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Abstract—In recent years due to the increasing number of
devices connected to the Internet in what is known as the era of
the Internet of Things, the number of potential vulnerabilities
has also increased. Various anomaly detectors and malicious
behaviour classification algorithms have been proposed. Still,
in unsupervised training scenarios, the artificial intelligence
models focus on detecting anomalies and do not differentiate
between different behaviour patterns. To improve the level of
detail for these systems (be able to define entities and group
events/messages into homogeneous behaviours) the application
of optimization mechanisms based on artificial immune systems
(aiNet) in clustering algorithms is proposed.

The proposed pipeline is comprised of artificial immune
systems (aiNet) for generating a first set of detectors, a distance-
based clustering method (K-means) for redistributing these
detectors and a density-based clustering method (DBSCAN or
OPTICS) for refining this clustering and enabling behavioural
segmentation.

The system is parametrizable to adapt to the requirements
of the search being carried out. In addition, the use of public
databases has been made to develop the behaviour extraction
model and validate the results with the algorithms for the
classification of malicious behaviours and entity identification
already available.

Index Terms—Cybersecurity, Multi-Label Classification, Im-
mune Network, Clustering Algorithms, Network traffic, Unsu-
pervised Learning

Contribution Type: Research in development (limit 8
pages)

I. INTRODUCTION

In recent years, due to the increase in the number of smart
devices connected to the internet [1], [2], network security has
quickly become an issue of societal concern. The IoT platform
generates a large volume of valuable data, which if not
securely transmitted and analyzed can lead to a critical privacy
breach. Traditional protection mechanisms such as encryption,
authentication, and access control are difficult to manage for
large systems with multiple connected devices because each
part of the system has different inherent vulnerabilities [3],
[4]. Consequently, security is at greater risk in IoT systems
than in other IT systems, and the traditional solution may be
ineffective.

Anomaly, intrusion and cyber attacks traffic identification
models using Machine Learning (ML) algorithms for IoT
security analysis were proven effective for detecting intrusions
that have already been encountered and characterized [5], [6].
However, new unknown threats (often referred to as zero-day
attacks or zero-days [7]) likely go undetected as they are often
misclassified by those techniques [8].

Unsupervised anomaly detection algorithms do not use la-
belled information and show the potential to detect zero-days
[9]. However, it is acknowledged that unsupervised anomaly
detection algorithms may show poor detection performance
when used as the sole or main instrument for intrusion
detection [10]. In particular, they are likely to generate a high
amount of False Positives (the detector raises a security alert
but no attacks are happening) and False Negatives (attacks
going undetected), thus lowering correct classifications as
True Positives or True Negatives.

To solve this problem and offer an unsupervised model
that offers a reliable response without making use of labelled
information. A system involving optimization mechanisms
based on artificial immune systems is proposed.

The rest of the paper is organized as follows: Section
2 provides an overview of the technology used and the
related literature; Section 3 details the presented proposal;
Section 4 describes the experimental framework introducing
the dataset used, feature selection and validation metrics;
Section 5 presents and discusses our results; and Section 6
concludes with a summary and suggestions for future work.

II. BACKGROUND

In this section, the concept of Artificial Immune Networks
and the clustering algorithms used in this project are intro-
duced. Also, a brief overview of the evolutionary algorithms
for anomaly detection in cybersecurity is discussed.

The artificial immune network (aiNet) is part of the artificial
immune system theories that are inspired by their biological
counterparts and possess similar attributes (self-learning, self-
adaptation, self-organization and immune memory) [11], [12].
The aiNet model can be used to refine some important char-
acters of complex information data. At present, its application
areas mainly include data clustering, pattern recognition data
compression, etc. The goal of it is to find the optimal memory
antibodies for each antigen Agj using immune evolution
strategies (see figure 1).

In biology, antibodies are generated for antigens, i.e. when
a known antigen enters the body it is identified and neutralized
by previously generated antibodies. In the computational
version identifying antigens is equivalent to identifying a set
of points, i.e. modeling a behavior, where:

The antigen represents a subset of training samples used to
generate the prediction model. In this case, it is the instances
of the same attack that are passed as training to the prediction
model. The antibody denotes a candidate solution of the
prediction model used to approximate antigen behaviour.
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Figure 1. The flowchart of aiNet model [13]

Antigen affinity is defined as the measure for choosing the
best set of antibodies for each antigen. It determines how well
an antigen is being represented by the antibodies generated.

The K-means is an algorithm aimed at discovering k
clusters in the data by applying iterative refinement over a
predefined number k of centroids to generate a final result
[14], [15]. In other words, for a set of data points, it finds
a distribution of k nonempty clusters covering the whole
dataset. The main limitations of K-means clustering are the
selection of the optimal hyperparameter K and the lack
of robustness, due to the instability of the obtained results
depending on the initialization of centroids.

Density-based clustering (DBC) refers to unsupervised
learning methods that identify distinctive groups or clusters
in data based on the idea that a cluster in a data space is a
contiguous region of high point density, separated from other
such clusters by contiguous regions of low point density. Data
points in the low point density separation regions are often
considered noise or observations.

The DBSCAN algorithm works by grouping points con-
sidered nearby neighbours for a minimum amount of them
[16]. In other words, it identifies dense data point regions
to cluster them. It has two basic hyperparameters to take into
account: ε (specifies how close points must be to each other to
be considered as nearby neighbours) and MinPts (describes
the minimum number of points to form a dense region formed
by nearby neighbours).

The OPTICS algorithm works similarly to DBSCAN (re-
quiring the same two parameters) but instead of assigning
cluster memberships, it stores the order in which the points are
processed [17]. Thus, the points of the database are linearly
ordered so that spatially closest points become neighbours in
the ordering. Additionally, a special distance is stored for each
point that represents the density that must be accepted for a
cluster so that both points belong to the same cluster like the

latter algorithm.

A. Related work

On the one hand, K-means algorithms can be applied to
anomaly detection by distinguishing normal from abnormal
behaviour using feature similarity calculations [18], [19].
However, Laskov et al. [20] indicate that while unsupervised
algorithms are often a good choice when it is difficult to
generate the labelled data, their performance including that
of K-means is less effective than that of supervised learning
methods in detecting known attacks. This makes it clear that
the application of clustering methods, in general, and K-
means, in particular, to the security of IoT systems is still
in its infancy and needs to be further explored. Therefore,
in this work, their use is proposed to obtain new results that
reflect the usefulness of these methods in the field of pattern
identification.

On the other hand, the use of evolutionary systems for
the optimization of segmentation processes goes back to the
origins of evolutionary methods, one of which is the artificial
immune network (aiNet)[11]. At present, their application
areas mainly include data clustering, pattern recognition and
data compression [21], [11], [22].

In recent years, artificial immune networks have been
employed by intrusion detection systems to cluster anomalous
malicious behaviours. Liu et al. [6] proposed an unsupervised
anomaly detection algorithm based on an artificial immune
network, and agglomerative hierarchical clustering is em-
ployed to assist the clustering analysis.

Lau et al. [23] proposed an unsupervised anomaly detection
architecture that is capable of online adaptation inspired by
immune network theory. Rassam et al. [24] investigated the
artificial immune network to cluster the malicious attacks of
the intrusion detection system, and employed the rough set
principle to obtain the features of the key elements of the
given dataset to improve the detection rate of this system.
These above anomaly detection approaches demonstrate that
the artificial immune network can be effectively used to cluster
the network flows and refine the detectors of the anomaly
detection system.

Shi et al. [25] proposed the immunity-based time series
prediction approach for network security situation (ITSPA) to
effectively improve the accuracy of network security situation
prediction and prevent large-scale network security attacks,
immunity-based time series prediction approach for network
security situation. After that, Shi et al. [13] proposed an
unsupervised anomaly detection approach for network flow
using Immune Network based K-means clustering (Unsuper-
vised Anomaly Detection approach for network flow using
Immune Network based K-means clustering or UADINK). In
this paper, aiNet KMC is introduced to cluster the network
flow by combining the Artificial Immune Networks (aiNet)
to analyze and filter the raw dataset to construct an internal
image of all data points (a refined relationship map) using
immune evolution mechanisms. Therefore, artificial immune
networks can be used to refine some important characteristics
of complex information data, the optimal value of k for K-
means clustering and the aforementioned method to generate
the clusters. Next, a cluster labelling algorithm (clusLA) is
used to determine whether a cluster is malicious or not.
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Figure 2. Flowchart of the proposed approach

Finally, the labelled clusters are considered detectors to iden-
tify anomalous network flows using the NFAD algorithm
(network flow anomaly detection algorithm). Subsequently,
Shi et al. [26] continued their research with ADAID (Anomaly
Detection approach for network flow using Artificial Immune
network and Density peak), where instead of a combination
of aiNet and K-means (aiNet KMC), a new one (aiNet DP)
based on density peaks (CDP) is presented to obtain a more
accurate number of clusters and cluster centres according to
the aiNet clustering results.

III. PROPOSAL

The present work implements the artificial immune net-
works (aiNet) with two clustering algorithms, a one-pass
clustering algorithm and another one based on density (see
Figure 2). These two subsequent steps help redistribute the set
of representatives generated by aiNet (a set of representatives
for a single behaviour), thus making it able to detect various
behaviours. A similar combination of technologies is already
found in [27], where K-means is combined with DBSCAN
and a genetic algorithm for image association.

In this approach, the goal of the aiNet algorithm is to model
a generic behaviour, while the rest of the steps are devoted to
redistributing the antibodies from that modelling. In the first
step, from a set of data given as input, aiNet will return a set
of representatives (detectors) that tries to model generically
the behaviour of the data shown as input.

The problem is that this generic behavior models itself
as one behaviour. To allow the identification of different
subpatterns (that could be used for detecting anomalies), the
redistribution of the representatives generated by aiNet is
necessary. The main focus of this work is to get a generalized
and refined version of aiNet, so the K-means algorithm
is used as the second part of the process. For this, data
is clustered by the algorithm, initializing it by passing the
detectors generated by aiNet as initial centroids. In this
sense, centroids (the detectors generated by aiNet) will be
redistributed representing subpatterns by agrupating them.

Once the redistribution of the representatives has been made
by K-means (1), a refinement process is necessary to group
them by behaviour, thus allowing a correct identification of
the represented subpatterns (2). For this purpose, the density-
based clustering algorithm is used, which can be either
DBSCAN or OPTICS. The set of detectors is passed as
input and returns the same set together with the behavioural
identifications of each detector.

However, in this case, density-based clustering methods
are not used on the training data (as a usual clustering),
not because it is inefficient (which can be), but because the
proposed method looks for representatives of the sets (first
global representatives with aiNet and then local with K-
means). At this point, representatives of behaviours already

exist, but it is not known which ones represent which. That is
why DBSCAN is used to group the representatives by density
to precisely represent different regions in the data.

After this, the behaviour given by DBSCAN or OPTICS is
assigned to the detectors and the behaviour is equated to a
label so that each behaviour will have an assigned label with
which the model can be evaluated.

It should be noted that the aim is not to only cluster the
detectors, but rather to determine the subpatterns (behaviours)
that have been represented by them.

IV. EXPERIMENTAL FRAMEWORK

In this section, a brief description of the dataset along with
the data cleaning process is presented, after that some fea-
ture tuning recommendations are made and the performance
metrics are introduced.

A. Dataset preprocessing and feature selection

The experiments drawn in this research are implemented
using the BoT-IoT dataset[28], [29]. Created by designing
a realistic network environment at UNSW Canberra’s Cyber
Range Lab, incorporates a combination of normal and botnet
traffic. The extracted traffic stream, in CSV format, is 16.7
GB in size and the files are separated based on attack category
and subcategory to better assist in the labelling process.

To facilitate the handling of the dataset, a 5% extracted
from the original dataset (four files of approximately 3.6
million instances and 1.07 GB total size) was provided by
Koroniotis et al. [28]. According to the authors, this subset is a
representative sample of the full set in terms of attack category
and has the most features of any set or subset processed
from Bot-IoT, with 43 independent features and 3 dependent
features. The 43 independent features contain Argus network
flow features and additional computed features.

The final subset, named 10-Best Subset, contains the same
number of instances as the original 5% Subset but contains
only the 10 most important features. The top 10 features
were derived by mapping the correlation coefficient and joint
entropy of the 43 independent features and selected based
on their ranking. As can be seen in Table I, the number of
instances of each category is highly unbalanced, with DOS
and DDOS attacks being predominant.

Table I
BOT-IOT: 5% SUBSET AND 10-BEST SUBSET

Category Subcategory Number of instances
Normal Normal 477

DoS/DDoS
TCP 1,593,180
UDP 1,981,230
HTTP 2,474

Reconnaissance OS Fingerprint 17,914
Service Scanning 73,168

Information theft Keylogging 73
Data Exfiltration 6

Six invalid features and all ICMP and ARP values were
removed following review and analysis by Peterson et al.
[30]. The cited work points out all dependent, independent
and invalid features that undermine the effectiveness of a
predictive model because they contribute to overfitting and
limit generalization. The features used for model training
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are: stddev, N IN Conn P SrcIP, N IN Conn P DstIP, min,
mean, max, state number, drate and srate.

The labels used for the realization of the experiments
are category and subcategory. As it can be seen in table
I, the dataset used is highly unbalanced. To create a more
balanced distribution, the predominant labels (DoS, DDoS and
Reconnaissance) were separated into subgroups by combining
Category and Subcategory. This new feature is hereafter
referred to as case.

To generate the training and validation set, to know the
robustness of the approach, a Stratified K Fold Split (SKFS)
was performed to ensure that the approach used was functional
given the different distributions of the dataset. Once all
the experiments were completed, the results obtained were
averaged to represent the reliability and robustness of the
experiments.

B. Density-based clustering models parameters

While in this work, K-means has an automatic hyper-
parameter setting, for aiNet, OPTICS and DBSCAN must
be set manually. To select the optimal values for focus
validation with the presented dataset, several guidelines have
been followed. For aiNet, the predetermined hyperparameter
values have been used. The division of subpatterns made by
DBSCAN and OPTICS is adapted to each case. Given that it
is known that the dataset has 10 different labels, it is believed
that the optimal hyperparameters for the validation of the
model will be the one that presents 10 subpatterns, reflecting
the labels of the dataset in Table I.

However, for the behaviour identification problem, an op-
timal number does not exist, since a greater or lesser number
of identified subpatterns simply indicates a greater or lesser
criteria). Models such as DBCSCAN or OPTICS can identify
points that do not belong to a cluster, these are assigned the
value -1. However, in this case, not the principal data set
but the set of detectors generated by aiNet and relocated by
K-means is introduced as input. In this case, assuming that
all the detectors can provide information in their location, a
process of recovery of the detectors with value -1 was chosen,
reassigning the identified behaviour to preserve the original
number of detectors and therefore, the highest possible results.

This process of resignation involves two proposals: The
first and simplest is the assignment of the behaviour of the
nearest neighbouring detector (performing a calculation of the
minimum distance of that detector to the others. The second
is to assign the behaviour to the cluster with the smallest
average distance to its points. In other words, after calculating
the average distance from the detector with the -1 value to the
other detectors in the same cluster, the behaviour of the closest
cluster is assigned.

For validation purposes and to ensure the representatives
generated by our model identify the subpatterns that exist in
the training data, a two-step assignation is proposed to link
a known label (the ground truth) to a subpattern/behaviour
(identified by DBSCAN or OPTICS). First, the average dis-
tance from an individual detector to all the points of the same
ground truth cluster is calculated. Then, the smallest average
distance is assigned to that detector. This procedure alone does
not make use of the information obtained by density-based

clustering methods, since it treats detectors as independent in-
dividuals and not as points of a grouped behaviour. Therefore,
to take advantage of such information, this approach carries
an added step of majority label reassignment, in which, after
completing the process described above, the predominant label
is assigned for all detectors of the same behaviour (calculated
using DBSCAN/OPTICS).

C. Evaluation Metrics

Clustering is a widely used unsupervised process that is
especially sensitive to the input parameters and therefore it
is important to evaluate the results of clustering algorithms.
However, it is difficult to define when a clustering result is
acceptable. In this work, external validation techniques (using
the available label of the data) are performed.

After the proposed algorithms group the data, it is possible
to differentiate several concepts: True Positive Value (VP)
refers to those points that were placed by the algorithm in
the same cluster that indicated the class that was counted
beforehand. False Positive (FP) refers to those points that
were placed by the algorithm in a cluster and that belonged
to another cluster. False Negatives or (FN) refers to those
elements of a cluster that were placed in a different cluster
than the one indicated by its label. True Negative (VN) refers
to those elements that were correctly placed outside a cluster.

Precision =
V P

V P + FP
, (1)

Recall =
V P

V P + FN
, (2)

Fα =
1 + α

1
precision + α

recall

. (3)

With these values, it is possible to introduce the following
widely used metrics: precision Ec. (1) (measures the relative
success rate of the model referred to the total amount of real
positives), recall Ec. (2)(measures the relative success rate
of the model referred to the the total amount of predicted
positives), F1-score Ec. (3) (the harmonic mean of both) and
support (the number of instances with that class used in the
validation set).

V. EXPERIMENTAL RESULTS

Table II
EXPERIMENTAL RESULTS WITH AINET+KMC+DBSCAN

Label Precision Recall F1-Score Support
0 1 1 1 28150
1 1 1 1 16794
2 1 0.97 0.99 37
3 0.9 1 0.95 25667
4 1 0.83 0.9 26826
5 0.01 1 0.03 24
6 1 1 1 1769
7 1 1 1 474
8 0.85 1 0.92 11
9 0 0 0 2

Weighted avg 0.97 0.95 0.96 99754

The configurations formed by aiNet KMC together with
DBSCAN offer an average accuracy of 0.95 (see Table II. In
the case of the configurations formed by aiNet KMC together
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Table III
EXPERIMENTAL RESULTS WITH AINET+KMC+OPTICS

Label Precision Recall F1-Score Support
0 1 1 1 28150
1 1 1 1 16794
2 0 0 0 37
3 0.9 0.96 0.93 25667
4 0.96 0.83 0.89 26826
5 0.01 0.88 0.02 24
6 0.98 0.26 0.41 1769
7 0.29 0.98 0.45 474
8 0.85 1 0.92 11
9 0 0 0 2

Weighted avg 0.96 0.93 0.94 99754

with OPTICS, slightly lower results are obtained with an
accuracy of 0.93 (see Table III).

In both cases, while most behaviours are detected correctly,
labels with lower instances are not. This may be because either
not enough amount of instances have been used in the training
phase (thus not pulling any detectors to locations for those
identifications to happen correctly) or there exist similarities
between clusters (i.e. DDOS/DOS via TCP or UDP).

Even so, the presented model can still be considered valid.
After analyzing the results it is concluded that the identifi-
cation of behavioral representatives is performed correctly.
Considering these results, it is observed that the use of
DBSCAN has achieved higher performance than other similar
unsupervised clustering methods like UADINK (aiNet and
K-Means combination) [13] and ADAID (aiNet and Density
Peaks combination) [26] in terms of the correct classification
of instances in the validation and training test. It is necessary
to highlight that although both DBSCAN and OPTICS have
had a good performance, the adjustment of their hyperparam-
eters has been performed manually, so it would be interesting
to consider the automation of this process.

VI. CONCLUSIONS AND FUTURE WORK

The proposed work allows obtaining detectors in different
regions from clustering and classifying behaviours in the con-
text of cybersecurity. This model is understood as an extension
of existing technologies such as artificial immune networks.
The combination of aiNet with K-means has allowed refining
the identification of sub-patterns, while the use of density-
based clustering techniques such as DBSCAN and OPTICS
has allowed the construction of behaviours from the sub-
patterns.

Although labels with smaller instances are not labelled
correctly, the experimental result on the described dataset
confirms that the proposed three-stage approach can help
evaluate randomly shaped data similar to UADINK [13] and
ADAID [26].

There are several steps in the work to be continued and
improved, such as the comparison of the actual method with
other state-of-the-art options and performing an ablation study
without the K-means step.

Another improvement would be the inclusion of negative
detectors (not anomaly but normality detectors) in aiNet
implementation to improve the detection and classification of
possible attacks by generating a secure profile. By proposing
the modification of aiNet, a crossover operator between de-

tectors could be introduced that would cause the generation
of new descendants that can correctly interpret those points
that are misidentified with the current population. Other con-
tributions are the selection of metrics for internal validation
without the need for a labelled dataset.
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