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Abstract. Neutron cross section measurements are often made relative to a neutron cross section standard. 
Thus, the accuracy of the neutron standards determines the best possible accuracy of the neutron 
measurements. The 235U(n,f) cross section is widely used as reference, while it is considered a standard at 
thermal point and between 0.15 to 200 MeV. For this reason, additional cross section data for the 235U(n,f) 
reaction are useful in order to improve the accuracy and to extend the energy range of the standard. In this 
work, preliminary results of the measurement of the 235U(n,f) cross-section relative to the standard 10B(n,a) 
reaction are presented. The high accuracy measurement was performed at the experimental area EAR-1 of 
the n_TOF facility at CERN, aiming at covering the energy range from the thermal region up to 
approximately 100 keV. The samples were produced at JRC-Geel in Belgium, while the experimental setup 
was based on Micromegas detectors. 

1 Introduction 
The 235U(n,f) reaction cross-section is a very important 
quantity for neutronic calculations of nuclear reactors 
and has been the subject of many experimental and 
theoretical works. Nevertheless, certain issues 
concerning this cross section have been pointed out, 
especially in the energy region below 100 keV [1-3]. In 
addition, it is widely used as reference in neutron-
induced cross-section measurements, while it is 
considered a standard at the thermal point and in the 
energy range from 150 keV to 200 MeV [1]. However, 
in common practice, it is used as a reference reaction at 
a wide energy region, from thermal up to approximately 
1 GeV [2, 4]. In order to improve the accuracy of the 
standard, as well as to extend the energy region where it 
is considered as such, additional measurements are 
required. In this framework a dedicated measurement 
has already been performed at the n_TOF facility by 
Amaducci et al. [4, 5], implementing silicon detectors 
for the measurement. 

In this work, the first results of a measurement 
performed with the gas detectors Micromegas relative to 
the standard 10B(n,α) reaction, conducted at the neutron 
time-of-flight facility n_TOF, located at CERN will be 
presented. This measurement aims at providing 

additional high accuracy data using a different 
experimental setup in the same neutron facility. 

2 Experimental setup  
The measurement was performed at experimental area 
EAR-1 of the n_TOF facility located at CERN. The 
neutrons are produced via the spallation of 20 GeV/c 
protons impinging on a Pb target, which leads to the 
creation of neutrons with energies ranging from thermal 
up to the GeV region. The distinction between the 
neutron energies is achieved with the time-of-flight 
technique, namely estimating the neutron energy by the 
time needed to reach the experimental area, considering 
the distance between the spallation target and the 
experimental area, which in the case of EAR-1 is 185 m. 

For the detection of the fission fragments from the 
235U(n,f) reaction and the alpha and 7Li nuclei from the 
10B(n,α) reaction, a setup based on Micromegas 
detectors [6-9] was used. The Micromegas detector is a 
gas detector divided into two parts: the drift region 
defined by the drift electrode, which is the sample itself 
(235U or 10B) and the mesh electrode, which is a thin Cu 
foil with 50 μm holes and the amplification region 
defined between the mesh electrode and the anode 
electrode, a thin grounded Cu foil. A charged particle, 
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originating from the sample, enters the drift region and 
creates secondary electrons which drift towards the 
mesh, guided by the electric field. The electrons enter 
the amplification region where they encounter a higher 
electric field, leading to their amplification through 
avalanches. The signal is collected from the mesh 
electrode, using preamplifier modules constructed at 
INFN-Bari. 

The samples were produced at JRC-Geel, and were 
deposited on thin foils with an areal density of 8 μg/cm2 
and 72 μg/cm2 for the 10B and 235U sample respectively. 
The diameter of the samples was 8 cm, matching the 
diameter of the collimation system used in the 
experiments. The fission chamber, containing the 
Micromegas detectors and the actinide samples, which 
was placed at experimental EAR-1 is shown in Figure 1, 
while the preamplifier modules are placed on top of the 
chamber. 

 

 
Fig. 1. The fission chamber containing the samples and the 
Micromegas detectors placed at experimental EAR-1 of the 
n_TOF facility. 

3 Data analysis 
The detector waveforms were digitized and stored in 
order to be  analysed by a pulse shape analysis routine 
[9]. The amplitude of each pulse is extracted from the 
analysis, as well as the time-of-flight, which is estimated 
relative to the “γ-flash” peak. The “γ-flash” is the first 
peak in the time-of-flight spectrum and contains signals 
from events of the spallation process, such as γ-rays, 
high-energy relativistic particles, as well as fission 
signals from high-energy neutrons. The timing of each 
pulse is estimated relative to the γ-flash peak. 

An amplitude cut is introduced in the analysis in 
order to reject alpha particles from the natural 
radioactivity in the case of the 235U and noise for both 
samples. The clean amplitude spectrum for the 235U 
sample and for the 10B samples are presented in Figure 
2 and Figure 3, respectively. The signals which are lost 
below the amplitude cut introduced in the analysis are 
estimated via FLUKA simulations [10], using the GEF 
code [11] as fission event generator in the case of the 
235U sample and accounted for via the simulations. The 
simulated spectrum is then calibrated and convoluted 
with a skewed gaussian function in order to reproduce 
the experimental one. The experimental spectrum 
corresponding to neutron energies from 0.06 to 0.08 eV 
compared to the simulated one is presented in Figure 4 

for the 235U sample, while the simulations are still 
ongoing for the 10B sample. 

Additional corrections are required in order to 
extract the final results, which are in progress and 
include the correction for the counting losses, the 
correction for the contaminants present in the samples, 
the accurate determination of the flight path length 
taking into account the distance and time the neutrons 
spent inside the spallation target and the correction for 
the attenuation of the neutron beam. 
 

 
Fig. 2. Amplitude spectrum (in log scale) for the 235U sample 
corresponding to the energy range 0.025 to 0.03 eV. In this 
energy range the two peaks of the alpha particles from the 
alpha radioactivity of the sample are clearly formed, as well as 
the peaks from the heavy and light fission fragments. The red 
line represents the amplitude cut introduced in the analysis. 

 

 
Fig. 3. Amplitude spectrum for the 10B sample, where the 7Li 
and alpha particle peaks are distinguished in the spectrum. 

 

 
Fig. 4. Comparison of the experimental amplitude spectrum 
for neutron energies 0.06 to 0.08 eV (blue line) and simulated 
spectrum (red line) for the 235U sample. 
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4 Results 
The preliminary cross-section values for the 235U(n,f) 
reaction estimated using the 10B(n,α) reaction as 
reference  and normalized to the ENDF/B-VIII.0 library 
[12] are presented in Figure 5. Only the statistical errors 
are shown in the figure, which are less than 5% for all 
neutron energies, with a isolethargic energy binning of 
100 bins per decade. 

 

 
Fig. 5. Preliminary cross-section results for the 235U(n,f) 
reaction (black points) (with 100 bins per decade) in 
comparison with the evaluation of ENDF/B-VIII.0 [12]. The 
results are normalized to the evaluation. 

 As seen in the figure, the data from this work are in 
overall excellent agreement with the evaluation of 
ENDF/B-VIII.0. It is interesting to note here that 
structures are observed for energies higher than 2.25 
keV, as also seen in the latest data of Amaducci et al. 
[4].  The data can assist in extending the Resolved 
Resonance Region beyond 2.25 keV. 

5 Conclusions  
A high resolution measurement of the 235U(n,f) cross-
section with respect to the 10B(n,a) reaction was 
performed at the experimental area EAR-1 of the n_TOF 
facility at CERN. The analysis of the data is still 
ongoing, but the final results aim to assist in the 
improvement of the evaluations especially above 2.25 
keV, where structures are observed in the experimental 
data, that are currently not taken into account as 
resonances in the existing evaluations. In addition, a 
theoretical investigation of the resonance parameters is 
foreseen to be performed in the framework of the R-
matrix theory. 
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