the bacterial species Terrihalobacil-
lus insolitus, Salinibacter ruber, and Spiribacter salinus, and the haloarchaea Haloquadratum walsbyi)
against metagenomic datasets from different hypersaline environments: hypersaline soils from Odiel
Saltmarshes Natural Area (SMO1, SMO2); a solar saltern from Chile (Cáhauil); hypersaline lakes from
Australia (Tyrrell 0.1, Tyrrell 0.8); solar salterns located in Isla Cristina (IC21) and Santa Pola (SS13,
SS19, SS33, and SS37), Spain; salt crust from the Qi Jiao Jing Lake in China (Xinjiang); and hypersaline
sediments of the Arctic Spring (Arctic Spring). Squared root transformation was performed for the
Y-axis in order to better visualize low values.

4. Conclusions

The evidence found during this study based on phylogenetic, genomic, chemotax-
onomic, and phenotypic features of the six isolated microorganisms undeniably reveals
that they constitute a new species within the genus Pseudidiomarina, for which the name
Pseudidiomarina terrestris sp. nov. is proposed. The description is shown below.

The in-depth in silico study of the genome sequences of the six strains belonging to the
newly proposed species showed the presence of genes related to heavy metals tolerance,
mostly to copper but also to cadmium, zinc, and silver. Furthermore, biofilm formation
capability was also revealed, which could act as a barrier against these toxic metals. In
addition, some functions related to osmoregulation strategies were also found, although
the de novo biosynthesis pathway for compatible solutes was not detected. The abundance
of the new species was exceptionally low (below the 0.1% cutoff for the “rare biosphere”) in
13 metagenomic datasets from hypersaline environments, including the hypersaline soils
of the Odiel Saltmarshes Natural Area from where the six strains were isolated.

Description of Pseudidiomarina terrestris sp. nov.
Pseudidiomarina terrestris sp. nov. (ter.res’ tris. L. fem. adj. terrestris of or belonging to

the earth, terrestrial).
Cells are Gram-stain-negative, motile, and non-endospore-forming rods with a size of

0.4–0.6 × 1.0–1.3 µm. They are strictly aerobic. Colonies are regular, without pigmentation
in SMM medium supplemented with 7.5% (w/v) NaCl, after 24 h of incubation at 37 ◦C.
Growth occurs at 0.5–17.0% NaCl (w/v), pH 4–10, and 3–44 ◦C, and optimally at 6% NaCl
(w/v), pH 7, and 37 ◦C. They are catalase- and oxidase-positive. Nitrate is reduced but
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not nitrite. Gelatin is hydrolyzed, but casein, DNA, and starch are not. Some strains can
hydrolyze aesculin and Tween 80. It does not produce indole, but some strains produce H2S.
Methyl red and Voges–Proskauer tests are negative. It does not produce acids from sodium
citrate or from any other studied carbohydrate, but some strains can use the following
sugars, alcohols, and organic acids as sole carbon and energy sources: aesculin, amyg-
dalin, L-arabinose, D-cellobiose, D-fructose, D-galactose, D-glucose, D-lactose, D-maltose,
D-mannose, melibiose, D-melezitose, pyruvate, ribose, D-raffinose, salicin, starch, sucrose,
D-trehalose, D-xylose dulcitol, ethanol, glycerol, mannitol, D-sorbitol, xylitol, butyrate,
formate, fumarate, hippurate, malate, and propionate. However, butanol, methanol, pro-
pranolol, acetate, benzoate, citrate, glutamate, and valerate cannot be utilized as sole carbon
and energy sources. In addition, some strains can use the amino acids L-alanine, arginine, L-
asparagine, aspartate, L-phenylalanine, L-glutamine, L-lysine, L-methionine, and L-serine
as sole sources of carbon, nitrogen, and energy, but none of them can utilize L-cystine,
L-glycine, L-isoleucine, ornithine, L-threonine, tryptophan, and valine. Predominant fatty
acids are iso-C17:0, iso-C17:1 ω9c and/or 10-methyl C16:0, and iso-C15:0.

The type strain is 1APP75-27aT (=CECT 30242T = CCM 9142T). It was isolated from
hypersaline soils at the saltmarshes of the Odiel Natural Park in Huelva (Southwest Spain).
Its genome has an approximate size of 2.67 Mb, its G+C content is 51.7 mol%, and its
GenBank accession number is JAGHRQ000000000. The accession number for its 16S rRNA
sequence is MW776627.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms12020375/s1. Table S1. Metagenomic datasets
from different hypersaline habitats used for the ecological distribution analysis. Table S2. Identity
percentages of the six new strains between themselves and best hits obtained against the high
quality 16S rRNA gene sequence EzBioCloud database. Table S3. Detailed information of the
genomes from the six new isolates and the type strains of species of the genera Pseudidiomarina,
Aliidiomarina, and Idiomarina, all of them belonging to the family Idiomarinaceae. Table S4. Fatty acids
composition of strain 1APP75-27aT and the previously described species of the genus Pseudidiomarina.
Table S5. Differential biochemical features of the six isolates and representative members of the
genus Pseudidiomarina.
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