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Abstract
Groundwater is a valuable shared resource in the Moulouya Basin, but it has been in decline due to recent years of low 
rainfall and rapid population growth. To support socio-economic development, there is increased demand for this precious 
resource. This paper presents a standard methodology for delimiting potential groundwater zones using geographic infor-
mation systems (GIS), an integrated analytical hierarchy process (AHP), and remote sensing techniques. Seven parameters 
that monitor the presence and mobility of groundwater, including drainage density, lithology, slope, precipitation, land 
use/land cover, distance to river, and lineament density, were incorporated into a raster data model using ArcGIS software. 
AHP-based expert knowledge was used to prepare a groundwater potential index and assign weights to the thematic lay-
ers. The study classified the area into five zones of varying groundwater potential: very high (26%), high (51%), moderate 
(13%), poor (9%), and very poor (1%). The accuracy of the model was validated by comparing the Groundwater Potential 
Zones map with data from 96 wells and boreholes across the basin. The validity of the results was confirmed by comparing 
them with the specific yield of the aquifer in the study area, yielding a high correlation coefficient (R2) of 0.79. The analysis 
revealed that 89.5% of the boreholes were situated in the high and very high potential zones, demonstrating the reliability 
and robustness of the employed approach. These findings can aid decision-making and planning for sustainable groundwater 
use in the water-stressed region.
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Introduction

Water is essential for human survival and has been recog-
nized as a crucial resource worldwide (e.g., Jha et al. 2007; 
Hilal et al. 2018; Bouadila et al. 2019, 2023; Kostyuchenko 
et al. 2022; El Yousfi et al. 2022, 2023a,b; Aqnouy et al. 
2018, 2019, 2021, 2023; Abioui et al. 2023; Khaddari et al. 
2023; Ikirri et al. 2023). Groundwater, in particular, plays a 
vital role in supporting the growth and development of both 
rural and urban areas and is crucial for agriculture, industrial 
activities, and ensuring a safe and clean water supply for 
communities. As population growth and changing land-use 
patterns increase water demand, the sustainable manage-
ment and use of groundwater resources become increasingly 

important to ensure a secure future for communities and 
the environment. Groundwater is a finite resource and its 
availability and quality are threatened by over-extraction, 
contamination, and climate change. Therefore, the respon-
sible use and management of groundwater are crucial for 
sustainable development (Jha et al. 2007; Ahmed et al. 2021; 
Elbadaoui et al. 2023).

Morocco is vulnerable to frequent droughts, particularly 
in its four main basins including the Moulouya basin (Bouiz-
rou et al. 2022, 2023). This region has experienced a wide-
spread rainfall deficit that has led to a decline of up to 50% 
in some climate stations. This shortage is a result of both 
prolonged drought and excessive extraction of groundwater 
resources, posing a significant threat to the socio-economic 
development of the area. In this sense, and according to 
Nouayti et al. (2019), 65% of irrigation water comes from 
groundwater, and therefore the demand for groundwater is Extended author information available on the last page of the article
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becoming increasingly important. This high demand pushes 
researchers and managers to seek efficient and economical 
methods of exploration, evaluation, and development of 
groundwater to ensure more resources to cover the needs.

Conventional methods used for identifying and mapping 
groundwater typically involve drilling, geological assess-
ments, hydrogeological studies, geophysical techniques, and 
field surveys. These approaches necessitate significant labor 
and resources, including time, finances, and the involvement 
of specialized professionals, especially during exploration 
activities (Shao et al. 2020; Nhamo et al. 2020). However, 
modern alternative approaches such as multi-criteria analy-
sis methods, geographic information system (GIS), and 
remote sensing (RS) have shown promising results in iden-
tifying groundwater potential (Magesh et al. 2012; Ferozu 
et al. 2019; Khan et al. 2020), offering encouraging and 
promoting outcomes.  Faced with this situation, establishing 
an assessment and ensuring optimal management of water 
resources in these areas has become essential and to achieve 

this, water managers need very precise information on the 
conditions of recharge and exploitation at the level of each 
hydrogeological basin. The quantification of groundwater 
recharge is one of the most relevant topics, but also the most 
difficult to estimate because it is controlled by parameters 
and contexts that vary in time and space.

Different approaches have been considered for its estima-
tion such as: the geochemical method based on the use of the 
chloride balance  (Cl−), the direct method which consists in 
estimating the infiltration using in situ measuring devices, 
the isotopic method which exploits the ratios of the tritium 
(3H) contents of the waters of the aquifers compared to those 
of the precipitations (Allison 1988), the climatic method 
of Turc (1955) and the physical method which takes into 
consideration the humidity and soil pressure (Allison 1988). 
Many authors have faced the task to identify GWPZ using 
several knowledge and data-driven models (Table 1), but 
the use and insertion of the parameters that control ground-
water recharge constitute an important starting point for 

Table 1  A review of literature 
on using thematic layers to 
identify areas with potential for 
groundwater

Ge geomorphology; Lt lithology; So soil; Rf rainfall; DEM digital elevation model; Sl slope; DD drainage 
density; LD lineament density; LU land use; WT water table depth; DR distance to river

Author(s) Year Ge Lt So Rf DEM Sl DD LD LU DR

Dar et al. (2011) 2011 ✓ ✓ ✓ ✓ ✓
Hutti and Nijagunappa (2011) 2011 ✓ ✓ ✓ ✓ ✓
Magesh et al. (2012) 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mukherjee et al. (2012) 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Agarwal et al. (2013) 2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Awawdeh et al. (2013) 2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fashae et al. (2014) 2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kaliraj et al. (2014) 2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kumar et al. (2014) 2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ghosh et al. (2016) 2016 ✓ ✓ ✓ ✓ ✓ ✓
Hussein et al. (2017) 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Yeh et al. (2016) 2016 ✓ ✓ ✓ ✓ ✓
Maity and Mandal (2017) 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pinto et al. (2017) 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gnanachandrasamy et al. (2018) 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Nasir et al. (2018) 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Patra et al. (2018) 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Arulbalaji et al. (2019) 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Das et al. (2019) 2019 ✓ ✓ ✓ ✓ ✓ ✓
Choubin et al. (2019) 2019 ✓ ✓ ✓ ✓ ✓ ✓
Etikala et al. (2019) 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kanagaraj et al. (2019) 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Siddi Raju et al. (2019) 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Arshad et al. (2020) 2020 ✓ ✓ ✓ ✓ ✓
Kolli et al. (2020) 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ajay Kumar et al. (2020) 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dar et al. (2021) 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Benjmel et al. (2022) 2022 ✓ ✓ ✓ ✓
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the mapping of GWPZs because the climatic, geological, 
hydrogeological and structural contexts are relative to each 
geographical area and can change from one area to another. 
The technique of multi-criteria analysis is a method that 
considers algorithms and that makes it possible to guide a 
choice based on several common criteria. This method is 
primarily intended for understanding and solving decision-
making problems (Heywood et al. 1995). A specific weight 
is attributed to the different parameters to enhance and quan-
tify their relative contribution in the multi-criteria analysis 
technique. Thus, to have an idea of the situation, the deter-
mining parameters must be treated and integrated by giving 
a specific weight to a particular domain.

Our research builds upon and enhances existing method-
ologies for groundwater potential mapping in the study area. 
While Saadi et al. (2021) utilized a cartographic approach 
with five key parameters, including lithology, rainfall, drain-
age, lineaments, and slope, we have made substantial con-
tributions by introducing two additional critical parameters, 
namely the distance to the river and land use. These addi-
tions were motivated by their significant roles in influencing 
aquifer recharge processes, which were not fully accounted 
for in previous studies. Similarly, in the work conducted 
by Benjmel et al. (2022) in an arid region of southwest 
Morocco, precipitation was not considered a determin-
ing factor. However, in our research, we acknowledge the 
vital role of precipitation in our study area and integrate 
it as one of the key parameters for groundwater potential 
mapping. By doing so, we provide a more comprehensive 
understanding of the complex interactions between various 
hydrological and geological factors that influence ground-
water occurrence.

Various estimation methods have been applied to evalu-
ate the GWPZ. These methods include single-factor analy-
sis (Xin-feng et al. 2012), multi-influence factor techniques 
(Nasir et al. 2021), fuzzy clustering (Tükel et al. 2021), 
brittle rock proportion (Singaraja et al. 2015), Fuzzy-AHP 
indices (e.g., Rajasekhar et al. 2019; Echogdali et al. 2022a; 
Sinha et al. 2023; Bhagya et al. 2023) and GIS informa-
tion fusion (Arnous et al. 2020). In this particular study, 
the delineation of GWPZs is conducted using the analytic 
hierarchy process (AHP) (Saaty 1989) and RS-GIS meth-
ods. The identification of GWPZs is based on seven factors, 
which include drainage density, lithology, slope, precipita-
tion, land use/land cover, distance to river, and lineament 
density.

The Hierarchical Analysis Process (AHP) is a multi-crite-
ria decision-making tool that structures a complex problem 
into a hierarchical system. The approach is based on 2-to-2 
comparisons of elements, grouped into comparison tables, 
at each level of the hierarchy (Wind and Saaty 1980). The 
user starts by defining the criteria comparison table at level 
0, followed by sub-criteria comparison tables at level 1 (if 

it's a 2-level problem) or alternatives on the criteria at level 
1. Finally, at level 2, the comparison tables of alternatives 
on criteria and/or sub-criteria are defined. The result is a 
comprehensive experimental plan for AHP analysis. The 
utilization of the AHP approach in evaluating the signifi-
cance of selected parameters within a hydrogeological model 
has been adopted by numerous researchers (e.g., Hajkowicz 
and Higgins 2008). AHP is recognized as a robust decision-
making method that takes into account multiple factors, as 
supported by studies conducted by Mohammadi et al. (2018) 
and Pinto et al. (2017).

This study aims to harness the potential of AHP, GIS, and 
remote sensing techniques to identify and map the Ground-
water Potential Zones (GWPZ) in the Moulouya basin, 
located in North-East Morocco. Through the integration of 
geospatial methods and consideration of various influencing 
factors, the study seeks to decipher and statistically validate 
the groundwater potential zones. The ultimate objective is to 
offer decision-makers a dependable hydrogeological tool for 
the selection and implementation of future water wells. By 
doing so, this approach aims to reduce the expenses associ-
ated with geophysical investigations and promote sustainable 
groundwater management practices.

Materials and methods

Study area

The Moulouya basin is the largest Mediterranean basin in 
Morocco and Northwest Africa with an area of   55,500  km2. 
Geographically, it is located in the Northeast of Morocco 
and extends between the parallels 32° 18′ and 35° 9′ North 
and the meridians 1° 10′ and 5° 40′ West. It is limited to 
the northwest by the Mediterranean coastal basins, to the 
west by the basins of Sebou and Oum Rbia, and to the south 
by the basins of Ziz and Guir, while to the east it extends 
into the Algerian territory (Fig. 1). The Moulouya basin in 
Morocco boasts a Mediterranean climate, marked by low 
and unpredictable annual rainfall amounts (ranging from 
200 to 400 mm). Its shape, stretching from the South to the 
North and slightly slanting to the East, allows it to benefit 
from the humid Mediterranean winds while being exposed to 
scorching and dry winds from the South. This region boasts 
a highly concentrated hydrographic network. The Moulouya 
River, as the main collector, drains a large number of tribu-
taries along its course, the main ones forming the large sub-
basins of the area and which are: Za, Msoun, Melloulou, and 
Ansegmir wadis.

The geological formations in the Moulouya basin range in 
age from the Paleozoic to the Quaternary. The Paleozoic era 
is primarily composed of shale and granite, covering 2.59% 
of the basin's area (Ahamrouni 1996). In Upper Moulouya, 
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these rocks form primary massifs such as Boumia and 
Ahouli and are found as schists that make up most of the 
region's metamorphic series. The Triassic formations out-
crop unconformably on the old massifs of Upper Moulouya, 
and are made up of marls, clays, and altered basalts (Riad 
2003). The Jurassic is marked by calcareous-dolomitic facies 
and red terrigenous paleosol deposits that form the Upper 
Moulouya. The carbonate formations are found on the bor-
ders of the Middle and High Atlas and to the west of the 
highlands (Riad 2003).

The Cretaceous is characterized by marls, red sandstone, 
and white limestone, and outcrops mainly along the High 
Atlas between the Aouli massif and the High Atlas and to 
the east of Midelt. It begins with conglomerates, followed by 
marls and limestones that have deposited evaporitic series, 
particularly gypsum (Nasloubi 1993). The Quaternary for-
mations, which are the most recent, are deposited above all 
previous formations and consist of fluvial terraces in the 
form of nested series, covered with silt and conglomeratic 
deposits (Amrani 2007). The study basin is located within a 
NE-SW shear zone from a tectonic perspective. The domi-
nant fault structures in the area are oriented in two main 
directions: E–W and NW–SW, which can be identified as 
Riedel fractures. The structural evolution of the area is com-
plex due to the varying directions of deformation axes from 
the Upper Eocene to the present day (Labbassi 1991).

Parameters controlling groundwater recharge

The selection of thematic layers used for determining 
groundwater recharge in the study area is based on the 
parameters that affect it. The hydrological conditions in the 
area, which significantly impact the presence of groundwa-
ter, are largely influenced by these thematic layers. Using 
these layers provides a solid foundation for accurately 
predicting the groundwater potential of a region. Saadi 
et al. (2021) found that factors affecting recharge in the 
middle Moulouya basin include slope, drainage, precipita-
tion, lithology, and fracture lineaments. Guo et al. (2019) 
reported that proximity to rivers greatly impacts precipita-
tion infiltration, with a 50% effect. Siddik et al. (2022) also 
highlighted the significant impact of Land Use/Land Cover 
(LU/LC) changes on groundwater recharge. The study took 
both of these findings into account by including "Distance 
to river" and "LU/LC" as parameters in the applied model.

The overlapping layers must possess comparable car-
tographic features, such as equivalent resolution, geo-
graphical extent, length units, and projection system. This 
requirement ensures that calculations are carried out on a 
consistent matrix or mesh size (Fig. 2).

Fig. 1  Map of Moulouya basin showcasing the Moulouya River and its key tributaries
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Rainfall (Rf)

The recharge of groundwater is monitored by various 
parameters of which precipitation is the main source of 
groundwater recharge (e.g., Aswathi et al. 2022; Echogdali 
et al. 2022b). Precipitation intensity is one of the key fac-
tors controlling the recharge-runoff relationship. Average 
annual precipitation from 2010 to 2021 in the study area 
was obtained at stations located in the basin. Subsequently, 
they were spatially interpolated in ArcGIS 10.4.1 to obtain a 
rainfall contour map. The resulting map was categorized into 
five main groups: < 100 mm/year (Very low), 100–200 mm/
year (low), 200–300 mm/year (Moderate), 300–400 mm/
year (High) and > 400 mm/year (Very high) (Fig. 3a). The 
map shows that the rainfall varies from 220 to more than 
350 mm/year. It increases from south to north.

In our adopted cartographic approach, we considered pre-
cipitation as a determining parameter influencing ground-
water recharge, and we integrated historical data on its 
trends to assess its impact on groundwater recharge in the 
region. Additionally, we conducted prospective analyses to 
project future water needs, taking into account estimates of 
the local demographics, which increased from 2,102,781 
inhabitants in 2004 to 2,505,730 in 2020 and is projected 

to reach 2,725,106 by 2030, according to the report of the 
(HCP 2021).

The remarkable expansion of irrigated agricultural areas 
in the Moulouya basin, which increased from 65,400 hec-
tares in 1986 to 133,721 hectares in 2022, as reported by 
HCP (2021), along with the number of wells exceeding 2200 
(Saadi 2021), was considered in evaluating their implica-
tions on groundwater resources. The combination of histori-
cal precipitation data, statistical modeling, and demographic 
projections thus provided a solid foundation for understand-
ing the high water demand and addressing the complex inter-
actions between human activities, climate, and groundwater 
availability in the region.

Lithology (Lt)

The lithological characterization of soils essentially aims to 
highlight the classes of soils concerning their runoff capac-
ity. The infiltration of water depends on the permeability 
of the rock, by porosity or by fracturing, and on the resist-
ance to erosion of the rock itself or of the ground cover 
which is present above. It provides information on perme-
ability and influences not only groundwater flow but also 
surface runoff. According to Shaban et al. (2006), the rock 

Fig. 2  Flowchart outlining the methodology utilized in mapping the groundwater potential zones in the Moulouya basin
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type can significantly influence the GWPZ. Similarly, El-
Baz and Himida (1995) found that lithology affects recharge 
by controlling water percolation. Some authors like Arshad 
et al. (2020) and Kolli et al. (2020) ignored the lithological 
component in GWP mapping by taking into account drain-
age characteristics and lineament density as the main factors 
for measuring porosity. Information on the lithology of the 
Moulouya basin is obtained by combining the supervised 
classification of Landsat 8 images with geological maps and 
technical borehole sections. The lithology thematic map is 
distinguished into seven lithological units: Carbonate Sedi-
mentary, Unconsolidated Sediments, Mixed Sedimentary, 
Evaporites, Metamorphic, Plutonic Igneous, and Siliciclastic 
Sedimentary (Fig. 3b). The major part of the Moulouya is 
occupied by carbonate sedimentary formations from the Lias 
and the Middle Jurassic, especially the dolomitic series with 
39%, also there are fluvial deposits from the Middle Holo-
cene with 26%, while 21% of the area of the basin is taken 
by series of gypsum and clayey limestone with deposits of 
conglomerates (21%), without neglecting the presence of 
evaporites and siliciclastic sediments with minimal percent-
ages (Birot 1963).

Slope (Sl)

This factor is involved in increasing the velocity of water 
flow with a subsequent decrease in vertical infiltration 
and thus influencing the recharge process. The steeper the 
slope, the faster the surface water circulates and the less 
the groundwater recharges (Satapathy and Syed 2015). We 
note that the highest slopes are located mainly on the lines 

of the ridges of the basin and in the Moroccan High Atlas 
and part of the Middle Atlas, while the very low class rep-
resents the reservoirs of dams and water lakes. The other 
classes (between 10, 20, and 30°) are generally dispersed in 
the center of the basin (Fig. 4a).

LU/LC

Land Use/Land cover is the result of physical-geographical 
factors (relief, lithology, and climate) which are added to the 
anthropogenic factor via clearing and cultivation as well as 
reforestation. The LC map was produced using the super-
vised classification method of the Landsat8 image using 
the "maximum likelihood" algorithm. The image process-
ing was carried out using ENVI 5.3 software and ArcGIS 
10.4.1 by applying the supervised classification technique 
coupled with field observations, which gave the thematic 
LULC map (Fig. 4b).

Drainage density (DD)

The hydrographic network is characterized by its drainage 
density, which expresses different physical phenomena: the 
relative share of surface flows and underground flows. This 
criterion, by favoring the drainage of the slopes, makes it 
possible to understand the importance of surface drainage. 
This is defined as the average length of the hydrographic 
network per kilometer. Land that has a dense drainage sys-
tem has a high recharge rate and the opposite is also true. 
In this work, drainage density was computed using the 
Line Density tool in ArcGIS 10.4.1 (Fig. 4c). The very low 

Fig. 3  a Spatial variation of rainfall. b lithological map
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class (> 3 km/Km2) occupies 57% of the area, followed 
by the low class (3–2.25 km/km2) with 27%, the moder-
ate class (2.25–1.5 km/km2) with 11 0.5%, the high class 
(1.5–0.75  km2) With 3% and finally the Very High class 
(< 0.75 km/km2) which is the smallest and represents 0.84% 
of the area of the basin.

Distance to the river (DR)

The distance to hydrographic networks is a critical factor in 
hydrogeology, as it indicates the presence of alluvial aqui-
fers, especially in semi-arid regions, which is the focus of 
our study (Benjmel et al. 2022). To determine the distance 
to rivers parameter, we utilized the Euclidean Distance tool 
in ArcGIS 10.4.1 on the major river network. Based on the 
spatial distribution of the distance to rivers, we identified 
two classes: the very low class covering 47% of the basin 
area and the very high class covering 53% (Fig. 4d).

Lineaments density (Ld)

The mapping of structural objects (lineaments, fractures, 
faults, lithological limit, etc.) plays an essential role in 
the different phases of prospecting for underground water 
resources (Karimoune et al. 1990; Biémie 1992; Shaban 
2003; Abdou Ali 2018). As an application in hydrogeology, 
we can cite for example obtaining and determining from 
satellite images, information on the nature of the soil and 
other structural objects such as fractures which sometimes 
play the role of a drain thus participating in the recharge 
of groundwater. For Shaban (2003), connected lineaments 
create a subterranean pathway for groundwater flow. This 
makes them an indicative parameter of groundwater trans-
port and therefore an analysis criterion in the production of 
maps of potential water recharge areas (Teeuw 1994; El-
Baz and Himida 1995). Lineament density (Ld) is calculated 
based on the following equation (where ∑i = 1i = n denotes 
the length of lineament lines, and A denotes the area):

To obtain the lineament map, we used the PCI GEOMAT-
ICA software to extract it from Landsat 8 images. Linea-
ment densities in the basin range from < 0.0028 to 1.02 km/
km2 (Fig. 4e). The density of lineaments on the groundwater 
potential map indicates the potentiality of groundwater in 
a particular area. Areas with higher lineament density are 
likely to have higher groundwater potential, whereas lower 
lineament density suggests lower potential. The highest line-
ament density is commonly found in the western and north-
western parts of the basin, and it appears to be elongated in a 

(1)Ld =

∑i=n

i=1
Li

A

northeast-southwest direction. These findings are consistent 
with those reported by Chennouf et al. (2007).

Analytical hierarchy process (AHP) model

The Analytical Hierarchy Process (AHP) was first introduced 
by Saaty (1989), and it was used to determine the weights of 
the thematic layers. This approach involves four fundamental 
steps: (1) Standardization of the evaluation parameters, (2) 
Preparation of a pairwise comparison matrix, (3) verifica-
tion of the inconsistency of the criteria developed, and (4) 
Aggregation of the weighting results (Allafta et al. 2020).

Pairwise comparison matrix

The Pairwise Comparison Method is a statistical technique 
that determines the relative importance of each factor in the 
decision-making process. It is done by comparing the factors 
pairwise, creating square matrices, and then calculating the 
weighting coefficients based on the eigenvectors of these 
matrices. This method provides an objective determination 
of the weights or weighting coefficients, ensuring a system-
atic approach to the decision-making process.

The weights of each parameter were determined taking 
into account the importance of each parameter in the char-
acterization of groundwater potential. This comparison was 
based on Saaty's 1 to 9 scale (Saaty 1989) in Tables 2 and 3.

Assessing matrix consistency

In this hierarchical classification approach, it is possible to 
verify the consistency of our method by determining the 
coherence or consistency ratio (CR). The latter constitutes 
an acceptance test of the weights of the different criteria. 
This step aims to identify any inconsistencies in the com-
parison of the significance of each pair of criteria. The CR 
is calculated as follows:

The CI in this study is represented by the equation where 
λmax stands for the major eigenvalue and n signifies the 
number of parameters involved:

The principal eigenvalue (λmax) of Table 4 was calcu-
lated by adding the products of the sum of the columns of 
parameters and the eigenvectors of Table 3.

To check the consistency (CR) of the decision of the 
selected parameters, the following equation is used:

(2)CI =
�max−n

n − 1

(3)CI =
7.37123 − 7

7 − 1
= 0.06187167
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where RI represents the random index which is given in 
Table 5 for different n values. In the current study, RI equals 
1.32 for seven parameters. Therefore, CR is:

The obtained CR of 4.6% (less than 10%) is eligible to 
overlay weighted parameters for GWPZ mapping. The CR 
value should be lower than 0.1 to confirm that the pairwise 
comparison judgments are compatible. However, if the CR 
value is higher than 0.1, the coefficients of the matrix are 
inconsistent and are not usable for further processing (Wong 
and Li 2007).

GWPI definition

Groundwater Potential Index (GWPI) is a method of predict-
ing areas of high groundwater potential in a region. Once 
the thematic layers of the different parameters are prepared 
with their weights (Table 5), the groundwater potential 
index (GWPI) is calculated based on the linear combination 
method indicated by Malczewski (1999):

where Wi is the standardized weight of the thematic layer 
i, Xj is the ranking of each class for layer j, m is the total 
set of thematic layers and n is the total set of classes in a 
thematic layer.

The model's accuracy was assessed through validation 
against data from 96 wells and boreholes distributed across 
the Moulouya basin. The statistical comparison was made 
using the correlation coefficient to evaluate the accuracy of 
the Groundwater Potential Zones (GWPZ) map (Table 6).

(4)CR =
CI

RI�

(5)CR =
0.06187167

1.32
= 0.046 = 4.6%

(6)GWPI =

m
∑

w=1

n
∑

i=1

(Wi × Xj)

(7)
GWPI = 0.34 × Rainfall + 0.22 × Lithology + 0.16 × Lineament density + 0.10 × Slope + 0.09

× Drainage density + 0.05 × LULC + 0.04 × Distance to river

Results

Identification of GWPZ

The development of the groundwater potential map involved 
the application of formula (6) through a GIS environment, 
with all parameters chosen based on AHP techniques. The 
resulting groundwater potential index values were then clas-
sified into five distinct (GWPZ): very poor, poor, moderate, 
high, and very high. These zones covered different percent-
ages of the study area, with the very poor zone covering 
60.54  km2 (1%) and the very high zone covering 13,560.59 
 km2 (26%). The poor, moderate, and high zones covered 
4669.09  km2 (9%), 6692.22  km2 (13%), and 26,135.07  km2 
(51%), respectively (Figs. 5, 6).

The distribution of groundwater potential in the study 
area is influenced by various geological and hydrological 
factors, including rock types, rainfall, and the presence of 
lineaments. The areas with high groundwater potential are 
typically associated with favorable conditions for water 
recharge and storage. For example, the presence of per-
meable rock formations, such as limestone and dolomitic 
limestone, in these areas allows for water to percolate and 
accumulate in the subsurface. Additionally, the moderate 
annual average rainfall in these areas helps to replenish the 
groundwater aquifers. The presence of lineaments, or linear 
fractures in the rock formations, can also contribute to the 
high groundwater potential by providing pathways for water 
to penetrate deeper into the subsurface. On the other hand, 
areas with low groundwater potential are typically associ-
ated with unfavorable conditions such as steep slopes, high 
altitudes, and low densities of lineaments. Areas of very high 
to high underground water potential are located in the central 
and northeastern parts and small patches in the southwestern 
part of the basin (Fig. 6).

These areas are dominated by limestone and dolomitic 

limestone from the lower to middle Lias influenced by the 
presence of lineaments, they are characterized by moderate 
annual average rainfall. Similar observations were also noted 
by Benjmel et al. (2022). Additionally, the study found that 
the distribution of different land use and land cover (LULC) 
types can also greatly impact the groundwater potential in 
the study area. Das et al. (2019) have demonstrated that 

Fig. 4  Factors controlling groundwater recharge used in the study: a 
slope, b land use/land cover, c drainage density, d distance to the riv-
ers, e lineament density, f DEM

◂
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wetlands, vegetation, and cropland are associated with good 
groundwater potential. This is in line with the findings of 
the present study, where it was confirmed that these LULC 
types play a crucial role in determining the high to moder-
ate groundwater potential areas. This highlights the inter-
play between LU/LC and hydrological processes and how 
they impact slope stability. Thus, it is crucial to consider 

LU/LC when assessing the groundwater potential and its 
distribution.

The areas of poor to very poor groundwater potential 
can be found in the southern region of the basin near the 
high Moulouya limit. These areas are characterized by steep 
slopes with inclinations greater than 40 degrees and high 
elevations in the Moroccan High Atlas mountain range, 
where the density of lineaments is less than 0.018 km/
km2. Despite this challenging landscape, the methodology 
employed in this study still managed to produce relevant 
results for predicting groundwater potential, without relying 
solely on expert opinions.

Results validation

The results were cross-validated with the specific yield 
of the aquifer within the study area (Fig. 7). The analysis 
revealed a robust positive correlation with a coefficient 
(R2 = 0.79) between areas exhibiting excellent groundwater 
potential and high specific yield. Conversely, areas with poor 
potential showed a weakening correlation as their specific 
yield decreased.

The results of the study showed that 89.5% (86 out of 96 
wells) of the wells were situated in areas with very high to 
high groundwater potential. The flow rate of these wells was 
observed to vary significantly, ranging from 1 L per second 
(l/s) for shallow boreholes (less than 100 m) that tap into 
alluvial aquifers to over 90 l/s for deep boreholes (exceeding 
500 m) that tap into the dolomitic limestone of the Juras-
sic aquifer. These findings are consistent with the findings 
reported by Bouazza et al. (2013).

The groundwater depth is found to be variable and 
depends on the local hydrogeological and geological con-
ditions. Factors such as topography, slope, land use, and 
underlying sediments play a crucial role in determining 
the groundwater recharge rate and hence the depth of the 
groundwater. The central part of the basin, characterized 
by flat topography, low slopes, and bare land use with 
unconsolidated sediments, is more favorable for ground-
water recharge, leading to shallow groundwater depths as 
seen in the research by Saadi et al. (2021). Conversely, in 
other areas, particularly in the eastern part of the basin, 
the groundwater depth is found to be relatively deep and 
confined, with a slow rate of recharge. These findings 
highlight the importance of understanding the regional 
variations in groundwater conditions to make informed 

Table 2  The one-to-nine scale of parameters significance (Saaty1989)

Strength of Significance Explanation

1 Equal significance
3 Medium significance
5 Strong
7 Very strong significance
9 Maximum significance
2, 4, 6, and 8 Interim number 

between two adjacent 
numbers

Table 3  Pairwise comparison matrix for the AHP process

Rf Lt Ld Sl Dd LULC DR Normalized princi-
pal eigenvector (%)

Rf 1 2 3 4 4 5 5 33.7
Lt 1/2 1 2 3 3 4 4 22.2
Ld 1/3 1/2 1 3 2 3 5 16.3
Sl 1/4 1/3 1/3 1 2 3 3 10.3
Dd 1/4 1/3 1/2 1/2 1 3 3 8.7
LULC 1/5 1/4 1/3 1/3 1/3 1 2 5.0
DR 1/5 1/4 1/5 1/3 1/3 1/2 1 3.8
Sum 2.7 4.7 7.4 12.2 12.7 19.5 23.0 100

Table 4  Computation of the principal eigenvalue ( λmax)

Column sums Eigenvectors Parameter rank

Rf 2.7 0.34 0.92001
Lt 4.7 0.22 1.03452
Ld 7.4 0.16 1.2062
Sl 12.2 0.10 1.2566
DD 12.7 0.09 1.1049
LULC 19.5 0.05 0.975
DR 23.0 0.04 0.874

7.37123

Table 5  Ratio index (RI) for 
various n scores (Saaty 1989)

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59
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decisions about groundwater management and resource 
utilization.

Groundwater sustainability plans

As with any methodology, our approach involves certain 
assumptions and simplifications. One of the key assump-
tions is that the factors considered in our GIS model 
have equal importance, and their weights defined by the 
Analytic Hierarchy Process (AHP) remain constant both 
spatially and temporally. These simplifications may have 

implications for the accuracy of the results over time and 
space, as hydrological characteristics can vary signifi-
cantly from one region to another due to factors such as 
geology, topography, and climate. Consequently, the meth-
odology may not fully account for this local variability, 
potentially limiting its relevance in certain specific areas. 
Moreover, our methodology assigns a significant weight 
to precipitation (34%), which could pose a limitation in 
extremely arid and dry regions. While rainfall is the most 
influential factor in mapping, prompting us to prioritize 
the protection and proper management of recharge areas, 

Table 6  Weightage of different 
factors and subclass ranking 
pattern

Factor Class Groundwater 
Potentiality

Parameter 
Weight

Class Rank

Rainfall (mm/year)  < 100–200 Low 0.34 1
200–300 Moderate 15
300–400 High 25
400–500 Very high 34

Lithology Evaporites Very low 0.22 1
Metamorphic low 4.5
Plutonic Igneous Low 8
Volcanic Igneous Low 11.5
Siliciclastic Sedimentary Moderate 15
Mixed Sedimentary High 17.5
Carbonate Sedimentary High 20
Unconsolidated Sediments Very high 22

Lineament density (km/km2)  < 0.018 Very low 0.16 1
0.018–0.071 Low 4.75
0.071–0.143 Moderate 7.5
0.143–0.232 High 11
0.232–0.391 Very high 16

Slope (degree)  < 10 Very high 0.10 10
10–20 High 7
20–30 Moderate 5
30–40 Low 3
 > 40 Very low 1

Drainage density (km/km2)  < 0.75 Very high 0.09 9
0.75–1.5 High 7
1.5–2.25 Moderate 5
2.25–3 Low 3
 > 3 Very low 1

Land use/land cover Urban Very low 0.05 1
Shrub land Low 3
Cropland Moderate 4
Bare land High 5
Water Very high 6

Distance to river 0–35 Very high 0.04 9
35–70 High 7
70–105 Moderate 5
105–140 Low 3
 > 140 Very low 1



 Applied Water Science (2024) 14:122122 Page 12 of 17

it is essential to consider local conditions and adjust the 
weightings of factors accordingly.

According to IAEA (2010), the recharge zones of the 
Moulouya basin are situated in the Beni Snassen and Jbel 
Hamra mountains, at altitudes ranging between 700 and 
1200 m. However, most of the groundwater in the basin 
originates from recent recharge, as indicated by their trit-
ium and carbon-14 content (IAEA 2010). This highlights 

the recharge ability of the aquifers while also emphasiz-
ing their vulnerability to contamination. To safeguard 
these crucial recharge areas, the following measures are 
recommended:

• Establishment of strict regulations for activities that may 
potentially pollute the groundwater, such as intensive 
agriculture, chemical industries, or waste disposal.

• Implementation of adequate infrastructure for the collec-
tion and treatment of rainwater to prevent direct infiltra-
tion into groundwater recharge areas.

• Regular monitoring of groundwater quality and the con-
dition of recharge areas. This enables the rapid identi-
fication of potential issues and the implementation of 
appropriate corrective measures.

Encouraging water conservation and promoting effi-
cient water use practices can reduce the overall demand for 
groundwater and sustainable practices can foster a culture 
of responsible water use. Implementing technologies such 
as drip irrigation and rainwater harvesting can help opti-
mize water use and reduce reliance on groundwater. Rais-
ing awareness among local communities, stakeholders, 

Fig. 5  Percentage (%) of the areal distribution of the groundwater 
potential zones

Fig. 6  Spatially distributed groundwater potential zones and wells locations
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and decision-makers about the importance of sustainable 
groundwater management is essential. By incorporating 
these strategies, decision-makers can enhance sustainable 
groundwater management, protecting the vital recharge areas 
and ensuring the availability of clean and reliable groundwa-
ter resources for present and future generations.

Conclusions

This study focuses on the identification of GWPZ using GIS, 
AHP, and RS techniques in the Moulouya, one of the princi-
pal basins of Morocco. Thematic layers of lithology, rainfall, 
LU and LC, drainage and lineament density, slope, and dis-
tance to rivers were created using conventional data, such as 
topographic maps and remote sensing data. Also, the weight 
assigned to individual themes and their reciprocal classes 
applying the AHP technique. The implementation of all the 
thematic layers in the GIS model created a potential ground-
water map of the study area. According to the GWPZ map, 
the study area is categorized into five different zones, namely 
a zone of very high water potential (13,560.59  km2), high 
(26,135.07  km2), moderate (6692. 22  km2), poor (4669.09 
 km2) and very poor (60.54  km2). The obtained results were 
validated by comparing them with the specific yield of the 
aquifers, yielding a correlation coefficient (R2) of 0.79.

The results of the study demonstrate that AHP-based GIS 
and remote sensing is a viable approach for groundwater 
potential mapping, and the generated groundwater poten-
tial maps can serve as valuable resources for water resource 
management decision-makers. This research highlights 
the importance of conducting comprehensive groundwater 
evaluations and explorations, which could help minimize 
the high costs of geological surveys and contribute to the 
success of future water resource planning.

Future research could explore the applicability of 
advanced modeling techniques, including machine learn-
ing algorithms, artificial neural networks, and fuzzy logic, 
to further improve the accuracy of groundwater potential 
mapping. Additionally, future studies could focus on analyz-
ing the temporal variability of groundwater potential in the 
Moulouya Basin by using historical data and trends cou-
pled with the results of isotopic analyses. Understanding the 
dynamics of groundwater potential over time will provide 
valuable insights for developing effective groundwater man-
agement strategies.
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