Measurement of the 235 U(n,f) cross section relative to the 10 B(n, α) reaction with Micromegas detectors at the CERN n_TOF facility: first results

Veatriki Michalopoulou^{1,2,*}, Maria Diakaki¹, Rosa Vlastou¹, Michael Kokkoris¹, Athanasios Stamatopoulos¹, Andrea Tsinganis², Zinovia Eleme³, Nikolas Patronis³, Jan Heyse⁴, Peter Schillebeeckx⁴, Laurent Tassan-Got^{2,1,5}, Massimo Barbagallo^{2,6}, Nicola Colonna⁶, Sebastian Urlass^{7,2}, Daniela Macina², Enrico Chiaveri^{2,8}, Oliver Aberle², Victor Alcayne⁹, Simone Amaducci^{10,11}, Józef Andrzejewski¹², Laurent Audouin⁵, Victor Babiano-Suarez¹³, Michael Alcayne⁷, *Simone* Amaducci^{10,11}, *Jozef* Andrzejewski¹², *Laurent* Audouin⁹, *Victor* Babiano-Suarez¹⁹, *Michael* Bacak^{2,14,15}, *Samuel* Bennett⁸, *Eric* Berthoumieux¹⁵, *Jon* Billowes⁸, *Damir* Bosnar¹⁶, *Adam* Brown¹⁷, *Maurizio* Busso^{18,19}, *Manuel* Caamaño²⁰, *Luis* Caballero-Ontanaya¹³, *Francisco* Calviño²¹, *Marco* Calviani², *Daniel* Cano-Ott⁹, *Adria* Casanovas²¹, *Francesco* Cerutti², Guillem Cortés²¹, *Miguel* Cortés-Giraldo²², *Luigi* Cosentino¹⁰, *Sergio* Cristallo^{18,23}, *Lucia-Anna* Damone^{6,24}, *Paul-John* Davies⁸, *Mirco* Dietz²⁵, *César* Domingo-Pardo¹³, *Rugard* Dressler²⁶, *Quentin* Ducasse²⁷, *Emmeric* Dupont¹⁵, *Ignacio* Durán²⁰, *Beatriz* Fernández-Domínguez²⁰, *Alfredo* Ferrari², *Paolo* Finocchiaro¹⁰, *Kathrin* Göbel²⁸, *Ruchi* Garg²⁵, *Aleksandra* Gawlik-Ramięga ¹², *Simone* Gilardoni², *Isabel* Gonçalves²⁹, *Enrique* González-Romero⁹, *Carlos* Guerrero²², *Frank* Gunsing¹⁵, *Hideo* Harada³⁰, *Stephan* Heinitz²⁶, *David* Jenkins¹⁷, *Arnd* Junghans⁷, *Franz* Käppeler^{†31}, *Yacine* Kadi², *Atsushi* Kimura³⁰, *Ingrid* Knapová³², *Milan* Krtička³², *Deniz* Kurtulgil²⁸, Ion Ladarescu¹³, Claudia Lederer-Woods²⁵, Helmut Leeb¹⁴, Jorge Lerendegui-Marco²², Sarah-Jane Lonsdale²⁵, Alice Manna^{33,34}, Trinitario Martínez⁹, Alessandro Masi², Cristian Massimi^{33,34}, Pierfrancesco Mastinu³⁵, Mario Mastromarco^{2,6}, Emilio-Andrea Maugeri²⁶, Annamaria Mazzone^{6,36}, Emilio Mendoza⁹, Alberto Mengoni^{37,33}, Paolo Milazzo³⁸, Federica Mingrone², Javier Moreno-Soto¹⁵, Agatino Musumarra^{10,39}, Alexandru Negret⁴⁰, Ralf Nolte²⁷, Francisco Ogállar⁴¹, Andreea Oprea⁴⁰, Andreas Pavlik⁴², Jaroslaw Perkowski¹², Luciano Piersanti^{18,23}, Cristina Petrone⁴⁰, Elisa Pirovano²⁷, Ignacio Porras⁴¹, Javier Praena⁴¹, José-Manuel Quesada²², Diego Ramos-Doval⁵, Thomas Rauscher^{43,44}, René Reifarth²⁸, Dimitri Rochman²⁶, Carlo Rubbia², Marta Sabaté-Gilarte^{22,2}, Alok Saxena⁴⁵, Dorothea Schumann²⁶, Adhitya Sekhar⁸, Gavin Smith⁸, Nikolay Sosnin⁸, Peter Sprung²⁶, Giuseppe Tagliente⁶, José Tain¹³, Ariel Tarifeño-Saldivia²¹, *Benedikt* Thomas²⁸, *Pablo* Torres-Sánchez⁴¹, *Jiri* Ulrich²⁶, *Stanislav* Valenta³², *Gianni* Vannini^{33,34}, Vincenzo Variale⁶, Pedro Vaz²⁹, Alberto Ventura³³, Diego Vescovi¹⁸, Vasilis Vlachoudis², Anton Wallner⁴⁶, Philip-John Woods²⁵, Tobias Wright⁸, Petar Žugec¹⁶

The n_TOF Collaboration (www.cern.ch/ntof)

¹National Technical University of Athens, Greece

²European Organization for Nuclear Research (CERN), Switzerland

³University of Ioannina, Greece

⁴European Commission, Joint Research Centre (JRC), Geel, Belgium

⁵Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France

⁶Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

⁷Helmholtz-Zentrum Dresden-Rossendorf, Germany

⁸University of Manchester, United Kingdom

⁹Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain

¹⁰INFN Laboratori Nazionali del Sud, Catania, Italy

¹¹Dipartimento di Fisica e Astronomia, Università di Catania, Italy

¹²University of Lodz, Poland

¹³Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain

¹⁴TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria

¹⁵CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

¹⁶Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

¹⁷University of York, United Kingdom

¹⁸Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy

¹⁹Dipartimento di Fisica e Geologia, Università di Perugia, Italy

²⁰University of Santiago de Compostela, Spain

²¹Universitat Politècnica de Catalunya, Spain

²²Universidad de Sevilla, Spain

²³Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Teramo, Italy

²⁴Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Italy

²⁵School of Physics and Astronomy, University of Edinburgh, United Kingdom
²⁶Paul Scherrer Institut (PSI), Villigen, Switzerland
²⁷Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
²⁸Goethe University Frankfurt, Germany
²⁹Instituto Superior Técnico, Lisbon, Portugal
³⁰Japan Atomic Energy Agency (JAEA), Tokai-Mura, Japan
³¹Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany
³²Charles University, Prague, Czech Republic
³³Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
³⁴Dipartimento di Fisica Nucleare, Sezione di Legnaro, Italy
³⁶Consiglio Nazionale delle Ricerche, Bari, Italy
³⁷Agenzia nazionale per le nuove tecnologie (ENEA), Bologna, Italy
³⁸Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
³⁹Dipartimento di Fisica e Astronomia, Università di Catania, Italy

⁴⁰Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania

⁴¹University of Granada, Spain

⁴²University of Vienna, Faculty of Physics, Vienna, Austria

⁴³Department of Physics, University of Basel, Switzerland

⁴⁴Centre for Astrophysics Research, University of Hertfordshire, United Kingdom

⁴⁵Bhabha Atomic Research Centre (BARC), India

⁴⁶Australian National University, Canberra, Australia

Abstract. Neutron cross section measurements are often made relative to a neutron cross section standard. Thus, the accuracy of the neutron standards determines the best possible accuracy of the neutron measurements. The 235 U(n,f) cross section is widely used as reference, while it is considered a standard at thermal point and between 0.15 to 200 MeV. For this reason, additional cross section data for the 235 U(n,f) reaction are useful in order to improve the accuracy and to extend the energy range of the standard. In this work, preliminary results of the measurement of the 235 U(n,f) cross-section relative to the standard 10 B(n,a) reaction are presented. The high accuracy measurement was performed at the experimental area EAR-1 of the n_TOF facility at CERN, aiming at covering the energy range from the thermal region up to approximately 100 keV. The samples were produced at JRC-Geel in Belgium, while the experimental setup was based on Micromegas detectors.

1 Introduction

The ²³⁵U(n,f) reaction cross-section is a very important quantity for neutronic calculations of nuclear reactors and has been the subject of many experimental and theoretical works. Nevertheless, certain issues concerning this cross section have been pointed out, especially in the energy region below 100 keV [1-3]. In addition, it is widely used as reference in neutroninduced cross-section measurements, while it is considered a standard at the thermal point and in the energy range from 150 keV to 200 MeV [1]. However, in common practice, it is used as a reference reaction at a wide energy region, from thermal up to approximately 1 GeV [2, 4]. In order to improve the accuracy of the standard, as well as to extend the energy region where it is considered as such, additional measurements are required. In this framework a dedicated measurement has already been performed at the n_TOF facility by Amaducci et al. [4, 5], implementing silicon detectors for the measurement.

In this work, the first results of a measurement performed with the gas detectors Micromegas relative to the standard ${}^{10}B(n,\alpha)$ reaction, conducted at the neutron time-of-flight facility n_TOF, located at CERN will be presented. This measurement aims at providing

additional high accuracy data using a different experimental setup in the same neutron facility.

2 Experimental setup

The measurement was performed at experimental area EAR-1 of the n_TOF facility located at CERN. The neutrons are produced via the spallation of 20 GeV/c protons impinging on a Pb target, which leads to the creation of neutrons with energies ranging from thermal up to the GeV region. The distinction between the neutron energies is achieved with the time-of-flight technique, namely estimating the neutron energy by the time needed to reach the experimental area, considering the distance between the spallation target and the experimental area, which in the case of EAR-1 is 185 m.

For the detection of the fission fragments from the ²³⁵U(n,f) reaction and the alpha and ⁷Li nuclei from the ¹⁰B(n, α) reaction, a setup based on Micromegas detectors [6-9] was used. The Micromegas detector is a gas detector divided into two parts: the drift region defined by the drift electrode, which is the sample itself (²³⁵U or ¹⁰B) and the mesh electrode, which is a thin Cu foil with 50 µm holes and the amplification region defined between the mesh electrode and the anode electrode, a thin grounded Cu foil. A charged particle,

originating from the sample, enters the drift region and creates secondary electrons which drift towards the mesh, guided by the electric field. The electrons enter the amplification region where they encounter a higher electric field, leading to their amplification through avalanches. The signal is collected from the mesh electrode, using preamplifier modules constructed at INFN-Bari.

The samples were produced at JRC-Geel, and were deposited on thin foils with an areal density of 8 μ g/cm² and 72 μ g/cm² for the ¹⁰B and ²³⁵U sample respectively. The diameter of the samples was 8 cm, matching the diameter of the collimation system used in the experiments. The fission chamber, containing the Micromegas detectors and the actinide samples, which was placed at experimental EAR-1 is shown in Figure 1, while the preamplifier modules are placed on top of the chamber.

Fig. 1. The fission chamber containing the samples and the Micromegas detectors placed at experimental EAR-1 of the n_{TOF} facility.

3 Data analysis

The detector waveforms were digitized and stored in order to be analysed by a pulse shape analysis routine [9]. The amplitude of each pulse is extracted from the analysis, as well as the time-of-flight, which is estimated relative to the " γ -flash" peak. The " γ -flash" is the first peak in the time-of-flight spectrum and contains signals from events of the spallation process, such as γ -rays, high-energy relativistic particles, as well as fission signals from high-energy neutrons. The timing of each pulse is estimated relative to the γ -flash peak.

An amplitude cut is introduced in the analysis in order to reject alpha particles from the natural radioactivity in the case of the ²³⁵U and noise for both samples. The clean amplitude spectrum for the ²³⁵U sample and for the ¹⁰B samples are presented in Figure 2 and Figure 3, respectively. The signals which are lost below the amplitude cut introduced in the analysis are estimated via FLUKA simulations [10], using the GEF code [11] as fission event generator in the case of the ²³⁵U sample and accounted for via the simulations. The simulated spectrum is then calibrated and convoluted with a skewed gaussian function in order to reproduce the experimental one. The experimental spectrum corresponding to neutron energies from 0.06 to 0.08 eV compared to the simulated one is presented in Figure 4

for the ²³⁵U sample, while the simulations are still ongoing for the ¹⁰B sample.

Additional corrections are required in order to extract the final results, which are in progress and include the correction for the counting losses, the correction for the contaminants present in the samples, the accurate determination of the flight path length taking into account the distance and time the neutrons spent inside the spallation target and the correction for the attenuation of the neutron beam.

Fig. 2. Amplitude spectrum (in log scale) for the 235 U sample corresponding to the energy range 0.025 to 0.03 eV. In this energy range the two peaks of the alpha particles from the alpha radioactivity of the sample are clearly formed, as well as the peaks from the heavy and light fission fragments. The red line represents the amplitude cut introduced in the analysis.

Fig. 3. Amplitude spectrum for the ¹⁰B sample, where the ⁷Li and alpha particle peaks are distinguished in the spectrum.

Fig. 4. Comparison of the experimental amplitude spectrum for neutron energies 0.06 to 0.08 eV (blue line) and simulated spectrum (red line) for the 235 U sample.

4 Results

The preliminary cross-section values for the ${}^{235}U(n,f)$ reaction estimated using the ${}^{10}B(n,\alpha)$ reaction as reference and normalized to the ENDF/B-VIII.0 library [12] are presented in Figure 5. Only the statistical errors are shown in the figure, which are less than 5% for all neutron energies, with a isolethargic energy binning of 100 bins per decade.

Fig. 5. Preliminary cross-section results for the 235 U(n,f) reaction (black points) (with 100 bins per decade) in comparison with the evaluation of ENDF/B-VIII.0 [12]. The results are normalized to the evaluation.

As seen in the figure, the data from this work are in overall excellent agreement with the evaluation of ENDF/B-VIII.0. It is interesting to note here that structures are observed for energies higher than 2.25 keV, as also seen in the latest data of Amaducci et al. [4]. The data can assist in extending the Resolved Resonance Region beyond 2.25 keV.

5 Conclusions

A high resolution measurement of the 235 U(n,f) crosssection with respect to the 10 B(n,a) reaction was performed at the experimental area EAR-1 of the n_TOF facility at CERN. The analysis of the data is still ongoing, but the final results aim to assist in the improvement of the evaluations especially above 2.25 keV, where structures are observed in the experimental data, that are currently not taken into account as resonances in the existing evaluations. In addition, a theoretical investigation of the resonance parameters is foreseen to be performed in the framework of the Rmatrix theory.

Funding from the European Union's Horizon 2020 research and innovation programme SANDA (Supplying Accurate Nuclear Data for energy and non-energy Applications) under grant agreement no 847552, is gratefully acknowledged.

In line with the principles that apply to scientific publishing and the CERN policy in matters of scientific publications, the n_TOF Collaboration recognises the work of V. Furman and Y. Kopatch (JINR, Russia), who have contributed to the experiment used to obtain the results described in this paper.

References

- A. D. Carlson et al., Nucl. Data Sheets 148 (2018) 143
- 2. M. Barbagallo et al., Eur. Phys. J. A 49 (2013) 156
- 3. M. Jandel et al., Phys. Rev. Lett. **109** (2012) 202506
- 4. S. Amaducci et al., Eur. Phys. J. A 55, 120 (2019)
- M. Mastromarco et al., Eur. Phys. J. A 58, 147 (2022)
- L. Shekhtman, Nucl. Instrum. Meth. A **494**, 128 (2002)
- Y. Giomataris, Nucl. Instrum. Meth. A 419, 239 (1998)
- S. Andriamonje et al., J. Instrum. 5, P02001 (2010).
- P. Žugec et al., Nucl. Instrum. Meth. A, 812, 134 (2016)
- 10. T.T. Böhlen et al., Nucl. Data Sheets **120**, 211 (2014)
- K.-H. Schmidt, B. Jurado, C. Amouroux and C. Schmitt, Nucl. Data Sheets 131, 107 (2016)
- 12. D. A. Brown et al., Nucl. Data Sheets **148**, 1 (2018)