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Abstract. We extend to a situation involving matrix valued orthogonal polynomials a scalar result
that originates in work of Claude Shannon in laying the mathematical foundations of information
theory and a remarkable series of papers by D. Slepian, H. Landau and H. Pollak at Bell Labs in
the 1960’s. We show that in this case an algebraic miracle that plays a very important role in the
classical case survives an application of the so called Darboux process in the matrix valued context.

1. Introduction

This paper can be seen as a combination of three related but independent developments.
The first strand comes from signal processing in its more basic form. C. Shannon, [32], posed

the question:
suppose you consider an unknown signal f(t) of finite duration, i.e. the signal is non-zero only

in the interval [−T, T ]. The data you have are the values of the Fourier transform Ff(k) of f for
values of k in the interval [−W,W ]. What is the best use you can make of this data? Needless to
say he was thinking of noisy measurements of the Fourier transform, and analytic continuation is
out of the question.

Answering this question required finding and exploiting some remarkable mathematical miracles
and was accomplished in a series of papers by three workers at Bell labs in the 1960’s: David
Slepian, Henry Landau and Henry Pollak, see [39, 22, 23, 35, 37]. In a paper by David Slepian,
see [38], on the occasion of the John von Neumann lecture given at the SIAM 30th anniversary
meeting in 1982, he writes: “There was a lot of serendipity here, clearly. And then our solution,
too, seemed to hinge on a lucky accident-namely that we found a second-order differential operator
that commuted with an integral operator that was at the heart of the problem”.

The second strand has to do with quantum mechanics. E. Schroedinger, [31], observed around
1940 that starting with the free particle for which its quantum mechanical operator is −D2, it
was possible to apply to it a certain mathematical process (which unbeknown to Schroedinger
had been exploited earlier for other purposes) to obtain a new differential operator of the form
−D2 + V (x) which corresponds to physical systems much more interesting than the original free
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particle. This process can be applied succesively producing more and more interesting systems, and
matrix versions of it can be applied to Dirac’s equation, see [19]. It is now known in the physics
literature as the Infeld-Hull factorization method, although it can be found already in Darboux’s
book on surfaces from 1899, see [6]. Powerful tools are rediscovered in different fields all the time.

Now for the third strand: starting with the work of people like H. Weyl and others one finds the
idea of doing harmonic analysis based on expansions of a function in terms of eigenfunctions of an
operator of the form −D2+V (x). The basic case, Fourier analysis, corresponds to V (x) = 0. There
are both continuous and discrete versions of this developments with the classical moment problem
lurking in the background of the discrete version. Two very good sources for this rich material are
[1, 42].

With these three important driving forces in mind, we can give a simplified account of what we
do in this paper: we start with a (matrix valued) version of the operator −D2 + V (x). We are
really dealing with a discrete version of this so that we have a block tridiagonal matrix. With Weyl
we set out to do the corresponding harmonic analysis, and we pose the analog of the question of
Shannon in this case. More details are given in Section 2.

We then build the analog of the “time-and-band limiting” integral operator which in this case
will be a full large matrix which we will denote by M . We then show that the same “lucky accident”
that the workers at Bell labs had found is present here too: we can exhibit a (block) tridiagonal
matrix, denoted by L such that

ML = LM.

This algebraic phenomenon has, as in the original case of Shannon, very important numerical
consequences: it gives a reliable way to compute the eigenvectors of M , something that cannot be
done otherwise.

With Schroedinger or Darboux we then inquire what happens when we apply their process to our
analog of −D2 + V (x), then consider with Weyl the corresponding harmonic analysis, build with

Shannon the appropriate “time-and-band limiting” operator which we denote by M̃ and wonder
if the previous “lucky accident” will still hold. We find that there is now a (block) heptadiagonal

matrix denoted by L̃, such that

M̃L̃ = L̃M̃ .

Not only does the algebraic miracle survive the Darboux process, but once again it is crucial in

allowing for an accurate computation of the eigenvectors of M̃ .

A few words about the importance of computing accurately the eigenvectors of the matrices

M,M̃ . This is best explained in the original set-up of the workers at Bell labs in trying to answer
Shannon’s question:

what they found was that instead of looking for the unknown f(t) itself one should consider a
certain integral operator (alias our M) which has discrete spectrum in the open interval (0, 1) and
a remarkable “spectral gap”: about [4WT ] (integer part of 2W×2T ) eigenvalues are positive and
well separated, and all the remaining ones are essentially zero. They argue that in the presence of
noisy data one should try to compute the projection of f(t) on the linear span of the eigenfunctions
with “large” eigenvalues. The effective computation of these eigenfunctions is made possible by
replacing the integral operator by the commuting differential one (alias our L) alluded to by D.
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Slepian (both have simple spectrum). From a theoretical point of view the eigenfunctions of M and
L are the same, but using the differential operator instead of the integral one, we have a manageable
numerical problem: while the integral operator has a spectrum with eigenvalues that are extremely
close together, the differential one has a very spread out spectrum, resulting in a stable numerical
computation.

The results in the present paper are a natural extension of the work in [10, 14], where the classical
orthogonal polynomials played a central role, to a matrix-valued case involving matrix orthogonal
polynomials. In a case such as in [10, 14] or in the present paper where physical and frequency
space are of a different nature (one is continuous and the other one is discrete) one can deal (as
explained in [10, 14]) with either an integral operator or with a full matrix. Each one of these global
objects will depend on two parameters that play the role of (T,W ) in Shannon’s case, and one will
be looking for a commuting local object, i.e., a second order differential operator or a tridiagonal
matrix. In this paper we will be dealing with a full matrix and a (block) tri or hepta diagonal one.

The only previous exploration of the commutativity property above in the matrix valued case is
in [15]. In the present paper we explore for the first time in a matrix valued context the extend
to which the “miracle” survives after an application of the Darboux process. Since the Darboux
process preserves bispectrality in this situation, see [18], this new result gives more evidence along
the results in [17].

For a very recent account of several computational issues see [2, 21, 25]. For new areas of
applications involving (sometimes) vector-valued quantities on the sphere, see [20, 30, 33, 34].

2. Preliminaries

Let W = W (x) be a weight matrix of size R in the open interval (a, b). By this we mean a com-
plex R × R-matrix valued integrable function W on the interval (a, b) such that W (x) is positive
definitive almost everywhere and with finite moments of all orders. Let Qw(x), w = 0, 1, 2, ..., be a
sequence of real valued matrix orthonormal polynomials with respect to the weight W (x). Consider
the following two Hilbert spaces: the space L2((a, b),W (t)dt), denoted here by L2(W ), of all matrix

valued measurable matrix valued functions f(x), x ∈ (a, b), satisfying
∫ b
a tr (f(x)W (x)f∗(x)) dx <

∞ and the space `2(MR,N0) of all real valued R × R matrix sequences (Cw)w∈N0 such that∑∞
w=0 tr (Cw C

∗
w) <∞.

The map F : `2(MR,N0) −→ L2(W ) given by

(Aw)∞w=0 7−→
∞∑
w=0

AwQw(x)

is an isometry. If the polynomials are dense in L2(W ), this map is unitary with the inverse
F−1 : L2(W ) −→ `2(MR,N0) given by

f 7−→ Aw =

∫ b

a
f(x)W (x)Q∗w(x)dx.

We denote our map by F to remind ourselves of the usual Fourier transform. Here N0 takes up
the role of “physical space” and the interval (a, b) the role of “frequency space”. This is, clearly, a
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noncommutative extension of the problem raised by C. Shannon since he was concerned with scalar
valued functions and we are dealing with matrix valued ones.

The time limiting operator, at level N , acts on `2(MR,N0) by simply setting equal to zero all the
components with index larger than N . We denote it by χN . The band limiting operator, at level α,
acts on L2(W ) by multiplication by the characteristic function of the interval (a, α), α ≤ b. This
operator will be denoted by χα. One could consider restricting the band to an arbitrary subinterval
(a1, b1). However, the algebraic properties exhibited here, see Section 4 and beyond, hold only with
this restriction. A similar situation arises in the classical case going all the way back to Shannon.

Consider the problem of determining a function f , from the following data: f has support on
the finite set {0, . . . , N} and its Fourier transform Ff is known on the compact set [a, α]. This can
be formalized as follows

χαFf = g = known , χNf = f.

We can combine the two equations into

Ef = χαFχNf = g.

To analyze this problem we need to compute the singular vectors (and values) of the operator
E : `2(MR,N0) −→ L2(W ). These are given by the eigenvectors of the operators

E∗E = χNF−1χαFχN and S2 = EE∗ = χαFχNF−1χα.
The operator E∗E, acting in `2(MR,N0) is just a finite dimensional block-matrix M , and each
block is given by

(M)m,n = (E∗E)m,n =

∫ α

a
Qm(x)W (x)Q∗nw(x)dx, 0 ≤ m,n ≤ N.

The second operator S2 = EE∗ acts in L2((a, α),W (t)dt) by means of the integral kernel

k(x, y) =
N∑
w=0

Qw(x)Q∗w(y).

Consider now the problem of finding the eigenfunctions of E∗E and EE∗. For arbitrary N and
α there is no hope of doing this analytically, and one has to resort to numerical methods and
this is not an easy problem. Of all the strategies one can dream of for solving this problem, none
sounds so appealing as that of finding an operator with simple spectrum which would have the same
eigenfunctions as the original operators. This is exactly what Slepian, Landau and Pollak did in
the scalar case, when dealing with the real line and the actual Fourier transform. They discovered
(the analog of) the following properties:

• For each N , α there exists a symmetric tridiagonal matrix L, with simple spectrum, com-
muting with M .
• For each N , α there exists a selfadjoint differential operator D, with simple spectrum,

commuting with the integral operator S2 = EE∗.

To this day nobody has a simple explanation for these miracles, and this paper displays more
instances where this holds. Indeed, there has been a systematic effort to see if the “bispectral
property” first considered in [9], guarantees the commutativity of these two operators, a global and a
local one. A few papers where this question has been taken up, include [10, 11, 12, 13, 14, 17, 28, 29].
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3. An example of matrix valued orthogonal polynomials

Given the Jacobi type weight matrix

(1) W (x) = [x(2− x)]λ−3/2
(

1 x− 1
x− 1 1

)
, x ∈ [0, 2],

appearing in [18, Section 6], one considers the sequences of monic orthogonal polynomials (Pn(x))n.
Assume λ > 1/2. They satisfy the recurrence relation

AnPn−1(x) +BnPn(x) + Pn+1(x) = xPn(x),

where P−1 is the zero matrix and P0 is the identity matrix. The coefficients An and Bn are given
by the expressions

Bn =
λ− 1

2(n+ λ)(n+ λ− 1)
S + I,

An =
n(n+ 2λ− 2)

4(n+ λ− 1)2
I.

Here I represents the identity matrix of dimension two and

S =

(
0 1
1 0

)
.

For any value of λ > 1/2 these polynomials satisfy the first order differential equation

P ′n(x)

(
1− x 1
−1 −1 + x

)
+ Pn(x)

(
1− 2λ 0

0 0

)
=

(
1− 2λ− n 0

0 n

)
Pn(x),

and the zero order differential equation

PnS = SPn, n ≥ 0.

These facts were already pointed out for λ = 1 in [3, 4].

The norms of the polynomials (Pn)n are scalar multiples of the identity

‖Pn‖ = γnI, n ≥ 0,

where

γ22k−1 =

√
π(k − 1)!(2k − 1)!!Γ(2k−12 + λ)

2k(λ+ 2k − 2)(λ+ 2k − 3) . . . (λ+ k − 1)Γ(λ+ 2k − 1)
,

γ22k =

√
πk!(2k − 1)!!Γ(2k−12 + λ)

2k(λ+ 2k − 1)(λ+ 2k − 2) . . . (λ+ k)Γ(λ+ 2k)
, k ≥ 1,

with γ20 =

√
πΓ(λ− 1

2)

Γ(λ)
.

We just pointed out that we have a ‘bispectral” situation with a differential operator of order two
and in the next section we will show that this leads to a (block) tridiagonal L. Later in the paper
we will investigate further the relation between the order of the appropriate differential operator
and the width of the band of the corresponding operator L, but we are getting ahead of our story.
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4. Time and band limiting for matrix polynomials

4.1. The matrix M. Now we consider the sequence of orthonormal polynomialsQn = ‖Pn‖−1Pn =
γ−1n Pn. We fix a natural even number N and α ∈ (0, 2] and consider the matrix M , of total size
N ×N ,

M =


M0,0 M0,1 · · · M0,N

2
−1

M1,0 M1,1 · · · M1,N
2
−1

· · · · · · · · · · · ·
M

N
2
−1,0 M

N
2
−1,1 · · · M

N
2
−1,N

2
−1

 ,

whose (i,j) block is the 2× 2 matrix obtained by taking the inner product of the i− th and j − th
normalized matrix valued orthogonal polynomials in the interval [0, α] with α ≤ 2

M i,j =

∫ α

0
Qi(x)W (x)Qj(x)∗dx, for 0 ≤ i, j ≤ N

2
− 1.

It should be clear that the restriction to the interval [0, α] implements “band-limiting” while the
restriction to the range 0, 1, . . . , N2 − 1 takes care of “time-limiting”. By definition, the matrix M
is a symmetric matrix and the entries of the matrix M = (Mrs)1≤r,s≤N are related with the entries

of the block matrices M i,j =

(
M i,j

11 M i,j
12

M i,j
21 M i,j

22

)
by

M2i+1,2j+1 = M i,j
11 , M2i+1,2j = M i,j−1

12 ,

M2i,2j+1 = M i−1,j
21 , M2i,2j = M i−1,j−1

22 .

4.2. The block tridiagonal matrix L. The aim of this section is to find all block tridiagonal
symmetric matrices L such that

(2) ML = LM.

Notice that in principle there is not guarantee that we will find any such L except for a scalar
multiple of the identity. For the problem at hand we need to exhibit matrices L that have a simple
spectrum, so that the eigenvectors of L will automatically be eigenvectors of M .

We found that the vector space of such matrices is of dimension 2. We have found a unique
symmetric matrix L satisfying (2) of the form

L =


L1,1 L1,2 0 · · · 0
L2,1 L2,2 L2,3 0 · · ·

· · · . . .
. . .

. . .

· · · L
N
2
−1,N

2
−2 L

N
2
−1,N

2
−1 I

0 · · · I 0

 .

Here 0 and I denote de 2 × 2 zero and identity matrices respectively. Of course, to this matrix L
we can always add a multiple of the identity matrix (of dimension N × N). This is the result of
extensive symbolic computation done, independently, in Mathematica and Maxima.

The matrices Lk,k, 1 ≤ k ≤ N
2 , and Lk,k+1 = Lk+1,k, 1 ≤ k ≤ N

2 −1, are given by the expressions

(3) Lk,k = Lk,k11 I + Lk,k12 S, Lk,k+1 = Lk,k+1
11 I,
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where

(4) Lk,k11 = (1− α)
(N + 2λ− 4)(N2 + 2(λ− 1) + k − 1)(N2 − k)

(N + 2λ− 3)
√

N
2 + 2λ− 3

√
N
2 − 1

,

(5) Lk,k12 = (λ− 1)
(N − 2k)(N2 + λ− 1)(N2 + 2λ+ k − 3)

(λ− 2 + k)(λ+ k − 1)(N + 2λ− 3)
√
N − 2

√
N + 4λ− 6

,

and finally

(6) Lk,k+1
11 =

√
k(2λ+ k − 2)(N2 + 2λ+ k − 2)(N + 2λ− 4)(N2 − k)

(2λ+ 2(k − 1))(N + 2λ− 3)
√

N
2 − 1

√
N
2 + 2λ− 3

.

Note that (as we should) we obtain zero in (4) and (5) for k =
N

2
and that the value of the

expression in (6) is one for k = N
2 − 1.

Remark 4.1. We are convinced that the spectrum of L is simple. We do not have yet an ana-
lytic proof of this fact that covers arbitrary values of even N . Extensive symbolic and numerical
experimentation done independently in Maxima and Mathematica leads us to make this assertion.

For instance, from its pentadiagonal structure one has immediately that any eigenvalue of the
matrix L has at most geometrical dimension two. The matrix L is similar to the matrix

la1 0 ld1 · · · 0
0 la2 0 ld1 · · ·
ld1 0 la3 0 ld2

0 ld1 0 la4
. . .

. . .

0 0 ld2 0 la5
... ld2

. . .
. . .

. . .

laN−3 0 1 0
laN−2 0 1

1 0 0 0
0 · · · 0 1 0 0



,

with only two nonzero diagonals. Here la2k−1 = Lk,k11 +Lk,k12 and la2k = Lk,k11 −L
k,k
12 , k = 1, . . . ,

N

2
−1,

are the eigenvalues of the diagonal blocks Lk,k of L, and ldk = Lk,k+1
11 , k = 1, . . . ,

N

2
− 2. All the

elements lak in the main diagonal are different and have the same sign and the entries ldk are also
different and positive. However, these facts do not guarantee, in general, that the spectrum of the
matrix is simple, though in this case one has in particular, la2k−1 > la2k, which might be helpful
to reduce the problem.

Alberto, lee por favor con atencion este ultimo párrafo que lo modifique ligeramente
para que se vea claro que en general una matriz de esas caractiersiticas con las diago-
nales con elementos distintos y del mismo signo, etc.. NO tiene por que tener espectro
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simple. La última frase“though in this case one has in particular, la2k−1 > la2k , which might be
helpful to reduce the problem” si prefieres la quitamos y la dejamos de reserva en nuestra
cocina por si se queja el referee...

Esta frase “Getting a proof that the spectrum of L is simple would not finish the job”, prefiero
tal vez sustituirla por esta: “The fact that the spectrum of L is simple is not the only
remarkable thing” (o similar...pues la frase inicial me suena como una apology de no
poder probarlo...cosa que ya entonamos el mea culpa en el Remark 4.1) What makes L
really useful in this context is the observation that its spectrum is nicely “spread out”. In fact we
are convinced that the spectrum of M itself is also simple but with eigenvalues that are just too
close together. The same applies after one step of the Darboux process which is introduced in the
next section and then illustrated in the last section.

All of these facts are clearly seen in the section on numerical results at the end of the paper. The
same situation (i.e. M has simple spectrum with most eigenvalues too close together) is already
well known in the classical case.

5. Time and Band limiting and the Darboux Process

Applying the Darboux process (consisting of factorizing and turning the factors around) to the
block tridiagonal Jacobi matrix associated to the sequence (Pn)n, orthogonal with respect to the
weight matrix (1), one obtains the weight matrix already given in [18, Section 6]

W̃ (x) =(2− x)λ−3/2xλ−5/2
(

1 x− 1
x− 1 1

)
(7)

−
√
πΓ(λ− 3/2)

2Γ(λ)

((
2λ− 2 −1
−1 2λ− 2

)
− (2λ− 3)a−10

)
δ0(x).

Here a0 is a matrix parameter, which is assumed to be positive definite. As shown in [18, Section
6], for λ = 5/2 these polynomials satisfy a differential equation of order four, i.e., we see that the
Darboux process preserves bispectrality.

Consider, for λ = 5/2, the sequence of monic polynomials (P̃n)n orthogonal with respect to the

weight matrix W̃ in (7). Consider the sequence of orthonormal polynomials (Q̃n)n, where Q̃n =

l−1n P̃n where ln is a lower triangular matrix such that ‖P̃n‖2 = lnl
∗
n is the Cholesky decomposition

of the positive definite matrix ‖P̃n‖2.
Following the procedure as in section 4.1, one defines the matrix M̃ of truncated matrix products,

of size N ×N for an even natural number N , where the 2× 2 matrix blocks M̃ i,j are defined by:

M̃ i,j =

∫ α

0
Q̃i(x)W̃ (x)Q̃j(x)∗dx, for 0 ≤ i, j ≤ N

2
− 1.

We wonder now if the Darboux process will also preserve the commutativity found in the previous

section, i.e., we search for a banded symmetric square matrix L̃ of size N such that

(8) M̃L̃ = L̃M̃ .

As an example, we fix a diagonal matrix a0 =

(
f 0
0 g

)
, with f = 1/3, g = 1/4. We have found a

(block) hepta-diagonal matrix L̃ (15 scalar diagonals) with simple spectrum such that (8) holds
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true. In the outer-most diagonals the first, third, fifth... elements are nonzero, while all the other

ones vanish. The dimension of the space of such matrices L̃ is two (counting scalar multiples of the
identity). This is the first example of this kind obtained after applying the Darboux process.

If we choose λ = 7/2 (instead of λ = 5/2) we had a six order differential operator for the cor-
responding matrix valued orthogonal polynomial in [18]. Going through the process just indicated

above we get a (block) matrix L̃ with a total of 11 (block) diagonals.

Finally we have found that for λ = 9/2 , when the differential operator in [18] was of order eight,

we get a (block) matrix L̃ with a total of 15 (block) diagonals.

For values of λ that are not half an odd integer, neither the existence of a differential operator
nor the commutativity property hold.

It is important to point out that, in all these cases, there does not exist any banded matrix L̃
satisfying property (8), for an even N large enough, with a narrower band.

6. Some numerical results

In this last section we display the results of some numerical computations. This should make
clear the importance of having found, as above, a matrix such as L for a given M .

Our point becomes very clear even if we use a small value of N and a value of α pretty close to
2. If we had chosen a larger value of N the phenomenon in question would be present for an even
larger range of values of α.

If our task is to compute the eigenvectors of M we can use the QR algorithm as implemented in
LAPACK. The results are recorded below.

Using the choices λ = 5/2, N = 8, α = 3/2 we get that the eigenvalues of M are given by

0.999999, 0.999999, 0.999836, 0.997203,

0.929126, 0.677533, 0.138490, 0.0206928.

The eigenvalues of L are given by

−5.12121,−3.90302,−2.24422, 1.67735,

−1.38639, 1.13472, 0.288662,−0.203965.

Denoting by XL the matrix of eigenvectors of L and by YM the matrix of eigenvectors of M (the
eigenvectors of both matrices are theoretically the same up to order) one has for the moduli of the
entries of Y t

MXL the matrix

0.80784 0.58940 0.00003 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6

0.26994 0.96288 0.00001 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6

0.00448 0.00620 0.99997 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6

0.00003 0.00001 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6

0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 1.0000

0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 1.0000 0.× 10−6

0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6 1.0000 0.× 10−6 0.× 10−6

0.× 10−6 0.× 10−6 0.× 10−6 1.0000 0.× 10−6 0.× 10−6 0.× 10−6 0.× 10−6


.

In theory this should be a permutation matrix.
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Now we record the effect of having done one step of the Darboux process, again for λ = 5/2.

Using the choices N = 12, α = 19/10, a0 =

(
1
2

1
3

1
3

1
3

)
, we get that the eigenvalues of M̃ are given

by
1., 1., 1., 1., 1., 1., 1., 0.999998, 0.999735, 0.994943, 0.841168, 0.486855.

The eigenvalues of L̃ are given by

1.21377,−1.13634, 1.07435, 0.871046,−0.80146, 0.657959

0.490068, 0.403528, 0.39213,−0.370528, 0.295294, 0.0281296.

We see that denoting by X
L̃

the matrix of eigenvectors of L̃ and by Y
M̃

the matrix of eigenvectors

of M̃ (the eigenvectors of both matrices are theoretically the same up to order) one has for the
moduli of the entries of Y t

M̃
X
L̃

the matrix

1.82056× 10−17 3.04717× 10−17 . . . 0.0420759 0.583874 0.810689 . . .

8.78204× 10−17 3.1225× 10−17 . . . 0.0253894 0.804025 0.579406 . . .
1.4962× 10−16 4.22405× 10−16 . . . 0.0431757 0.112046 0.0704807 . . .

3.40873× 10−16 5.89806× 10−17 . . . 0.997858 0.00901028 0.0458765 . . .

2.63678× 10−16 1.06165× 10−15 . . . 0.000132559 0.0000240362 8.22533× 10−6 . . .
6.80012× 10−16 3.33067× 10−16 . . . 1.3994× 10−6 2.4296× 10−7 5.50382× 10−7 . . .

7.21645× 10−16 2.13718× 10−15 . . . 9.13815× 10−10 2.13949× 10−9 4.66822× 10−10 . . .

7.21645× 10−16 1.11022× 10−15 . . . 7.22596× 10−11 1.66854× 10−11 2.2451× 10−11

7.77156× 10−16 4.80171× 10−15 . . . 1.46445× 10−14 1.80558× 10−13 1.22631× 10−15 . . .

7.77156× 10−16 1.22125× 10−15 . . . 2.54206× 10−14 1.49012× 10−14 2.24714× 10−16 . . .

1.11022× 10−16 1. . . . 8.1532× 10−17 6.20164× 10−17 9.56808× 10−18 . . .
1. 1.94289× 10−16 . . . 2.6975× 10−16 5.38306× 10−17 4.63496× 10−18 . . .



.

Once again this should be a permutation matrix.
Observe that some of the entries of these matrices are indeed very close to the theoretically

correct values, while others are terribly off. The reason is that there are a few eigenvalues of M
that are just too close together. This produces numerical instability in the computation of the
corresponding eigenvectors. On the other hand all the eigenvalues of L are nicely separated, and
the corresponding eigenvectors can be trusted.

In summary, a good way to obtain good numerical values for the eigenvectors of M is to forget
about M altogether and to compute numerically the eigenvectors of L. Not only we will then be
dealing with a very sparse matrix for which the QR algorithm works very fast (most of the work is
avoided) but the problem is numerically very well conditioned. For a discussion of the sensitivity
of eigenvectors and their dependence on the separation of the corresponding eigenvalues one can
consult [7, 40] as well as [27, pages 15, 222].

These numerical problems are not new in our situation involving matrix valued functions, but
already appear in the classical scalar case, and this phenomenon is well documented. The important
point is that even in the matrix valued case we can exhibit commuting tridiagonal matrices that
play the same role of the “prolate spheroidal differential operator” in the scalar case.
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