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Área de Mecánica de Fluidos, Departamento de Ingeneŕıa Aeroespacial y Mecánica de Fluidos,
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Here we extend the results in Gordillo, Riboux & Quintero (2019), where the spreading of
drops impacting perpendicularly a solid wall was analyzed, to predict the time-varying
flow field and the thickness of the liquid film created when a spherical drop of a low
viscosity fluid like water or ethanol spreads over a smooth dry surface at arbitrary values
of the angle formed between the drop impact direction and the substrate. Our theoretical
results accurately predict the time evolving asymmetric shape of the border of the thin
liquid film extending over the substrate during the initial instants of the drop spreading
process. In addition, the particularization of the ordinary differential equations governing
the unsteady flow when the rim velocity vanishes, provides an algebraic equation for the
asymmetric final shapes of the liquid stains remaining after the impact, valid for low
values of the inclination angle. For larger values of the inclination angle, the final shape
of the drop can be approximated by an ellipse whose major and minor semiaxes can also
be calculated making use of the present theory. The predicted final shapes agree with the
observed remaining stains, exceptuating the fact that a liquid rivulet develops from the
bottom part of the drop. The limitations of the present theory to describe the emergence
of the rivulet are also discussed.

1. Introduction

The understanding and quantification of the different events following impact of drops
on solid substrates is of interest for many different areas of science and technology,
among which one could cite printing, heat transfer, the spreading and propagation of
contaminants or diseases and forensic science (Josserand & Thoroddsen 2016; Lejeune
et al. 2018; Gilet & Bourouiba 2018; Brodbeck 2012; Adam 2012; Laan et al. 2015). This
process is also present in our daily life experience and usually captures our attention
when, for instance, we realize that the effect of rain drops falling on the sidewalk does
not only depend on the drop velocity and direction but also on whether the substrate is
dry or wet. In this latter case, it can be observed with the naked eye that the sequence
of events following the impact of the drop is very much dependent on the liquid film
thickness (see, e.g. Josserand & Thoroddsen (2016); Gielen et al. (2017) and references
therein).

Since the impact of drops on surfaces depend on a large number of different parameters,
we will restrict our study to those cases in which the substrate is smooth and dry, the
liquid partially wets the solid and the impact velocity is below the splashing threshold, a
fact meaning that we will consider here that the drop does not disintegrate into smaller
pieces, but simply spreads along the impacting wall. Indeed, for the case of partially
wetting surfaces, if the relative velocity between the solid and the drop is sufficiently
large, forces of aerodynamic origin lift the edge of the advancing liquid sheet from the
substrate. When this happens, the toroidal rim limiting the expansion of the liquid film
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subsequently breaks into tiny droplets as a result of the growth of capillary instabilities,
giving rise to what it is termed as drop splashing (Riboux & Gordillo 2014, 2015;
Gordillo & Riboux 2019). Very recently, Quetzeri-Santiago et al. (2019) have adapted
the physical ideas and the criterion deduced in Riboux & Gordillo (2014) with the
purpose of explaining their own experimental observations, which correctly indicate that
the splash threshold velocity for the case of superhydrophobic substrates is reduced with
respect to the case of partially wetting solids. In fact, it is described in Gordillo &
Riboux (2019) that the effect of wettability can be acounted for by slightly modifying
the value of the angle α of the advancing wedge in the theory by Riboux & Gordillo
(2014) ±6% around the nominal value of 60o, but this approximation is, unfortunately,
only valid for a limited range of values of the static contact angle and it is clearly
not valid for the case of non-wetting solids. In fact, the splashing of drops impacting
superhydrophobic substrates is not determined by aerodynamic lift forces because the
edge of the liquid sheet is never in contact with the solid wall, this fact notably reducing
the splash threshold velocity with respect to the case of partially wetting substrates.
Indeed, by including the effect of the viscous friction at the wall, Quintero et al. (2019)
extended the splashing criterion deduced for the case of Leidenfrost drops in Riboux
& Gordillo (2016) to the case of superhydrophobic solids, deducing a splash condition
that explains the observations. Since the splashing criterion for the case of non-wetting
substrates is conceptually different from the one deduced in Riboux & Gordillo (2014)
for the case of partially wetting substrates, the attempts to adapt the ideas in Riboux &
Gordillo (2014) to explain the observations for the case of superhydrophobic solids as it
was done, for instance, in Quetzeri-Santiago et al. (2019), is not fully justified.

Because of the fact that the experimental range of impact velocities for which the drop
spreads over the solid without breaking into smaller droplets is noticeably smaller for the
case of superhydrophobic surfaces, we have chosen here to focus on the quantification of
the effect of the impact direction on the spreading of drops falling over partially wetting
substrates, which are much more common than superhydrophobic ones. The case of drop
deformation and fragmentation upon impact on inclined superhydrophobic substrates
will be the subject of a separate study.

Even the small subset of all possible different experimental conditions which will be
the subject of the present study exhibit a sufficiently rich and complex dynamics, which
could explain the fact that, in spite of in most of practical situations impacting drops
follow a trajectory which is not perpendicular to the surface, the number of contributions
dealing with the effect of the angle formed between the drop impact direction and the
normal to the solid, are far more scarce than those describing the perpendicular spreading
or splashing of drops impacting dry substrates, among which we could cite, for instance,
Roisman et al. (2002, 2009); Roisman (2009); Rozhkov et al. (2002); Villermaux & Bossa
(2011); Eggers et al. (2010); Laan et al. (2014); Visser et al. (2015); Wildeman et al.
(2016); Lee et al. (2016); Riboux & Gordillo (2014).

The comparatively few studies existing in the literature addressing the inclined impact
of drops on solids can be classified attending to whether the substrate is placed perpen-
dicularly to the direction of gravity (see figure 1a) or not (see figure 1b). Because we will
show next that the asymmetries depicted in the spreading of drops impacting inclined
substrates sketched in figure 1 are caused by the asymmetries in the boundary layer
developing at the wall and by the asymmetries in the pinning condition of the advancing
rim on the substrate, we will also include within the first type of experimental setups
in figure 1a the works by Mundo et al. (1995); Hao & Green (2017); Almohammadi
& Amirfazli (2017b,a); Buksh et al. (2019), in which a drop falls perpendicularly over a
substrate that moves with a prescribed velocity. Moreover, since the time scale associated
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with the spreading of the drop is so short that gravity does not have the time to suffi-
ciently modify the initial liquid velocity during the impact time and, in addition, capillary
forces overcome, by far, the weight of the rim bordering the expanding liquid sheet of
millimetric or submillimetric impacting drops of interest here, gravitational effects will
be neglected in the description of the spreading process. Hence, the experimental results
obtained with either the setups represented in figure 1 or with those detailed in Mundo
et al. (1995); Hao & Green (2017); Almohammadi & Amirfazli (2017b,a); Buksh et al.
(2019) will be described here using the common framework sketched in figure 1c.

Within the types of setups in which a drop falls over a horizontal substrate, Mundo
et al. (1995) reports experiments of drops impacting over smooth and rough substrates
and also provides with a correlation determining the conditions under which a drop
falling over a moving substrate spreads or splashes, emphasizing the role played by the
normal component of the drop velocity relative to the wall. By impacting drops that fall
vertically over a moving substrate Bird et al. (2009); Almohammadi & Amirfazli (2017b)
also report experiments on the spreading-splashing transition. However, neither Mundo
et al. (1995) nor Bird et al. (2009); Almohammadi & Amirfazli (2017b) explore or report
about the effect of the surrounding gaseous atmosphere in the conditions under which an
impacting drop disintegrates into smaller droplets or not, which is known to be the reason
for drop splashing over smooth partially wetting substrates (Xu et al. 2005). Later on, the
essential role played by the gas in the transition to splashing of drops impacting moving
substrates was addressed by Hao & Green (2017) making use of the theory in Riboux &
Gordillo (2014). Using a similar setup as that employed in Almohammadi & Amirfazli
(2017b), Almohammadi & Amirfazli (2017a); Buksh et al. (2019) have reported detailed
experiments revealing the strong asymmetric deformations experienced by drops falling
vertically onto a moving plate, also providing with correlations that, in spite of not being
deduced from first principles, reproduce well the observations. Very recently, Cimpeanu
& Papageorgiou (2018) and Raman (2019) described, using different numerical methods,
the spreading and splashing of drops impacting obliquely over horizontal substrates.

But, because it is far easier to build, most of the contributions in the literature studying
the inclined impact of drops, make use the type of setup sketched in figure 1b, which
illustrates a drop falling vertically onto a plane that can be inclined at will. Using this type
of setup, Sikalo et al. (2005) reported experiments of drops with different viscosities falling
over smooth and rough substrates with different wettabilities for a limited range of impact
velocities, showing that the drop can rebound or spread, deforming asymmetrically with
respect to the impact point. A similar experimental setup was used more recently by Laan
et al. (2014) who provided an algebraic fit, valid for arbitrary values of the inclination
angle, that approximates well the maximum width of the impacting drop and also by
Hao et al. (2019), who analyzed the effect of the properties of the surrounding gaseous
atmosphere and of the inclination angle on the splash transition of drops impacting
partially wetting substrates. With the purpose of modeling the spreading of diseases by
rain, Lejeune & Gilet (2019) have reported careful experimental observations of drops
falling near the edge of an inclined plate, also providing with useful correlations to
quantify the observations. Although not considered here, for its implications in many
different technological applications and in natural flows, let us mention that there exists
a growing interest in the recent literature to describe the spreading, bouncing and
splashing of vertically falling drops impacting inclined superhydrophobic substrates see
e.g., Antonini et al. (2014); Yeong et al. (2014); LeClear et al. (2016); Regulagadda et al.
(2018); Aboud & Kietzig (2018).

In spite of previous research efforts (Almohammadi & Amirfazli 2017b,a; Buksh et al.
2019; Lejeune & Gilet 2019) have provided with useful correlations to predict the time-
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evolving shapes of drops impacting an inclined or moving substrate and also with useful
fits to the data of the type reported in Clanet et al. (2004); Laan et al. (2014) to predict
the maximum width of the deformed drop, we have not identified any previous study in
the literature that, starting from basic principles, explain and quantify the experimental
observations.

Then, it will be our main purpose in this contribution to provide a self-consistent
theoretical framework to predict the time-evolving spreading process of drops impacting
with an angle a partially wetting substrate. Also, these theoretical results will serve
to deduce simplified equations to predict, in an approximate way, the shape of the
liquid stain that remains when the drop stops. Here, we will not make use of energetic
arguments, like those employed in Wildeman et al. (2016), but will write equations for
the balances of mass and momentum at the rim as it was done, for instance, in Taylor
(1959); Roisman et al. (2002); Rozhkov et al. (2002); Eggers et al. (2010); Villermaux &
Bossa (2011) and in Gordillo et al. (2019). We have chosen to extend here the framework
in Gordillo et al. (2019) because, to the best of our knowledge, this is the only self-
consistent theoretical study which is capable to reproduce the time-evolving shapes
of drops impacting perpendicularly onto substrates of different wettabilities and also
the results for the frictionless case reported in Riboux & Gordillo (2016). In addition,
the theory in Gordillo et al. (2019) permits to deduce an algebraic equation that
reproduces the experimental observations for the maximum radius of drops impacting
perpendicularly a substrate, thus providing also a physical explanation for the fits to the
experimental data reported in Clanet et al. (2004); Laan et al. (2014).

Here we will describe the impact of a drop of radius R and velocity V of a liquid of
density ρ and viscosity µ against a flat solid wall when the angle χ formed between the
impact direction and the normal vector to the partially wetting substrate, is different from
zero -see figure 1-, paying special attention to the description of the spreading process
taking place during the initial instants after impact. We will make use of the ideas in
Gordillo & Riboux (2019) and describe the impact process sketched in figure 1 in a
frame of reference moving tangentially to the solid with a constant velocity Vt = V sinχ
(see figure 1c). The reason for this choice is that, an observer moving with this particular
frame of reference, would see the drop impacting the solid perpendicularly, with a velocity
Vn = V cosχ. Therefore, the results obtained for the case of normal impact of drops on
dry substrates in Riboux & Gordillo (2016); Gordillo et al. (2019) can be easily extended
to describe the inclined impact of drops shown in figure 1. To illustrate the advantages
of describing the flow in the moving frame of reference, it is convenient to consider first
the inviscid limit. Indeed, the impact of a drop moving with a velocity V and forming an
angle χ with the normal to the substrate is, in the irrotational case and when the contact
line does not pin to the substrate, the solution given in Riboux & Gordillo (2016) when
the normal impact velocity is V cosχ. This is due to the fact that, in the potential flow
limit, the no slip boundary condition does not need to be satisfied and the falling drop
is informed of the presence of the wall only through the impenetrability condition. In a
real case, however, the wall moves tangentially with a speed V sinχ in the translating
frame of reference, see figure 1(c), and the flow induced by this motion is confined within
a boundary layer. Since the exact solution for the inviscid limit was already provided
in Riboux & Gordillo (2016); Gordillo et al. (2019), our main contribution here will
be, precisely, to extend the results in our previous works and provide a theory on the
spreading process of drops impacting a dry substrate with an inclination angle χ 6= 0
that accounts, in a self consistent way, for the effect of the asymmetric boundary layer
flow and for the fact that the advancing rim pins asymmetrically on the substrate.

Let us also emphasize that our main goal will be to describe the first instants after
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Figure 1. This figure sketches the types of inclined impact of drops that we intend to describe
in this contribution: (a) the impact of a drop that falls over a horizontal substrate following a
trajectory that forms an angle χ with the vertical direction or (b) the impact of a drop falling
vertically on an inclined substrate that forms an angle χ with the horizontal. (c) Sketch showing,
in the moving frame of reference, the definitions of the angle θ, and of the different regions in
which the drop is divided in order to characterize the spreading process namely, the drop region,
which extends from r = 0 to r =

√
3t and where pressure gradients cannot be neglected, the

lamella region, which extends from r =
√

3t to r = s(θ, t) and where pressure gradients can be
neglected and the rim region, which is the thick portion of fluid located at r = s(θ, t) bordering
the perimeter of the spreading drop. The figure also illustrates the definitions of the rim velocity
v(θ, t) and of the rim thickness b(θ, t). In (c), `(π/2, t) and `(3π/2, t) are defined as the distances
of the rim portions located, respectively, at θ = π/2 and θ = 3π/2 from the impact point, which
is a fixed point in the laboratory frame of reference and it is the point in the substrate where
the drop first touches the solid.

impact, during which the drop spreads along the substrate, this unsteady process taking
place in a characteristic time scale of a few miliseconds, which is so short, that gravity
will not play any kind of role in the description of the drop deformation process taking
place from the instant the drop touches the solid until the rim pins the substrate.

The paper is structured as follows: §2 is devoted to deduce the equations of motion
describing the drop spreading process, §3 is dedicated to compare the theoretical pre-
dictions with the experimental observations; in §4, simplified algebraic equations for the
final shapes of the impacting drops are deduced and compared with experiments and the
main conclusions are summarized in §5.
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Figure 2. In the following, the experimental images corresponding to the deformed drops will be
presented with a vertical orientation and then, the sketch included in figure 1c represents a π/2
radians clockwise rotation of the experimental visualizations. The experimental measurements of
s(θ, t) to be presented next, represent the distance of the outer perimeter of the drop measured
from the origin of the moving frame of reference. The continuous lines in this figure represent
the results of the detection algorithm included in the Matlab toolbox. The distances to the
impact point, `(π/2, t) and `(3π/2, t), corresponding to the rim portions respectively located
at π/2 and 3π/2 (see also figure 1c), as well as the definition of the drop width, w(t), are
indicated in the figure to highlight the fact that the asymmetric shape of the drop can be
characterized by two different length scales namely, w(t) and (`(π/2, t) + `(3π/2, t)) /2. Notice
that capital letters are used to denote dimensional quantities in order to differentiate them
from their dimensionless versions, written using lower case letters. Then, W = Rw, L = R`,
T = R/(V cosχ)t. Here, χ = 45◦, R = 1.48× 10−3m and Oh = 3.1× 10−3, Vn = V cosχ = 1.73
ms−1, Vt = Vn tanχ = 1.73 ms−1 and We = 61. The instants of time in the sequence are:
T1 = 0.85 × 10−3s, T2 = 2.58 × 10−3s, T3 = 4.30 × 10−3s, which correspond to the following
values of the dimensionless times: t1 = T1 Vn/R = 1, t2 = T2 Vn/R = 3, t3 = T3 Vn/R = 5.
Values of t± 0.04.

2. Theory describing the drop spreading process

For the reasons explained above, the unsteady flow taking place during the drop
deformation process will be described in a frame of reference translating with a velocity
Vt = V sinχ (see figures 1 and 2). Lengths, velocities, times, and pressures will be
made dimensionless using R, Vn = V cosχ, R/Vn, ρV 2

n as the characteristic values of
length, velocity, time and pressure and, therefore, the drop spreading process will then
be characterized in terms of the following dimensionless parameters

Re =
ρ VnR

µ
, Oh =

µ√
ρRσ

, Ca =
µVn
σ

, We =
ρ V 2

n R

σ
, Fr =

V 2
n

g R

and Bo =
ρgR2

σ
,

(2.1)

with g indicating the gravitational acceleration.
However, for clarity reasons, the theoretical shapes of the drops will not be represented

in the moving frame of reference, but in the laboratory frame of reference in order to
compare with the experimental visualizations like the ones depicted in figure 2, which
will always be oriented vertically, in contrast with the sketch in figure 1c, rotated π/2
radians clockwise. In order to fix ideas, figures 1c and 2 also represent the impact
point, which is the point at which the drop first touches the substrate and it is a
fixed point in the laboratory frame of reference. Figure 2 also shows the origin of the
moving frame of reference, which translates with a tangential velocity V sinχ -or tanχ in
dimensionless form- with respect to the impact point. The origin of the moving frame of
reference is the origin of radial distances and θ is measured counterclockwise with respect
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to the horizontal direction, which is the line contained in the plane of the substrate
perpendicular to the plane of symmetry of the drop.

The theoretical results to be presented here could be used to describe most of practical
situations related to the spreading of drops of low viscosity liquids such as water or
ethanol. Indeed, we will assume that the ranges of values of the dimensionless parameters
defined in (2.1) is such that Oh � 1, We & 10, Re & 100, Fr & 30 a fact implying
that the drop is noticeably deformed after impact -see figure 2- and that viscous effects
are confined within a narrow boundary layer. Moreover, it is also assumed that the
diameters of the drops are in the range of a few millimeters or below, a fact implying
that Bo = ρgR2/σ . O(1). However, capillary forces are much larger than the weight
of the rim bordering the expanding liquid sheet i.e., b2Bo = ρgR2b2/σ � 1, with b� 1
the dimensionless rim thickness (see figures 1 and 2) and since, in addition, Fr−1 =
g R/V 2

n � 1 namely, that gravity does not have the time to sufficiently modify the initial
drop velocity during the characteristic time the drop impacts the substrate, gravitational
effects will be neglected in the analysis that follows.

Since the analysis will be carried out following the notation in Gordillo et al. (2019),
from now on, lower case variables will be used to denote the dimensionless version of
dimensional quantities, which will be written using capital letters. The origin of times is
set at the instant the drop first touches the substrate at the so-called impact point (see
figures 1c and 2).

In order to describe the time evolution of the rim position and thickness, it will prove
essential to use the ideas in Gordillo et al. (2019) and divide the flow into the following
well defined regions (see figure 1): the drop region (i), where the liquid is accelerated
thanks to pressure gradients and extends from r = 0 to r =

√
3t, the lamella (ii), which

is a slender region where the pressure gradient can be neglected and connects the end
of the drop region, located at r =

√
3t, with the third region, the rim. The rim (iii),

is located at a distance from the origin of the moving frame of reference r = s(θ, t)
and denotes the portion of fluid of thickness b(θ, t) and velocity v(θ, t) that limits the
perimeter of the spreading drop.

Both the radial position and thickness of the rim can be calculated in the moving frame
of reference making use of the following balances of mass and momentum (Taylor 1959;
Eggers et al. 2010; Villermaux & Bossa 2011; Gordillo et al. 2019):

α
π

4

db2

dt
= [u(s, θ, t)− v]h(s, θ, t) ,

ds

dt
= v ,

α
π b2

4

dv

dt
= [u(s, θ, t)− v]

2
h(s, θ, t)− (1 + β) We−1 − γ We−1 Ca (v − tanχ sin θ) ,


(2.2)

with u(s, θ, t) and h(s, θ, t) in equations (2.2) the averaged radial velocity and the
thickness of the thin film -the lamella- which, as it was mentioned above, extends along
the spatio-temporal region

√
3t 6 r 6 s(θ, t) (see figure 1). In equation (2.2), α and β

depend on the wetting properties of the solid and, for the case at hand, which corresponds
to hydrophilic substrates, α = 1/2 and β = 0 because the rim cross-sectional area
will be approximated by that of a semicircle and the value of the advancing contact
angle is assumed to be constant and equal to π/2. The last term in the momentum
equation in (2.2), which represents the integral of the viscous shear forces at the wall
∼ Re−1(v − tanχ sin θ)/b along the rim region of width ∼ b, with γ ∼ O(1), will be
neglected in what follows because the range of parameters investigated here is such that
Ca� 1.
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Figure 3. (A) The experimental images presented in the main text have been obtained by
means of the part of the setup represented in (B), which consists of an AP180/M Thorlabs
adjustable angle mounting plate (a), fixed to a horizontal non vibrating Photon Control table
(b) thanks to a right-angle plate Thorlabs AP90 (c). A diffusor light Thorlabs DG100x100 (d) is
fixed to the AP180/M Thorlabs adjustable angle mounting plate and placed perpendicularly to
a Phantom camera V710 coupled with a Sigma 105 mm DG Macro objective (e). Glass slides,
either Knittel or Labbox, 76 × 26 mm, (f) are placed on the diffusor and are fixed thanks to
the stackable filter holder Thorlabs FH2D. The glass slides are removed and replaced after each
experiment. A tripod Manfrotto Model #028 (g) is used to move vertically along the y axis and
to rotate around the z direction the high speed camera. The tripod also permits to align the
camera with a light source Schott KL2500 LCD (h) and also to place the camera perpendicularly
to the glass slide (f). A second light source Schott KL2500 LCD (i) is also used to illuminate a
second light diffuser Thorlabs DG100x100 (j) which is placed in the plane x − y. This second
diffuser is perpendicular to a second high speed camera, Phantom V7.3, coupled to an objective
Edmund Industrial Optics 4×. This second camera, not shown in the sketch, is aligned with
the z direction and points in the direction of the light emitted by a second light source (i) and
permits to obtain sequences of images of the impacting drop of the type shown in (C) and also in
Appendix D. The drop is formed quasi-statically with the help of a 1 ml Threaded plunger glass
syringe Hamilton model 81441 (k) connected with a teflon tubing to a Biolin Scientific C209-22
metallic needle with an outer diameter of 0.7 mm (l), which can be placed at a variable height
from the impacting surface, thanks to Standard Thorlabs rails (m), which permit to modify the
impact velocity V of the falling drops (see also Appendix D). The arrows in the sketch show the
possible displacements/rotations of the different components of the experimental setup and the
screws used to fix the different elements of the setup to the non-vibrating table (b), are standard
Allen crew DIN 912.
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The system of equations (2.2) is integrated specifying the initial conditions at the
instant te the lamella is initially ejected. In Riboux & Gordillo (2014); Riboux & Gordillo
(2017) it is predicted and verified experimentally that the ejection time can be expressed

as te = 1.05 We−2/3 and also that

s(te) =
√

3te, v(te) = 1/2
√

3/te and b(te) =

√
12

π
t3/2e (2.3)

if Re1/6Oh2/3 < 0.25, which is the case for the experiments reported here and also for
many other usual experimental conditions.

Clearly, the system (2.2) can only be integrated once the functions u(r, θ, t) and
h(r, θ, t) describing the averaged velocity and height of the lamella are particularized at
the radial position where the rim is located namely, r = s(θ, t). Applying local balances
of mass and momentum in a differential portion of the lamella, it is shown in Appendix
A, that u and h satisfy the following system of equations

∂(rh)

∂t
+ u

∂(rh)

∂r
+ rh

∂u

∂r
= tanχ sin θ

δ

2
,

∂ u

∂ t
+ u

∂ u

∂ r
= −λ u

h
√

Re t
,

(2.4)

with the friction factor given by

λ(r, θ, t) ' 1− tanχ sin θ

√
x

3
+

tan2 χ cos2 θ

18
x where x = 3

(
t

r

)2

(2.5)

and

δ =

√
t

Re
(2.6)

indicating the boundary layer thickness which, in a first approximation, does not depend
neither on r nor on θ, as it is demonstrated in Appendix B.

The partial differential equations (2.4) can be approximately solved, in the limit Re�
1, expressing u and h as (Gordillo et al. 2019)

u(r, θ, t) = u0(r, t) + Re−1/2 u1(r, θ, t) +O(Re−1) ,

h(r, θ, t) = h0(r, t) + Re−1/2 h1(r, θ, t) +O(Re−1) .
(2.7)

The substitution of the ansatz (2.7) into the system (2.4), yields the following four partial
differential equations for u0(r, t), h0(r, t), u1(r, θ, t) and h1(r, θ, t):

∂ u0
∂ t

+ u0
∂ u0
∂ r

= 0 =⇒ Du0
Dt

= 0 ,

∂(rh0)

∂t
+ u0

∂(rh0)

∂r
+ rh0

∂u0
∂r

= 0 =⇒ D (rh0)

Dt
= −rh0

∂u0
∂r

,

(2.8)



∂ u1
∂ t

+ u0
∂ u1
∂ r

+ u1
∂ u0
∂ r

= − λu0

h0
√
t

=⇒ Du1
Dt

+ u1
∂ u0
∂ r

= − λu0

h0
√
t
,

∂(rh1)

∂t
+ u0

∂(rh1)

∂r
+ u1

∂(rh0)

∂r
+ rh0

∂u1
∂r

+ rh1
∂u0
∂r
− tanχ sin θ

√
t

2
= 0

=⇒ D (rh1)

Dt
+ rh1

∂u0
∂r

= tanχ sin θ

√
t

2
− ∂

∂r
(u1rh0) .

(2.9)

with D/Dt ≡ ∂/∂ t+ u0∂/∂ r.
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Equations (2.8)-(2.9) will be solved using the method of characteristics, as we already
did in Gordillo et al. (2019) for the case of normal impact (χ = 0), once appropriate
boundary conditions are imposed at the spatio-temporal boundary (r, t) = (

√
3x, x)

separating the drop and the lamella regions. For that purpose notice that, at the spatio-
temporal boundary r =

√
3x, both the height of the lamella and the liquid velocity were

deduced in the potential flow limit (frictionless limit) in Riboux & Gordillo (2014, 2016):
u(
√

3x) = ua(x) =
√

3/x and h(
√

3x, x) = ha(x), with ha(x) a function determined
numerically in Riboux & Gordillo (2016) which can be approximated as (Gordillo et al.
2019)

ha(x) = P (x) =

9∑
i=0

pi x
i

with p0 = 3.95812707× 10−4, p1 = 1.22669850× 10−1,

p2 = −1.04054024× 10−1, p3 = 4.37229580× 10−2,

p4 = −1.09184802× 10−2, p5 = 1.70579418× 10−3

p6 = −1.67926979× 10−4, p7 = 1.01063551× 10−5,

p8 = −3.39290090× 10−7 p9 = 4.86535897× 10−9 ,

(2.10)

Since the presence of the boundary layer does not change, to leading order, the normal
velocity field at surface of the drop with respect to the potential flow solution, the mass
balance demands that the mass flux per unit length at r =

√
3x in a real case namely,

when a boundary layer is present, is identical to this quantity in the frictionless limit.
Hence (Gordillo et al. 2019)

ha(x)ua(x) = ua (h− δ) +
δ

2
(ua + tanχ sin θ) = u(r =

√
3x, θ, x)h(

√
3x, θ, x) , (2.11)

where we have assumed that the velocity profiles are linear within the boundary layer
(see equation (7.5) in Appendix A). Therefore, from the two equations in (2.11) it can
be deduced that

h(
√

3x, θ, x) = ha

(
1 +

δ

2ha

(
1− tanχ sin θ

ua

))
,

u(
√

3x, θ, x) = ua

(
1 +

δ

2ha

(
1− tanχ sin θ

ua

))−1

,

(2.12)

with ua =
√

3/x and δ(x) =
√
x/Re.

In the limit Re� 1, equations (2.12) can be linearized to give

h(
√

3x, θ, x) = ha(x) +

√
x

2

(
1− tanχ sin θ√

3

√
x

)
Re−1/2 ,

u(
√

3x, θ, x) '
√

3

x
−
√

3

2ha(x)
ξ

(
1− tanχ sin θ√

3

√
x

)
Re−1/2

(2.13)

with ξ a variable such that the expression in (2.13) is a good approximation to the exact
value of u in (2.12) for all values of x. For instance, when δ � ha, ξ = 1, while if δ ∼ ha,
the approximation in (2.13) to the exact value will be good if ξ ' 2/3 . The range of
Ohnesorge numbers considered here, 10−3 6 Oh 6 10−2, is such that the ratio δ/ha is
of order unity and, then, all the results presented here are calculated taking the value
ξ = 2/3 (Gordillo et al. 2019).
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Therefore, making use of equations (2.7) and (2.13) it can be deduced that

u0(
√

3x, θ, x) =

√
3

x
, u1(

√
3x, θ, x) = −

√
3

2ha(x)
ξ

(
1− tanχ sin θ√

3

√
x

)
,

h0(
√

3x, θ, x) = ha(x) and h1(
√

3x, θ, x) =

√
x

2

(
1− tanχ sin θ√

3

√
x

)
.

(2.14)

We now follow the steps in Gordillo et al. (2019) and integrate the momentum equation
in (2.8) along rays dr/dt =

√
3/x subjected to the corresponding boundary condition in

(2.14), yielding

u0(r, t) =

√
3

x
along

dr

dt
=

√
3

x
=⇒ r =

√
3x+

√
3

x
(t− x)

=⇒ r =

√
3

x
t =⇒ x = 3

(
t

r

)2

=⇒ u0(r, t) =

√
3

3 (t/r)
2 =

r

t
.

(2.15)

Moreover, the integration of the equation for h0(r, t) in (2.8) along the ray dr/dt =
√

3/x
yields

∂(rh0)

∂t
+ u0

∂(rh0)

∂r
+
rh0
t

= 0 =⇒ D (rh0t)

Dt
= 0 =⇒ h0(r, t) = 9

t2

r4
ha[3(t/r)2] ,

(2.16)

where we have made use of the fact that ∂u0/∂r = 1/t, of the relationship between x
with r and t in equation (2.15) and of the corresponding boundary condition in equation
(2.14). Equations (2.15)-(2.16) recovers the result in Gordillo et al. (2019).

Now, using the expression for u0 in equation (2.15) and multiplying by t both sides of
equations in (2.9), we find that

D (u1t)

Dt
= − λu0

h0
√
t
t ,

D (rh1t)

Dt
= −1

t

∂

∂ r
(rh0tu1t) + tanχ sin θ

t3/2

2
. (2.17)

The equation for u1 in (2.17) can be integrated along rays r =
√

3/x t taking into
account that, by virtue of equation (2.16), D(rh0t)/Dt = 0:

D (u1t)

Dt
= − λu0

h0
√
t
t =⇒ D (u1trh0t)

Dt
=
−3λ

x
t5/2 =⇒

u1(r, θ, t) = − 1

t ha(x)

[√
3x

2
ξ

(
1− tanχ sin θ√

3

√
x

)
+

2
√

3λ

7x5/2

(
t7/2 − x7/2

)]
,

(2.18)

where we made use of the boundary condition for u1 in (2.14) and also of the fact
that, along rays dr/dt = u0 =

√
3/x departing from the spatio-temporal boundary

(r, t) = (
√

3x, x), r =
√

3/x t, u0 =
√

3/x and rh0t =
√

3xha(x)x.

To integrate the equation for h1 in (2.17) we make use of our previous ideas in Gordillo
et al. (2019), which we reproduce here for clarity purposes, and notice that ∂(u1trh0t)/∂r
can be calculated as the increment d (u1trh0t) between two neighbouring rays departing
from the spatio-temporal boundary (r, t) = (

√
3x, x) at the consecutive instants x − dx

and x which, at a given instant t are thus separated a distance dr =
√

3/2x−3/2tdx.
Consequently, making use of the solution for u1trh0t in (2.18) and of the boundary
condition for u1 in (2.14),
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rh0tu1t− (rh0tu1t) (x) = −6λ

7x

(
t7/2 − x7/2

)
with

(rh0tu1t) (x) = −
√

3

2
ξ

(
1− tanχ sin θ√

3

√
x

)
x2
√

3x

(2.19)

and taking into account that dr =
√

3/2x−3/2 tdx,

−1

t

∂

∂ r
(u1trh0t) =

2x3/2√
3

1

t2
∂

∂ x
(rh0tu1t(x))− 12x3/2

7
√

3

1

t2
∂

∂ x

[
λ

x

(
t7/2 − x7/2

)]
. (2.20)

Hence,

− 1

t

∂

∂ r
(u1trh0t) = − 2

14
√

3 t2

[
(52.5ξ

(
1− tanχ sin θ√

3

√
x

)
− 30λ)x3 − 12λx−1/2t7/2

]
+

+
x4

2
√
x

ξ

t2
tanχ sin θ − 12x3/2

7
√

3

1

x t2

(
t7/2 − x7/2

) ∂λ
∂ x

(2.21)

with
∂λ

∂ x
=

1

2

(
− tanχ sin θ√

3x
+

tan2 χ cos2 θ

9

)
(2.22)

and where use of the boundary condition for u1 in (2.14) has been made.
The substitution of equations (2.21)–(2.22) into equation (2.17) and the integration

of the resulting equation for h1 along the ray dr/dt =
√

3/x yields an expression that,
once it is inserted into the ansatz (2.7), yields the following expressions for u(r, θ, t) and
h(r, θ, t):

u(r, θ, t) =
r

t
− Re−1/2

t

[ √
3x

2ha(x)
ξ

(
1− tanχ sin θ√

3

√
x

)
+

2
√

3λ

7ha(x)x5/2

(
t7/2 − x7/2

)]
,

h(r, θ, t) = 9
t2

r4
ha[3(t/r)2] +

Re−1/2

rt

[√
3

2
x2
(

1− tanχ sin θ√
3

√
x

)
+

1

5
tanχ sin θ

(
t5/2 − x5/2

)
+

+

√
3

42

(
105ξ

(
1− tanχ sin θ√

3

√
x

)
− 60λ

)
x3
(
t−1 − x−1

)
+

24
√

3λ

105
x−1/2

(
t5/2 − x5/2

)
−

−x4
(
t−1 − x−1

)( tanχ sin θ

2
√
x

ξ +
6

7
√

3

(
− tanχ sin θ√

3x
+

tan2 χ cos2 θ

9

))
−

−12x1/2

35
√

3

(
− tanχ sin θ√

3x
+

tan2 χ cos2 θ

9

)(
t5/2 − x5/2

)]
,

(2.23)
where we also have made use of equations (2.15), (2.16) and (2.18).

As expected, equation (2.23) recovers, in the limit χ = 0, the equations for u and
h deduced in Gordillo et al. (2019) to describe the spreading of drops impacting per-
pendicularly over a smooth dry substrate. In addition, the expressions for u and h
in equation (2.23) particularized at θ = 0 are, except for the terms proportional to
Re−1/2 tan2 χ cos2 θ, identical to those deduced in Gordillo et al. (2019), as the interested
reader could check. It will be shown in §4, where we discuss the final shapes of the
deformed drops, that the prefactors of the additional terms in (2.23) affecting tan2 χ cos2 θ
are comparatively small when compared with similar order of magnitude terms. As it
will become clear in §4, this is the reason why the experimental fittings describing the
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axisymmetric spreading of drops can be used to predict the maximum width of the
spreading drop when the Reynolds and Weber numbers are defined using the normal
component of the velocity. This theoretical result, which is deduced here in the moving
frame of reference and is supported by the observations made in Sikalo et al. (2005);
Laan et al. (2014) as well as by the experiments presented below, cannot be extrapolated
to the rest of values of θ. Indeed, from the expression of u in (2.23), notice that the mean
velocity and hence, the flux of momentum entering into the rim at θ = 0 is larger than
the corresponding value at θ = 3π/2, but smaller than the value at θ = π/2. This is a
consequence of the fact that, in the moving frame of reference, the flow induced by the
wall, which is confined within the boundary layer, is directed in the same direction as the
velocity field in the potential flow region located outside the boundary layer for θ = π/2,
but it is in the opposite direction for θ = 3π/2 (see figure 16 in Appendix A). This
boundary layer effect induces an asymmetry in the drop expansion process which will
be appreciated in the figures below. Another way of realizing that the viscous boundary
layer induces asymmetries is that equation (2.23) would not depend on θ in the limit
Re → ∞ namely, if viscous effects could be neglected, as it would be the case of the
impact of drops in the Leidenfrost regime. Hence, in the frictionless case considered in
Riboux & Gordillo (2016), if the contact line did not pin the substrate, the rim would be
a circle of time-varying radius with a center translating in the tangential direction to the
substrate with a (dimensional) velocity V sinχ. But, there is another important reason
explaining the asymmetries depicted in the drop spreading process illustrated in figure
2, which is that the condition determining the pinning of the advancing contact line to
the substrate, depends on θ. Indeed, the pinning condition used here, to be validated in
what follows, simply expresses that the rim portion located at the angle θ will stick to
the substrate and, therefore, will conserve in time its position in the laboratory frame
of reference, when the radial rim velocity with respect to the substrate, is zero. This
condition, which reads

v(θ, tpin(θ)) = tanχ sin θ , (2.24)

with v the rim radial velocity calculated in the moving frame of reference using equations
(2.2) and tpin the instant of time the rim pins the substrate, indicates that, for a given
value of χ 6= 0, the rim portion stopping first will be the one located at θ = π/2 and
the rim portion stopping the last, will be the one located at θ = 3π/2. Indeed, from
equation (2.24) it can be inferred that the rim at θ = π/2 will stop when v > 0 namely,
when the rim is expanding outwards in the relative frame of reference, that the rim at
θ = 0 will stop when v = 0 namely, when the rim radial velocity is zero, and also that
the rim at θ = 3π/2 will stop when v < 0 namely, when the rim is contracting inwards
in the relative frame of reference. Let us point out here that we will quantify the rim
contraction process (i.e., when v(θ, t) < 0) in a simplified manner. Indeed, when v < 0,
the thickness of the liquid film h is a small quantity, which can be estimated taking the
limit Re→∞ in equation for h in (2.23):

h ∼ 9
t2

r4
ha[3(t/r)2] =

3x

r2
ha(x) , (2.25)

with x = 3(t/r)2 ∼ O(1) the instant of time at which fluid particles are ejected from the
boundary separating the drop and rim regions, namely, r =

√
3x. The values of ha(x) are

approximately constant around its maximum value, ≈ 0.05, for 0.7 . x . 2.5, as it can
be deduced using equation (2.10) or, alternatively, see Gordillo et al. (2019). Since the
rim recedes in the moving frame of reference for instants of time such that the drop is
around its maximum radial extension, which is such that s∗(θ = 0)� 1 for the range of
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Weber numbers of interest here namely, We� 1 (see, for instance figure 2 or the figures
to be shown in the next secion), the height of the liquid film when the drop is reaching
its maximum extension can be estimated as

h ∼ 3x

s∗2
ha(x)� 1 , (2.26)

because x ∼ O(1), ha � 1, s∗(θ = 0)� 1 and, to simplify the notation, s∗ = s∗(θ = 0).
Now, notice that the ratio h/δ, with δ =

√
t/Re and h given by expression (2.26) yields

h

δ
∼ 3xha/s

∗2√
s∗/Re

∼ 3xWe1/4Oh−1/2ha
s∗5/2

, (2.27)

where we have taken into account the definition of x, from which δ '
√
s∗/Re because x

is of order unity and we have used the relation We = Re2Oh2. It will be shown in §4 that
the analytical expression of s∗ deduced here can be fitted, for the case of low viscosity
liquids considered here, as s∗ ∼We1/4, as it was already noticed by Clanet et al. (2004)
and, hence, equation (2.27) reads

h

δ
∼ 3xOh−1/2ha

We3/8
. O(1) , (2.28)

because We� 1, x ∼ O(1) and Oh−1/2ha ' 1 for the range of values of Oh considered
here (see table 1) since ha . 0.05. Equation (2.28) expresses that viscous diffusion
penetrates across the whole width of the lamella and thus, the averaged liquid velocity at
the entrance of the rim is notaciebly smaller than the corresponding value the potential
flow limit Re→∞, as it can be also inferred using the equation for u in equation (2.23).

Motivated by these reasons, the relative fluxes of mass, (u − v)h and momentum
(u−v)2h in equation (2.2) will be neglected here in the description of the rim contraction
process. Then, in order to quantify the rim dynamics when v(θ, t) < 0 in the moving frame
of reference, equations (2.2) are integrated analytically from the instant t∗(θ) at which
the rim velocity is zero, v(θ) = 0, which yields

v =
−4 (1 + β)

αWeπ b∗2
(t− t∗) and s = s∗ − 2 (1 + β)

αWeπ b∗2
(t− t∗)

2
, (2.29)

with s∗ the value of s(θ) at t = t∗(θ) and b∗ the value of b at θ = 0 at the instant
t = t∗(θ = 0). Notice that, from now on, the superscript ∗ will be used to indicate the
values of variables when v = 0 and the subscript pin will be used to denote the value
of a variable at the instant the rim pins the substrate namely, when its velocity is zero
in the laboratory frame of reference. Let us also point out that, in the limit χ � 1,
b∗(θ) = b∗(θ = 0) because the deformed drop is nearly axisymmetric, but we extend this
result here for arbitrary values of χ because this additional approximation simplifies the
algebra in §4 and the agreement with experimental observations in §3 and §4 will be
shown to be good to low to moderate values of χ.

Then, the theoretical curves in the comparisons with the experimental data to be
shown in the next section are calculated as follows: for v(θ) > 0 namely, when the
rim portion located at θ is expanding outwards in the relative frame of reference, the
system of ordinary differential equations (2.2) is integrated from the ejection time t =
te = 1.05We−2/3 using equations (2.3) as initial conditions and using the analytical
expressions of u and h given in equation (2.23). For v(θ) < 0 namely, when the rim portion
located at θ is contracting inwards in the relative frame of reference, we make use of the
analytical expressions in (2.29) using b∗ = b∗(θ = 0) and s∗(θ) calculated integrating the
system (2.2) up to the instant t∗(θ) for which v(θ) = 0. The expansion (v(θ, t) > 0) or
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contraction (v(θ, t) < 0) processes for a given value of θ are not continued beyond the
instant of time tpin(θ) at which condition (2.24) is satisfied: when this happens, the rim
spatial position is then kept constant in the laboratory frame of reference.

Notice that the results presented here for arbitrary values of χ have been deduced
neglecting fluxes and capillarity effects along the azimuthal direction. Thanks to this
simplification, the temporal evolution of the rim located at a fixed value of θ can be
straightforwardly calculated from t = te = 1.05We−2/3 -see equation (2.3)- up to the
instant of time tpin(θ) when equation (2.24) is verified, by either integrating the system
(2.2) using the analytical expressions for u and h given in equation (2.23) or using the
analytical expressions given in equation (2.29). The validity of the simplified theoretical
approach presented here, which does not resort on any adjustable constants, will be
checked in what follows.

3. Experiments and comparison with theory

The sketch in figure 3 illustrates that the experimental images presented here have
been recorded using a high-speed camera Phantom V710 placed perpendicularly to two
different types of smooth and dry glass slides, which are replaced after each experiment.
The high speed camera is operated, except once case indicated in figure 4, at 33009 f.p.s.
(frames per second), obtaining a spatial resolution of 45 microns per pixel. The glass
slides can be inclined with respect to the horizontal direction at an angle χ which is
measured and fixed to χ = 15◦, 30◦, 45◦ or χ = 60◦ thanks to the use of an adjustable
mounting plate (see figure 3). Drops of two liquids, water and ethanol, are formed quasi-
statically from a needle which can be placed at a variable height from the impacting
surface in order to modify the impact velocity V of the falling drops. Table 1 provides
with the experimental values of We, Re, Oh, Fr, Bo and χ explored in this study, as
well as with the range of values of the static contact angles. Additional experimental
information is provided in Appendix D.

The purpose in this section is to compare the predicted time-evolving shapes with those
observed experimentally up to an instant of time t = 6, for which the maximum extension
of the deformed drop is much larger than its initial diameter. Performing experiments
beyond t = 6 in a systematic way for the whole range of experimental values of We, Re,
Oh and χ considered in this study, is not an easy task. However, the detailed experimental
information obtained and reported in what follows within the interval of time 0 6 t . 6
will prove to be long enough to validate the teoretical results presented in §2. This
interval of time is also sufficiently long if our purpose was to describe the splashing of
drops because this process is initiated at instant of time t � 1 for the case of partially
wetting solids and at t ∼ 1 − 3 for the case of superhydrophobic substrates (Riboux &
Gordillo 2014; Quintero et al. 2019). In fact, in the same way that the results in Gordillo
et al. (2019) were used to describe the splashing of drops impacting perpendicularly
over superhydrophobic substrates in Quintero et al. (2019), the results of the theory
presented here can be used to describe the inclined superhydrophobic splashing of drops,
as it will be shown in a separate contribution. This section is dedicated to compare the
theoretical predictions with the experimental observations corresponding to water drops:
the analogous comparisons using ethanol are provided in Appendix C.

Figure 4, showing asymmetric drop shapes that look very similar to those already
reported by Almohammadi & Amirfazli (2017a); Buksh et al. (2019); Lejeune & Gilet
(2019), is used to analyze the effect of the inclination angle on the spreading of water
drops for a constant value of the Weber number, We ' 60. Let us recall here that,
in the ideal case that there was no friction with the wall and the rim did not pin the
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substrate, as it would happen if there was a lubricating gas or vapor layer preventing
the contact between the drop and the solid, we would not appreciate asymmetries in
the experimental images because the shape of the drop would be a circle with a time-
varying radius translating tangentially to the substrate with a dimensionless velocity
tanχ. However, this is not observed in figure 4 which shows that, for a fixed value of χ,
the drops become more and more asymmetric as time increases, this effect being more
evident for the larger values of χ. Indeed, this figure shows that the rim position varies
in time until the instant the rim pins to the substrate, with the pinning process not
taking place simultaneously for all values of θ but starting from θ = π/2 and advancing
towards θ = 3π/2. In addition, figure 4 shows that, for fixed values of t and We, the
effect of varying χ is that, while the width of the deformed drop seems to be insensitive
to changes in χ, the drop becomes more elongated when χ increases. In fact, it was
already indicated in §2 that the expressions of u and h in (2.23) particularized at θ = 0
are practically identical to the analogous equations deduced in Gordillo et al. (2019) for
the case of normal impact of drops, the only differences between these expressions being
the terms proportional to tan2 χ cos2 θ in (2.23) which, as it was anticipated above and
we will show in §4, can be neglected in the calculation of the maximum width of the
deformed drop. This is the fact explaining why the widths w(t) of the drops depicted in
figure 4, with w(t) defined in figure 2, do not appreciably change with χ for a constant t.
However, the drop deformation along the longitudinal direction is appreciably sensitive
to changes in χ. This visible effect is partly caused by the asymmetric flux induced by the
boundary layer, but mainly due to the the pinning condition (2.24) which, among other
things, expresses that the rim portion located at θ = π/2 will stop when v = tanχ and
the rim portion located at θ = 3π/2 will stop when v = − tanχ. Then, the instants of
time tpin(θ = π/2) and tpin(θ = 3π/2) at which the rim portions located at π/2 and 3π/2
will stop, are almost the same and very similar to tpin(θ = 0) for the smaller value of χ
because tanχ ' χ� 1. This fact explains why the final shape of the drop in figure 4 is
nearly circular for the case χ = 15o. However, the differences between tanχ and − tanχ
become more pronounced as χ increases and, therefore, tpin(θ = 3π/2) − tpin(θ = π/2)
increase with χ namely, the difference between the time at which the rim portion located
at 3π/2 stops and the instant at which the rim portion located at π/2 stops, increases
with χ, increasing also the distance between these two rim portions. This fact explains
why the drop becomes more elongated and more asymmetric for larger values of χ. The
qualitative trends observed in figure 5, where the effect of varying χ for We ' 120 is
analyzed, are similar to those depicted in figure 4, but the instants of time at which the
rim stop, increase with the value of the Weber number, this fact impliying that the final
width and the final length of the drop, increase with We. Finally, the thin continuous lines
in figures 4 and 5, which represent the theoretical results calculated using the equations
in §2, compare favourably with the experimental observations, except for the case of the
larger values of t and χ = 60o in figure 4.

The experimental time evolutions of the widths w(t) and lengths `(π/2, t), `(3π/2, t)
characterizing the shape of the deformed drops for different values of the Weber number
and four values of χ, with w(t), `(π/2, t), `(3π/2, t) defined in figure 2, are compared with
the theoretical predictions in figures 6-8. Notice first that experimental data represented
in figures 6-8 correspond to the outer perimeter of the drop, as it is illustrated in figure
2, but the meaning of the variable s(θ, t) in §2 refers to the distance from the origin of
the moving frame of reference to the point where the rim meets the lamella. However,
since b/s � 1, the small relative differences between the measured and the predicted
values of s(θ, t) are not included as uncertainty bars in figures 6-8. The theoretical curves
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Figure 4. Comparison between the observed and predicted shapes of water drops impacting
glass slides for almost the same value of the Weber number, We ≈ 60, and different values
of the inclination angle: We = 69, χ = 15◦ (first row), We = 61, χ = 30◦ (second row),
We = 61, χ = 45◦ (third row) and We = 60, χ = 60◦ (bottom row). Both the experimental
and theoretical shapes correspond to the same dimensionless times t± 0.03: (a) t = 0, (b) t = 1,
(c) t = 2, (d) t = 3, (e) t = 4, (f) t = 5 and (g) t = 6. The experimental impact conditions
are provided in table 1. The horizontal line serves to indicate the location of the impact point.
The video corresponding to χ = 60o has been recorded at 13029 f.p.s. The experimental videos
corresponding to the images in this figure are provided as Supplementary Material.

represented in figures 6-8 are calculated as follows:

w(t) = s(θ = 0, t) , `(θ = π/2, t) = s(θ = π/2, t)− tanχ t ,

`(θ = 3π/2, t) = s(θ = 3π/2, t) + tanχ t
(3.1)

with s the rim distance to the origin of the moving frame of reference determined by
either integrating the system (2.2) if v > 0 or using the analytical expression given in
equation (2.29) if v < 0 until equation (2.24) is satisfied. The instant of time at which
the pinning condition (2.24) is fulfilled is indicated in figures 6-7 using either a triangle
or a square: notice that, when this event takes place, the experimental and theoretical
values of both w(t) and `(θ = π/2, t) remain constant in time with rather similar values,
a fact providing further support to our theory. The circle over the curves in figure 8
represents the instant of time from which s(θ = 3π/2, t) is calculated using equation
(2.29). Notice also that figures 6-8 confirm the trends observed in figures 4 and 5 since
they show that the rim stops sooner at θ = π/2 than at θ = 0 and also that the rim
portion located at θ = 3π/2 does not stop within the interval of time 0 6 t . 6. In
fact, the analysis of figures 6-8 reveals that the maximum deformation of the drop along
the direction θ = π/2 is smaller than the deformation of the drop along θ = 0 namely,
`pin(θ = π/2) < wpin, and it can also be inferred that the maximum deformation along
θ = 3π/2 namely, `pin(θ = 3π/2), will be noticieably larger than both `pin(θ = π/2) and
wpin, this effect being more pronounced for the larger values of χ. Here, recall that the
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Figure 5. Comparison between the observed and predicted shapes of water drops impacting
glass slides for almost the same value of the Weber number, We ≈ 120, and different values
of the inclination angle: We = 118, χ = 15◦ (top row), We = 123, χ = 30◦ (middle row) and
We = 116, χ = 45◦ (bottom row). We could not add the case of χ = 60o because the maximum
value of the Weber number for this inclination angle is well below 120, see the experimental
impact conditions provided in table 1. Both the experimental and theoretical shapes correspond
to the same dimensionless times t± 0.03: (a) t = 0, (b) t = 1, (c) t = 2, (d) t = 3, (e) t = 4, (f)
t = 5 and (g) t = 6. The horizontal line serves to indicate the location of the impact point.

Figure 6. Time evolution of the rim position for water drops impacting a smooth dry glass slide
for θ = 0 (see figures 1c and 2), several values of the Weber number and the following values of
the inclination angle: (a) χ = 15o, (b) χ = 30o, (c) χ = 45o and (d) χ = 60o. Continuous
lines represent the theoretical prediction and symbols indicate experimental measurements.
Theoretical curves have been obtained up to the instant when the rim pins the substrate at
θ = 0, namely, when v = 0. Notice that the experimental rim position hardly varies once the
maximum radius is reached. The black triangles indicate the instant the pinning condition (2.24)
is satisfied and, as a consequence, from this instant onwards, the rim position is kept constant
in time (dashed lines).
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Figure 7. Time evolution of the rim position for water drops impacting a smooth dry glass slide
for θ = π/2 (see figures 1c and 2), several values of the Weber number and the following values
of the inclination angle: (a) χ = 15o, (b) χ = 30o, (c) χ = 45o and (d) χ = 60o. Continuous
lines represent the theoretical prediction and symbols indicate experimental measurements.
Theoretical curves have been obtained up to the instant when the rim pins the substrate at
θ = π/2, namely, when v = tanχ. Notice that the experimental rim position hardly varies once
the maximum radius is reached. The black squares indicate the instant the pinning condition
(2.24) is satisfied and, as a consequence, from this instant onwards, the rim position is kept
constant in time (dashed lines).

Figure 8. Time evolution of the rim position for water drops impacting a smooth dry glass slide
for θ = 3π/2 (see figures 1c and 2), several values of the Weber number and the following values
of the inclination angle: (a) χ = 15o, (b) χ = 30o, (c) χ = 45o and (d) χ = 60o. Continuous
lines represent the theoretical prediction and symbols indicate experimental measurements. The
black circles indicate the instant from which the rim position is calculated using the analytical
expression provided in equation (2.29), represented using dashed lines.
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χ (◦) We Re Fr V (m/s) R (mm)

(a) 15 36− 211 1972− 4623 130− 736 1.41− 3.35 1.45
30 27− 174 1713− 4234 91− 595 1.32− 3.38 1.46
45 19− 118 1485− 3521 70− 398 1.43− 3.40 1.48
60 9− 60 1030− 2540 32− 202 1.36− 3.41 1.47

(b) 15 67− 152 1130− 1697 171− 386 1.39− 2.09 1.07
30 48− 125 969− 1533 123− 321 1.31− 2.11 1.07
45 33− 108 810− 1423 85− 283 1.33− 2.42 1.06
60 16− 89 562− 1267 42− 235 1.32− 3.11 1.05

Table 1. Experimental values Weber and Reynolds numbers, defined in equation (2.1) using
the normal component of the velocity and the drop radius R, for (a) water and (b) ethanol.
Experimental values of Froude number, defined as Fr = (V cosχ)2/(g R), are also indicated.
Drops impact with a velocity V , below the threshold for drop splashing, over a smooth glass
substrate that forms an angle χ with the horizontal. For water drops, the mean radius is
R = 1.47 mm, whereas for ethanol, R = 1.06 mm. Using the standard material properties for
water and ethanol at 25◦C and the conventional standard value of the gravitational acceleration,
g = 9.81 m s−2, the two values of the Ohnesorge and Bond numbers corresponding to the different
experiments reported here are Oh = 3.1×10−3 and Bo = ρgR2/σ = 0.294 for the case of water,
and Oh = 7.3×10−3 and Bo = ρgR2/σ = 0.385 for the case of ethanol. The static contact angle
between the water drop and the different types of glass slides used here varies within the range
22◦–34◦. For the case of ethanol drops, the static contact angle hardly varies with the type of
glass slide used in the experiments and its value is ' 15◦.

subscript pin is used to denote the value of variables when the rim stops in the fixed
frame of reference.

The theoretical curves, calculated in the absence of adjustable constants, follow the
experimental trends. However, the agreement between predictions and observations de-
teriorates for the smaller values of the Weber number, We ≈ 10, which is not surprising
in view of the fact that our theoretical approach has been developed with the purpose of
describing the limit We� 1.

4. Algebraic equations for the asymmetric final shape of the drop

In §3 it has been shown that the theoretical approach presented in §2 can be used
to predict the time-evolving shapes of drops impacting an inclined substrate in a self-
consistent manner and avoiding the use of any kind of adjustable constant. The theoretical
results are calculated using either analytical expressions or integrating a system of
ordinary differential equations. These numerical calculations, which can be implemented
straightforwardly in a few lines of code, can be simplified even further if just the final
shape of the drop is needed to know. It is our purpose in this section to make use of
the ideas in §2 and of the experimental observations depicted in §3 to deduce algebraic
expressions for the two lengths characterizing the final shape of the drop namely, its
maximum width, wpin, and its maximum elongation, `pin(θ = π/2) + `pin(θ = 3π/2).

The theoretical predictions will be checked with new experiments, which have been
performed using only water and the same setup as that depicted in figure 3, being the
only difference with respect to the experiments shown in §3 that, since the drop impact
process is recorded for a longer time interval to capture the final drop shapes, the high
speed camera is operated, in this case, at 13029 frames per second, providing a spatial
resolution of ∼ 50 µm/pixel. Also, with the purpose of reaching higher values of We, the
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Figure 9. Top row: time evolution of the predicted rim position for (a) χ = 15◦ and We = 40,
(b) χ = 15◦ and We = 100, (c) χ = 30◦ and We = 40, (d) χ = 30◦ and We = 100. The black
dot in these figures serve to indicate the instant when the condition Welocal = 1 with Welocal
defined in equation (4.1), is fulfilled. When this happens, notice that ds/dt = v ' 0 and also
that d2s/dt2 = dv/dt ' 0.

maximum impact velocities are larger than the ones reported in table 1. In this section,
all the new experimental data are compared with the predicted final shapes of the drops.

4.1. Algebraic equation for wpin

The analysis starts by noticing that wpin ' s∗(θ = 0) (see, e.g., figure 2) with s∗(θ = 0)
the rim radial distance from the origin of the moving frame of reference along the direction
θ = 0 when v(θ = 0) = 0 namely, when the rim pins the substrate at θ = 0 -see equation
(2.24). In order to deduce an algebraic equation for s∗(θ = 0) we make use of the
observation in Gordillo et al. (2019) and illustrated in figure 9 that, when the value of
the local Weber number, calculated solving the system of ordinary differential equations
(2.2) and defined here as

Welocal(t) = We
u2(s, θ, t)h(s, θ, t)

1 + β
, (4.1)

is Welocal = 1, with this instant marked in each of the curves using a circle, the rim
velocity is nearly zero, v = ds/dt ' 0. Moreover, since d2s/dt2 at this instant of time
is also small because the curves are almost parallel to the horizontal axis, dv/dt =
d2s/dt2 ' 0. Then, the algebraic equation for s∗ at the instant t∗ when v = 0 can be
deduced substituting v = dv/dt = 0 into the momentum equation (2.2), which provides
with the algebraic equation Welocal = 1, with Welocal given in (4.1) namely,

u2h− (1 + β) We−1 = 0 . (4.2)

The equation for s∗(θ) can now be deduced substituting the expressions for u and h given
in equation (2.23), particularized at r = s∗(θ) and at t = t∗(θ) into (4.2). Notice that,
instead of particularizing the expressions of u and h for θ = 0, we deduce here an equation
for s∗(θ) which will be useful, not only to determine s∗(θ = 0), but also to find an algebraic
expression for the maximum elongation of the drop, `pin(θ = π/2)+`pin(θ = 3π/2), valid
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Figure 10. (a) The experimental values of s∗(θ = 0) can be approximated by solving equation
(4.4) particularized at θ = 0 for arbitrary values of χ for both water (left) and ethanol (right).
In (b), the same experimental data as in (a) is represented, but the continuous line is calculated
using equation (4.5), where the term proportional to tan2 χ cos2 θ is set to zero. The algebraic
equation (4.5) for θ = 0 is identical to that deduced in Gordillo et al. (2019), which was shown
to agree well with the results of the correlation by Laan et al. (2014). With dashed lines, the fit
to the experimental data proposed in Clanet et al. (2004), wpin = KWe0.25, with K an adjusted
constant which varies depending on the type of liquid: for the case of water (left image) K = 1.3
and for the case of ethanol (right image) K = 1.1, approximates well the data.

in the limit χ � 1, as we will show in what follows. A key idea in the derivation of the
approximate algebraic equation for s∗(θ) deduced here is that, in the limit We � 1,
Re � 1, the instant of time for which the rim velocity is zero, is much larger than the
instant of time the fluid particles entering into the rim were ejected from the boundary
r =
√

3x∗ separating the lamella and drop regions, namely, t∗ � x∗. Then, substituting
the algebraic expressions of u and h given in (2.23) and neglecting O(Re−1) terms as
well as the subdominant terms, like negative powers of x or t as well as terms of the
type (x∗/t∗)n with n > 1 in equation (4.2) yields, after some lengthy but straightforward
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algebra,

h0 u
2
0 + Re−1/2

(
h1 u

2
0 + 2h0u0u1

)
− (1 + β)We−1 = 0 =⇒

9ha(x∗) + 33/4 (x∗)
−3/4

(s∗)
5/2

Re−1/2

(
−12

35
+

23

35
tanχ sin θ

√
x∗

3
+

−2

7
tan2 χ cos2 θ

x∗

9

)
− (1 + β) We−1 (s∗)2 = 0 .

(4.3)

Equation (4.3) depends on t∗ through x∗, which is a function of Re, We, θ and χ
that could be determined using the theory in §3, but this is clearly not the purpose
of this section, where we intend to deduce simple algebraic equations for s∗, valid for
arbitrary values of We, Re and χ. We then notice that (4.3) recovers, in the limit
χ = 0, the analogous equation deduced in Gordillo et al. (2019). In the axisymmetric
case (χ = 0) considered in Gordillo et al. (2019), it was found that the value of x∗

could be approximated, for the whole ranges of values of Re and We considered, by a
constant value x∗ = 2. Since equation (4.3) needs to be valid for arbitrary values of χ,
including χ = 0, we take here x∗ = 2 and will check in what follows the result of this
approximation. Let us point out, however, that our interpretation for the value x∗ = 2 is
that it is the instant of time when the top part of the drop would reach the substrate if
the drop velocity was kept constant in time: then, x∗ = 2 is not an arbitrary value since
it possesses the meaning that it is the approximate instant of time when the lamella is no
longer fed by the liquid in the falling droplet. The substitution of x∗ = 2 into equation
(4.3) yields,

(1 + β)We−1 s∗2 +
(
0.45− 0.73 tanχ sin θ + 0.09 tan2 χ cos2 θ

)
s∗5/2maxRe

−1/2 − 0.45 = 0 ,
(4.4)

where we have made use of equation (2.10) to calculate ha(x∗). Figure 10, which compares
the predictions provided by equation (4.4) with the experimental data for arbitrary values
of χ, reveals that, indeed, there exists a dependence of s∗(θ = 0) with χ, but this
dependence is not strong, as it was already noticed in figures 4-5. This dependence of
s∗(θ = 0) with χ predicted by our theory and confirmed by the results in figure 10,
contrasts with previous approaches, where it was found that the maximum width of
drops impacting inclined substrates could be accurately fitted using the same type of
correlations used to describe the maximum radius of drops impacting perpendicularly the
substrate (Laan et al. 2014; Almohammadi & Amirfazli 2017b; Lejeune & Gilet 2019).
However, the dependence of s∗(θ = 0) with χ depicted in figure 10 is weak, as it can be
understood in view of the smallness of the prefactor affecting the term tan2 χ cos2 θ in
equation (4.4). For this reason, we also show in figure 10 the comparison between the
experimental data and the value of s∗(θ = 0) obtained solving the equation

(1 + β)We−1 s∗2 + (0.45− 0.73 tanχ sin θ) s∗5/2Re−1/2 − 0.45 = 0 , (4.5)

which recovers the expression deduced in Gordillo et al. (2019) when tanχ sin θ = 0,
namely, when χ or θ or both are equal to zero or π. Figure 10 shows that the value of
s∗(θ = 0) predicted using equation (4.5) is in agreement with experimental data and
this figure also shows the interesting result that s∗(θ = 0) can be approximated as
s∗(θ = 0) = KWe1/4, this fact confirming the results in Eggers et al. (2010); Laan et al.
(2014); Wildeman et al. (2016) where it was already pointed out that the physical origin
of the correlation found in Clanet et al. (2004) relies in the combination of capillarity and
boundary layer effects. Notice also that Gordillo et al. (2019) showed that the predicted
values of equation (4.5) also agree with the correlation provided by Laan et al. (2014),
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Figure 11. Comparison between the predicted (continuous lines) and the observed shapes of
drops for χ = 15◦ (top row, (a)-(d)) and 30◦ (bottom row, (e)-(h)) and four different values of
We for each of the two values of χ: We = (a) 36, (b) 103, (c) 163, (d) 225, (e) 29, (f) 82, (g) 132
and (h) 184. The theoretical shapes are calculated using equation (4.5) and all the experimental
images correspond to (almost) the same value of the dimensionless time: t = 10, with t± 0.09.
Here, Oh = 3.1 × 10−3 (water drops). The horizontal lines indicate the position of the impact
point.

which differs from that provided by Clanet et al. (2004) but also provide a very good fit to
the experimental data. The results depicted in figure 10 explain and provide a physical
basis to the approximations followed in Laan et al. (2014); Lejeune & Gilet (2019);
Almohammadi & Amirfazli (2017b), where the maximum drop width was predicted using
the correlations deduced for the case of normal impact of drops in Clanet et al. (2004);
Laan et al. (2014).

The asmymetric shape of the deformed drop, however, is not only characterized by
wpin, but also by the length along the impact direction, which we deduce in the following
subsection.

4.2. Algebraic equation for the elongation of the drop, `pin(θ = π/2) + `pin(θ = 3π/2)

The analysis in this section will be split in two parts, discussing first the cases χ� 1,
for which the deformed drop is nearly axisymetric (see, e.g. the cases of χ = 15o and
χ = 30o in figures 4-5) and, subsequently, we will deduce an algebraic expression for the
maximum length of the drop along the impact direction, valid for the larger values of χ
considered in this study, χ > 45o.

4.2.1. Final shapes of drops in the limit χ� 1

The results in this section will be applicable to describe those cases in which the angle
χ� 1 and, therefore, the final shape of the drop is nearly axisymmetric. As a consequence
of the fact that χ� 1, the terms proportional to tanχ will be retained in our theoretical
approach, but those proportional to tan2 χ, will be neglected in what follows.

Figure 9 shows that, similarly to the case θ = 0, the values of both ds/dt and d2s/dt2

at θ = π/2 and θ = 3π/2 are also very small for χ = 15o and χ = 30o at the instant when
Welocal = 1, with Welocal defined in equation (4.1) and calculated solving the system of
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Figure 12. Comparison between the predicted (continuous and dashed lines) and the observed
shapes for χ = 15◦ (top row, (a)-(d)) and 30◦ (bottom row, (e)-(h)) and four different values of
We for each of the two values of χ: We = (a) 36, (b) 103, (c) 163, (d) 225, (e) 29, (f) 82, (g) 132
and (h) 184. The theoretical shapes are calculated using equation (4.5). The experimental images
correspond to the following values of the dimensioless time: t = (a) 1730, (b) 2850, (c) 3620,
(d) 4450, (e) 1040, (f) 1460, (g) 2780 and (h) 3020, with t ± 5. Here, Oh = 3.1 × 10−3 (water
drops). The horizontal lines indicate the position of the impact point.

ordinary differential equations (2.2). Hence, the approximate values of both s∗(θ = π/2)
and s∗(θ = 3π/2) can be calculated solving the algebraic equation (4.5) particularized
at θ = π/2 and θ = 3π/2. Now, making use of equations (3.1),

`pin(π/2) = spin(π/2)− tanχ tpin(π/2) , `pin(3π/2) = spin(3π/2) + tanχ tpin(3π/2) .
(4.6)

Since the pinning condition (2.24) requires that, at t = tpin, v = tanχ for θ = π/2 and
v = − tanχ for θ = 3π/2, and taking into account that the analytical equations (2.29)
are valid to describe the temporal evolution of the rim position for either slightly smaller
or larger values of t∗ and, therefore, they are valid to describe the rim evolution from
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tpin(π/2) to t∗(π/2) and from t∗(3π/2) to tpin(3π/2),

tpin(π/2)− t∗(π/2) = − tanχ

2A
⇒

tpin(π/2) = t∗(π/2)− tanχ

2A
and spin(π/2) = s∗(π/2)− tan2 χ

4A

tpin(3π/2)− t∗(3π/2) =
tanχ

2A
⇒

tpin(3π/2) = t∗(3π/2) +
tanχ

2A
and spin(3π/2) = s∗(3π/2)− tan2 χ

4A

with A =
2 (1 + β)

αWeπ b∗2
.

(4.7)

Then, the substitution of equations (4.7) into equations (4.6) provides with the expres-
sions for `pin(π/2) and `pin(3π/2) as a function of t∗(π/2) and t∗(3π/2). Now, notice that,
in the limit χ � 1, the solution of the algebraic equation (4.5) could be approximated
expanding s∗(θ, χ) around χ = 0 as

s∗(θ, χ) = s∗(θ, χ = 0) + χ
∂ s∗

∂χ
(θ, χ = 0) +O(χ2) '

s∗(θ = 0)

(
1 +

χ

s∗(θ, χ = 0)

∂ s∗

∂χ
(θ, χ = 0)

)
⇒

t∗(θ) =
√
x∗/3 s∗(θ, χ) ' t∗(θ = 0)

(
1 +

χ

s∗(θ, χ = 0)

∂ s∗

∂χ
(θ, χ = 0)

) (4.8)

where we have made use of the definition x∗ = 3(t∗/s∗)2. The substitution of equations
(4.7)-(4.8) into equation (4.6), neglecting ∼ O(χ2) terms, yields

`pin(π/2) ' s∗(π/2)− tanχt∗(θ = 0) and `pin(3π/2) ' s∗(3π/2) + tanχt∗(θ = 0)⇒
`pin(π/2) + `pin(3π/2) = s∗(π/2) + s∗(3π/2)

(4.9)

and, then, the length of the deformed drop along the impact direction can also be
calculated making use of equation (4.5), a fact meaning that the final shape of the drop
can be approximately calculated, with errors ∼ O(χ2) � 1, as the shape of the drop
when the rim velocity is zero in the moving frame of reference. Motivated by this fact,
the final shapes of the drops will be approximated solving equation (4.5) for 0 < θ < 2π.
From the previous analysis, notice that the pinning condition (2.24) represents a small
contribution ∼ O(χ2) � 1 to the maximum elongation of the drop and, hence, the
asymmetries in the final shapes of the drops depicted in the limit χ� 1, will be mainly
caused by the asymmetric flux of momentum induced by the boundary layer sketched
in figure 16. These asymmetries caused by the boundary layer are clearly appreciated in
figure 9, where it is shown that s∗(3π/2) < s∗(0) < s∗(π/2).

The solution of equation (4.5) with θ varying within the range 0 < θ < 2π, is compared
with experiments in figures 11-12 for the case of water drops, two values of the inclination
angle, χ = 15o and χ = 30o and a (nearly) 10-fold variation in We. The only difference
between figures 11 and 12 is the value of t at which images are captured: whereas in figure
11, t ' 10, which in dimensional terms correspond to tens of milliseconds after impact,
in figure 12, t ∼ 103 namely, a few seconds after impact. The main visual difference
between figures 11 and 12 is the presence of a liquid rivulet in the images corresponding
to larger times, which cannot be described by our theory because, for t ∼ 103, gravity
can no longer be neglected and this effect is not retained in the analysis. Figure 13
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shows that the theoretical values of `(3π/2, t) calculated using the theory in §2, where
gravity was not included because ρgR2b∗2/σ � 1, compare favourably with experimental
measurements within the time interval 0 < t . 30 and then, figure 13 confirms, once
again, that the drop spreading process is appropriately described using the theoretical
approach presented in §2 from t = 0 to the instant the rim pins the substrate. Figures 11-
12 show that the solution of the algebraic equation (4.5) captures the overall shape of the
remaining stain, but not the rivulet which, however, wouldn’t be present if experiments
had been performed using the more involved experimental setup depicted in figure 1a,
where the impacting wall is perpendicular to the direction of gravity. With limitations,
the overall final shapes of impacting drops, exceptuating the rivulet, can be predicted
solving the algebraic equation (4.5), deduced under the assumption that χ� 1, for values
of χ as large as χ = π/6.

4.2.2. Final drop shapes for χ ∼ O(1)

In this section we make use of the results in §2 and §3 to deduce an algebraic expression
to predict the maximum elongation of the drop in the direction of impact and, as it was
done in Lejeune & Gilet (2019), we will approximate the final shape of the drop as an
ellipse whose major semiaxis is calculated in what follows.

The substitution of the equation for s in (2.29) into (3.1), yields

`(3π/2, t) = s∗(3π/2) + tanχ t− 2 (1 + β)

αWeπ b∗2
(t− t∗)

2
. (4.10)

The maximum elongation along the direction θ = 3π/2 takes place at the instant of time
tpin(3π/2) determined from the condition d`/dt(tpin) = 0 with ` given in equation (4.10).
The substitution of tpin(3π/2) into equation (4.10), yields

`pin(3π/2) = s∗(3π/2) + tanχ
√
x∗/3 s∗(3π/2) + tan2 χ

αWeπ b∗2

8 (1 + β)
, (4.11)

where we have made use of the fact that x∗ = 3 (t∗/s∗)
2
. Equation (4.11) is further

simplified as follows: the value of s∗(3π/2) in (4.11) is approximated by s∗(0) namely, by
the solution of equation (4.5) at θ = 0, and b∗ in equation (4.11) is expressed as a function
of s∗(0) assuming that b∗ does not depend on θ and using the fact that the initial and
final drop volumes coincide, from which b∗2 s∗(0) = C, with C a geometrical factor which
will be adjusted to improve the comparison with experiments. Then, equation (4.11) can
be approximated as

`pin(3π/2) = s∗(0) + tanχ
√
x∗/3 s∗(0) + tan2 χ

αCWeπ

8 s∗(0) (1 + β)
, (4.12)

with s∗(0) the solution of equation (4.5), x∗ = 2, β = 0 and the value of the geometrical
factor fixed here to αC = 0.3. Figures 7-8 and figure 15 reveal that `pin(π/2) �
`pin(3π/2) and also that `pin(π/2) ∼ 1 for χ = 45o and χ = 60o. Using this additional
information, the final shape of the drop will be approximated by an ellipse with a
minor semiaxis s∗(0) calculated using equation (4.5) and with a major semiaxis given
by (1 + `pin(3π/2)) /2, with `pin(3π/2) calculated using equation (4.12). The comparison
between the predicted and the experimental drop shapes observed for t� 1 depicted in
figure 14 reveals that the agreement is clearly not as good as for the case of the smaller
values of χ shown in figures 11-12 for moderate values of We but, exceptuating the
rivulet, the overall agreement of the predicted shapes with the remaining stain is good
for the larger values of the Weber number, which is the limit for which the analysis in
this contribution has been developed.
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Figure 13. Top figure, χ = 15◦, We = 163, Oh = 3.1 × 10−3 (water drops) The images
contained in this figure correspond to the following dimensionless times: (a) t = t∗(3π/2) = 5.84,
(b) t = tpin(3π/2) = 7.79, (c) t = 14, (d) t = 22 and (e) t = 30 Values of the dimensionless
times, t± 0.08. Bottom figure, χ = 30◦, We = 132, Oh = 3.1× 10−3 (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t = t∗(3π/2) = 5.04,
(b) t = tpin(3π/2) = 9.07, (c) t = 15, (d) t = 20 and (e) t = 25. Values of the dimensionless times,
t ± 0.07. Here, t∗ and tpin correspond to the values calculated using our theoretical approach.
Continuous lines indicate the result of the numerical integration of the system (2.2) whereas
dashed lines indicate the solution of the analytical expressions in (2.29).

Indeed, figure 15, which compares the predicted values of `(3π/2, t) with experiments
for χ = 45o and χ = 60o and the higher values of the Weber number of our experiments,
reveals that the numerical solution of the system (2.2) from t = te to t∗(3π/2) and the
analytical solution (2.29) for t > t∗(3π/2) agree with the experimental observations,
which show that a rivulet, similar to that described by Lejeune & Gilet (2019), is issued
at t ∼ O(10). The results depicted in figure 15 explain why equation (4.12) can be used
to accurately predict the length of the major semiaxis of the ellipse for the larger values
of the Weber number. The reason for the differences depicted in figure 14 for moderate
values of the Weber number relies on the fact that the gradients in capillary pressure
induce a flow along the rim towards the bottom part of the drop, slightly increasing b∗

in equation (2.29) with respect to the value b∗(θ = 0) found solving the system (2.2)
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Figure 14. Comparison between the predicted (continuous and dahed lines) and the observed
shapes of water drops (Oh = 3.1 × 10−3) at their maximum lateral extension for χ = 45◦

(top row, (a)-(e)) and 60◦ (bottom row, (f)-(j)) and five different values of We for each of the
two values of χ. Top row, χ = 45◦: (a)We = 26, (b)We = 42, (c)We = 59, (d)We = 75,
(e)We = 125. Bottom row, χ = 60o: (f)We = 14, (g)We = 22, (h)We = 30, (i)We = 39 and
(j)We = 60. The theoretical shape is an ellipse with s∗(θ = 0) calculated using equation (4.5)
as the minor semiaxis and (1 + `pin)/2, with `pin given by equation (4.12) the major semiaxis.
The different experimental images correspond to the following values of the dimensionless time:
(a) t = 30, (b) t = 34, (c) t = 45, (d) t = 187, (e) t = 1064, (f) t = 23, (g) t = 25, (h) t = 28,
(i) t = 35 and (j) t = 735, with t±1. The relative errors between the predicted and the measured
values of the minor and major semiaxes of the ellipses in each of the images are: (a) width, 18%,
length, 32% (b) width 15%, length 26%, (c) width 10%, length 24%, (d) width 7%, length 21%,
(e) width 0%, length 2% (f) width 22.5%, length 30%, (g) width 13.5%, length 27%, (h) width
10%, length 23%, (i), width 6%, length 18%, (j) width 2.5%, length 1%.

from t = te to t∗(0), see figure 22 in Appendix C. Since the mass per unit length of the
rim located at θ = 3π/2 is larger than b∗(θ = 0), the distance traveled by the rim before
stopping is also larger in the experiment, explaining the shorter values of the calculated
major semiaxes in figure 14 for the smaller values of We. The prediction of the slight
increments in b∗ caused by the capillary flow along the rim, is out of the scope of this
contribution.

5. Conclusions

In this contribution we have analyzed the inclined impact of drops from the instant
the drop touches the solid until the rim pins the substrate, this process taking place in a
characteristic time which is so short (typically, just a few milliseconds) that gravitational
effects can be neglected. For that purpose, we have performed experiments letting water
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Figure 15. Top figure, χ = 45◦, We = 125, Oh = 3.1 × 10−3 (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t = t∗(3π/2) = 4.47,
(b) t = tpin(3π/2) = 11.31, (c) t = 14, (d) t = 18 and (e) t = 22. Values of the dimensionless
times, t± 0.07. Bottom figure, χ = 60◦, We = 60, Oh = 3.1× 10−3 (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t = t∗(3π/2) = 3.38,
(b) t = 6, (c) t = tjet = 8.82, (d) t = 10, (e) t = tpin(3π/2) = 13.12 and (f) t = 18. Values of
the dimensionless times, t ± 0.05. Here, t∗ and tpin correspond to the values calculated using
our theoretical approach and tjet corresponds to the first instant of time the jet is visually
appreciated from the analysis of the experimental images. Continuous lines indicate the result
of the numerical integration of the system (2.2) whereas dashed lines indicate the solution of
the analytical expressions in (2.29).

and ethanol drops fall over partially wetting solids with different inclination angles. The
theoretical analysis, valid for large values of both the Weber and Reynolds numbers,
is carried out in the moving frame of reference where the drop impacts the solid
perpendicularly. The theory presented in Gordillo et al. (2019) has then been extended by
taking into account the asymmetric fluxes of mass and momentum induced by boundary
layer and by including the condition expressing the pinning of the advancing rim to
the substrate. The resulting theory permits to describe the drop spreading process from
the instant the drop touches the solid until the rim pins the substrate through the
straightforward integration of a system of ordinary differential equations whose different
terms are provided in an analytical and closed form. The time-evolving shapes predict the
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experimental observations in all cases investigated, with only some deviations observed for
the larger times after impact corresponding to the larger inclination angle. In addition, the
theoretical results have been further simplified by providing closed algebraic expressions
for the final shapes of the drops, which approximate the overall experimental images,
exceptuating the formation of a rivulet departing from the bottom part of the drop. In
spite of its limitations to predict the formation of the rivulet, the algebraic expressions
deduced here can be applied to approximate the overall shape of the remaining liquid
stain.
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7. Appendix A

The terms u and h in equations (2.2) represent the averaged radial velocity and the
thickness of the thin film -the lamella- which extends along the spatio-temporal region√

3t 6 r 6 s(θ, t) located in between the impacting drop and the rim. Following the same
procedure as that detailed in Gordillo et al. (2019), the equations for u and h are found
applying balances of mass and momentum to a portion of the lamella of height h(r, θ, t)
for a given velocity field with radial and azimuthal components given by ūr(r, z, θ, t) and
ūθ(r, z, θ, t) respectively. In cylindrical coordinates, the mass balance reads

∂ (rh)

∂ t
+

∂

∂ r

(
r

∫ h

0

ūr(r, z, θ, t)dz

)
+

∂

∂ θ

(∫ h

0

ūθ(r, z, θ, t)dz

)
= 0 . (7.1)

Defining the averaged velocities ur(r, θ, t) and uθ(r, θ, t) as

ur(r, θ, t)h(r, θ, t) =

∫ h

0

ūr(r, z, θ, t)dz ,

uθ(r, θ, t)h(r, θ, t) =

∫ h

0

ūθ(r, z, θ, t)dz ,

(7.2)

the mass balance (7.1) can be written as

∂ (rh)

∂ t
+

∂

∂ r
(rurh) +

∂

∂ θ
(uθh) = 0 . (7.3)

The projection in the radial direction of the momentum balance applied to the same
portion of the lamella yields

∂

∂ t
(rurh) +

∂

∂ r

(
r

∫ h

0

ū2r(r, z, θ, t)dz

)
+

∂

∂ θ

(∫ h

0

ūrūθ(r, z, θ, t)dz

)
= −rτr

Re
, (7.4)

where τr indicates the dimensionless shear stress at the wall in the radial direction.
Notice that, to deduce equation (7.4) we have taken into account that the lamella is
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Figure 16. Sketch showing the velocity profiles in the moving frame of reference for different
values of θ under the approximation made here that the velocity profiles vary linearly within
the boundary layer of thickness δ, see equations (7.5).

slender and, hence, pressure gradients can be neglected. Since the integral form of the
momentum equation (7.4) is not strongly dependent on the specific form of the boundary
layer-type of velocity profile, for simplicity it is assumed here that the boundary layer
velocity profile is linear as we did in Gordillo et al. (2019), see figure 16:

ūr(r, z, θ, t) = tanχ sin θ F (z) + ua (1− F (z)) ,

ūθ(r, z, θ, t) = tanχ cos θ F (z) ,

with F (z) = 1− z

δ
for z 6 δ and F (z) = 0 if z > δ ,

(7.5)

with δ denoting the boundary layer thickness. Solving the integrals in equation (7.2)
making use of equation (7.5) yields

ur(r, θ, t)h(r, θ, t) =

∫ h

0

ūr(r, z, θ, t) dz =

=

∫ δ

0

(
tanχ sin θ

(
1− z

δ

)
+ ua

z

δ

)
dz + ua

∫ h

δ

dz = ua

(
h− δ

2

)
+ tanχ sin θ

δ

2

=⇒ ur(r, θ, t) = ua

(
1− δ

2h

)
+ tanχ sin θ

δ

2h
=⇒ ua =

ur(r, θ, t)− tanχ sin θ δ/(2h)

1− δ/ (2h)
.

(7.6)

uθ(r, θ, t)h(r, θ, t) =

∫ h

0

ūθ(r, z, θ, t) dz =

∫ δ

0

(
tanχ cos θ

(
1− z

δ

))
dz = tanχ cos θ

δ

2

=⇒ uθ(r, θ, t) = tanχ cos θ
δ

2h
.

(7.7)
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Therefore, equation (7.3) can be written as

∂ (rh)

∂ t
+
∂

∂ r
(rurh)+

∂

∂ θ

(
tanχ cos θ

δ

2

)
= 0 =⇒ ∂ (rh)

∂ t
+
∂

∂ r
(rurh)−tanχ sin θ

δ

2
= 0 .

(7.8)
Using again equations (7.5) and also the expression for ua in (7.6), the momentum flux
can be expressed as∫ h

0

ūrūr(r, z, θ, t) dz =

∫ δ

0

(
tanχ sin θ

(
1− z

δ

)
+ ua

z

δ

)2
dz + u2a

∫ h

δ

dz =

= u2ah

(
1− 2δ

3h

)
+ uah tanχ sin θ

δ

3h
+ tan2 χ sin2 θ

δ

3
= u2rh+G(r, θ, t) ,

(7.9)

with G(r, θ, t) defined as

G(r, θ, t) =
1

(1− δ/(2h))
2

δ

3

(
1− 3

4

δ

h

)(
u2r − 2ur tanχ sin θ + tan2 χ sin2 θ

)
, (7.10)

and∫ h

0

ūrūθ(r, z, θ, t) dz =

∫ δ

0

(
tanχ sin θ

(
1− z

δ

)
+ ua

z

δ

)(
tanχ cos θ

(
1− z

δ

))
dz =

= ua tanχ cos θ

∫ δ

0

(
z

δ
− z2

δ2

)
dz + tan2 χ sin θ cos θ

∫ δ

0

(
1− z

δ

)
dz =

= ua tanχ cos θ
δ

6
+ tan2 χ sin θ cos θ

δ

3
= ur tanχ cos θ

δ

6
+H(r, θ, t) ,

(7.11)

with H(r, θ, t) defined as

H(r, θ, t) =
1

1− δ/(2h)
tanχ cos θ

δ

3

[
ur

δ

4h
+ tanχ sin θ

(
1− 3

4

δ

h

)]
. (7.12)

Consequently, equation (7.4) can be written as

∂

∂ t
(rurh)+

∂

∂ r

(
ru2r h

)
+
∂

∂ θ

(
ur tanχ cos θ

δ

6

)
= −rτr

Re
− ∂

∂ r
(rG(r, θ, t))− ∂

∂ θ
(H(r, θ, t)) .

(7.13)
Using the expression for ua obtained in equation (7.6), the dimensionless shear stress

at the wall can be expressed as

τr =
ua
δ
− tanχ sin θ

δ
=
ur − tanχ sin θ δ/(2h)

δ(1− δ/(2h))
− tanχ sin θ

δ
. (7.14)

And hence, making use of equations (7.14), (7.3) and (7.8), the momentum equation
(7.13) can be written as

∂ ur
∂ t

+ ur
∂ ur
∂ r

= −ur − tanχ sin θ δ/(2h)

hRe δ (1− δ/(2h))
+

tanχ sin θ

hRe δ
− 1

rh

∂ (rG)

∂ r
− 1

rh

∂H

∂ θ
+

− 1

rh

(
tanχ cos θ

δ

6

∂ ur
∂ θ

+ ur tanχ sin θ
δ

3

)
.

(7.15)

It was reported in Gordillo et al. (2019) that, since the time interval during which
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δ ∝ tRe−1/2 is t ∼ te � 1 namely, much smaller than the time characterizing the drop
spreading process, the equation for δ(t) used here is, as it is demonstrated in Appendix
B, δ =

√
t/Re. Therefore, since the lamella is slender, ∂h/∂r � 1, equation (7.15) can

be written as

∂ ur
∂ t

+ ur
∂ ur
∂ r

= − ur
hRe δ

λ = − ur

h
√
Re t

λ . (7.16)

Indeed, neglecting higher order terms in powers of Re, a fact implying that ur ' r/t
and following the same procedure as that indicated in Gordillo et al. (2019), λ can be
approximated as

λ(r, θ, t) ' 2− 2 tanχ sin θ
t

r
+

1

3
tan2 χ cos2 θ

(
t

r

)2

. (7.17)

Also, similarly to what it was found in Gordillo et al. (2019), the best agreement
between experiments and predictions are obtained for a value of λ which is 1/2 the one
found analytically in equation (7.17). This fact can be understood because of the form
of the velocity field within the boundary layer assumed here, which controls the value
of the prefactor multiplying the boundary layer thickness δ which, however, we have set
to 1 i.e., the value of δ used here is δ =

√
t/Re. Since the equations depend on the

ratio λ/δ, this change in the prefactor of δ will introduce a proportionality constant in
the definition of λ (see Appendix B) which we have appropriately chosen to improve the
agreement between experiments and theoretical predictions. Consequently, the equations
for the height of the lamella and the averaged radial velocity that will be solved in the
main text are:

∂ (rh)

∂ t
+

∂

∂ r
(ruh) = tanχ sin θ

δ

2

∂ u

∂ t
+ u

∂ u

∂ r
= − u

h
√
Re t

(
1− tanχ sin θ

t

r
+

1

6
tan2 χ cos2 θ

(
t

r

)2
)
,

(7.18)

where, for simplicity, we have suppressed the subscript r in the equations of main text.

8. Appendix B: Boundary layer thickness

The goal of this section is to deduce an analytical expression for the boundary layer
thickness δ(r, θ, t) within the lamella region, where the pressure gradient term can be
neglected and, for that purpose, we will make use of the Karman–Pohlhausen integral
formulation of the equations describing the flow.

The components of the velocity field within the boundary layer in a cylindrical coordi-
nate system will be denoted in what follows as ur(r, z, θ, t), uz(r, z, θ, t), uθ(r, z, θ, t) with
the subscripts r, z and θ indicating the velocity field components in the radial, vertical
and azimuthal directions, respectively. Using this notation, the mass and momentum
equations describing the flow within the boundary layer, neglecting pressure gradient
terms, read

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 , (8.1)
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∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z
− u2θ

r
= Re−1 ∂

2ur
∂z2

,

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
ur uθ
r

= Re−1 ∂
2uθ
∂z2

.

(8.2)

Equations (8.1)-(8.2) need to verify the following boundary conditions far from the wall

ur(r, θ, t, z →∞)→ u0 =
r

t
, uθ(r, θ, t, z →∞)→ 0 , (8.3)

with u0 the potential flow velocity calculated in equation (2.15) of the main text, which
satisfies the momentum equation

∂u0
∂ t

+ u0
∂ u0
∂ r

= 0 . (8.4)

Equations (8.1)-(8.2) also need to satisfy no slip boundary conditions at the wall which,
in a frame of reference moving tangentially to the substrate, read

ur(r, θ, t, z = 0) = tanχ sin θ and uθ(r, θ, t, z = 0) = tanχ cos θ . (8.5)

The result of multiplying by r the radial component of the momentum equation in
(8.2) and of subtracting both equation (8.1) multiplied by r u0 and also equation (8.4)
multiplied by r yields,

∂

∂t
[r (ur − u0)] +

∂

∂r
[r ur (ur − u0)] +

∂u0
∂r

r (ur − u0) +
∂

∂θ
[uθ (ur − u0)] +

+
∂

∂z
[r uz (ur − u0)]− u2θ = Re−1 r

∂2ur
∂z2

,

(8.6)

where we have made use of the fact that, by virtue of the continuity equation (8.1)

r uz
∂ur
∂z

=
∂

∂z
(r ur uz) + ur

∂

∂ r
(r ur) + ur

∂uθ
∂θ

. (8.7)

The integration of equation (8.6) between z = 0 y z → ∞ making use of the boundary
conditions in equation (8.3) and using uz(z = 0) = 0 yields

∂

∂t

∫ δr

0

r (ur − u0) dz +
∂

∂r

∫ δr

0

r ur(ur − u0) dz +
∂u0
∂r

∫ δr

0

r (ur − u0) dz+

+
∂

∂θ

∫ δmin

0

uθ(ur − u0) dz −
∫ δt

0

u2θ dz = −Re−1 r

(
∂ur
∂z

)
z=0

,

(8.8)

where we have made use of the fact that

∂

∂ x

(∫ δ

0

f(z, x) dz

)
=

∫ δ

0

∂f

∂x
dz + f(δ, x)

∂δ

∂x
(8.9)

and also that, from now on, δr, δt will indicate the thicknesses of the boundary layers
associated with the radial and azimuthal flows and δmin = min(δr, δt).

Solving the integrals in equation (8.8) using the expressions for the radial and tan-
gential velocity fields given in (7.5) -see also figure 16- yields the following equation for
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δr:

r tanχ sin θ

2

∂δr
∂t
− r

2

∂

∂t
(u0 δr) +

tan2 χ sin2 θ

3

∂

∂r
(r δr)−

1

6

∂

∂r
(r u20 δr)+

− tanχ sin θ

6

∂

∂r
(r u0 δr) +

∂u0
∂r

(
r tanχ sin θ

δr
2
− r u0

δr
2

)
+

∂

∂θ

[
tan2 χ sin θ cos θ

(
δmin−

−δ
2
min

2δr
− δ2min

2δt
+
δ3min
3δrδt

)
+ u0 tanχ cos θ

(
δ2min
2δr

− δmin −
δ3min
3δrδt

+
δ2min
2δt

)]
−

− tan2 χ cos2 θ
δt
3

= −r Re−1 u0 − tanχ sin θ

δr
,

(8.10)

which can be written, after multiplication by δr, as

r tanχ sin θ

4

∂δ2r
∂t
− r

2

(
δ2r
∂u0
∂t

+
u0
2

∂δ2r
∂t

)
+

(
tan2 χ sin2 θ

3
− u20

6
− u0 tanχ sin θ

6

)
(
r

2

∂δ2r
∂r

+ δ2r

)
− 5

6
r u0

∂u0
∂r

δ2r +
1

3
r tanχ sin θ

∂u0
∂r

δ2r − tan2 χ cos2 θ
δt δr

3
+

+ tan2 χ cos (2θ)

(
δrδmin −

δ2min
2
− δ2minδr

2δt
+
δ3min
3δt

)
− u0 tanχ sin θ (−δrδmin+

+
δ2min

2
+
δ2minδr

2δt
− δ3min

3δt

)
+

tan2 χ sin (2θ) δr
2

∂

∂θ

(
δmin −

δ2min
2δr

− δ2min
2δt

+
δ3min
3δrδt

)
+

+ u0 tanχ cos θ δr
∂

∂θ

(
δ2min
2δr

− δmin −
δ3min
3δrδt

+
δ2min
2δt

)
= −r Re−1 (u0 − tanχ sin θ) .

(8.11)

Starting now from the azimuthal component of the momentum equation in (8.2) and
following a similar procedure to that described above, we arrive at

∂

∂t

∫ δt

0

uθ dz +
∂

∂r

∫ δmin

0

ur uθ dz +
1

r

∂

∂θ

∫ δt

0

u2θ dz+

+
2

r

∫ δmin

0

ur uθ dz = −Re−1

(
∂uθ
∂z

)
z=0

= Re−1 tanχ cos θ

δt

(8.12)

Solving the integrals in equation (8.12) using the expressions for the radial and
tangential velocity fields given in (7.5) -see also figure 16- yields the following equation
for δt:

1

4

∂δ2t
∂t

+
∂u0
∂r

(
δ2minδt

2δr
− δ3min

3δr

)
+ u0 δt

∂

∂r

(
δ2min
2δr

− δ3min
3δrδt

)
+

+
2u0
r

(
δ2minδt

2δr
− δ3min

3δr

)
= Re−1 .

(8.13)

It can be easily verified that the expressions

δr = δt = δmin =

√
4

3

√
t

Re
, (8.14)

which do not depend neither on r nor on θ, verify the partial differential equation (8.11)
with errors ∼ O(χ2) as well as the partial differential equation (8.13) with errors ∼ O(χ).
Since the terms affected by δt in equations in the main text are already ∼ O(χ), the use



Inclined impact of drops 37

Figure 17. Comparison between the observed and predicted shapes of ethanol drops impacting
glass slides for almost the same value of the Weber number, We ≈ 70, and different values of
the inclination angle: We = 67, χ = 15◦ (first row), We = 71, χ = 30◦ (second row), We = 67,
χ = 45◦ (third row) and We = 70, χ = 60◦ (bottom row). Both the experimental and theoretical
shapes correspond to the same dimensionless times t ± 0.03: (a) t = 0, (b) t = 1, (c) t = 2, (d)
t = 3, (e) t = 4, (f) t = 5 and (g) t = 6. The experimental impact conditions are provided in
table 1.

of equations (8.14) introduce relative errors of order ∼ O(χ2) in the equations for u and
h deduced in Appendix A.

Notice that we have chosen to replace the prefactor
√

4/3 in equation (8.14) by 1
because we have absorbed the prefactors and constants arising from the type of velocity
profiles used to describe the boundary layer flow (see equation (7.5)) in the value of
λ. Notice that equation (8.14) recovers the expression for the boundary layer thickness
deduced in Roisman et al. (2009); Roisman (2009); Eggers et al. (2010) for the case of
the axisymmetric impact of drops. Interestingly, using a completely different method to
that followed by these authors, we have demonstrated here that the expression for the
boundary layer thickness δ =

√
t/Re keeps on being valid for the case of the inclined

impact of drops.

9. Appendix C: Additional comparisons between predictions and
experimental measurements.

This Appendix provides with the comparisons between predictions and experimental
results corresponding to the case of ethanol drops and also with the time evolution of
`(3π/2, t) for χ = 45o and χ = 60o and moderate values of We.
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Figure 18. Comparison between the observed and predicted shapes of ethanol drops impacting
glass slides for almost the same value of the Weber number, We ≈ 100, and different values
of the inclination angle: We = 99, χ = 15◦ (top row), We = 102, χ = 30◦ (middle row) and
We = 104, χ = 45◦ (bottom row). Both the experimental and theoretical shapes correspond to
the same dimensionless times t ± 0.03: (a) t = 0, (b) t = 1, (c) t = 2, (d) t = 3, (e) t = 4, (f)
t = 5 and (g) t = 6. We could not add the case of χ = 60o because the maximum value of the
Weber number for this inclination angle is below 100, see the experimental impact conditions
provided in table 1.

Figure 19. Time evolution of the rim position for ethanol drops impacting a smooth dry glass
slide for θ = 0, several values of the Weber number and the following values of the inclination
angle: (a) χ = 15o, (b) χ = 30o, (c) χ = 45o and (d) χ = 60o. Theoretical curves have been
obtained up to the instant when the rim pins the substrate at θ = 0, namely, when v = 0. Notice
that the experimental rim position hardly varies once the maximum radius is reached. The black
triangles indicate the instant the pinning condition (2.24) is satisfied and, as a consequence, from
this instant onwards, the rim position is kept constant in time (dashed lines).
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Figure 20. Time evolution of the rim position for ethanol drops impacting a smooth dry glass
slide for θ = π/2, several values of the Weber number and the following values of the inclination
angle: (a) χ = 15o, (b) χ = 30o, (c) χ = 45o and (d) χ = 60o. Theoretical curves have been
obtained up to the instant when the rim pins the substrate at θ = π/2, namely, when v = tanχ.
Notice that the experimental rim position hardly varies once the maximum radius is reached. The
black squares indicate the instant the pinning condition (2.24) is satisfied and, as a consequence,
from this instant onwards, the rim position is kept constant in time (dashed lines).

Figure 21. Time evolution of the rim position for ethanol drops impacting a smooth dry glass
slide for θ = 3π/2, several values of the Weber number and the following values of the inclination
angle: (a) χ = 15o, (b) χ = 30o, (c) χ = 45o and (d) χ = 60o. Continuous lines represent
the theoretical prediction and symbols indicate experimental measurements. The black circles
indicate the instant from which the rim position is calculated using the analytical expression
provided in equation (2.29), represented using dashed lines.
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Figure 22. Top figure, χ = 45◦, We = 75, Oh = 3.1×10−3 (water drops). The images contained
in this figure correspond to the following dimensionless times: (a) t = t∗(3π/2) = 4.05, (b) t = 9,
(c) t = tpin(3π/2) = 14.21 ' tjet = 13.98, (d) t = 18 and (e) t = 22. Values of the dimensionless
times, t± 0.06. Bottom figure, χ = 60◦, We = 39, Oh = 3.1× 10−3 (water drops). The images
contained in this figure correspond to the following dimensionless times: (a) t = t∗(3π/2) = 3.06,
(b) t = 6, (c) t = tjet = 8.13, (d) t = 11, (e) t = tpin(3π/2) = 15.55 and (f) t = 18. Values of
the dimensionless times, t ± 0.04. Here, t∗ and tpin correspond to the values calculated using
our theoretical approach and tjet corresponds to the first instant of time the jet is visually
appreciated from the analysis of the experimental images. Continuous lines indicate the result
of the numerical integration of the system (2.2) whereas dashed lines indicate the solution of
the analytical expressions in (2.29) with b∗ = b∗(θ = 0) (pink line) and b∗ = k b∗(θ = 0) (black
line) where the value of k is set to 1.3 in both cases. The rim width for which the agreement
between predictions and experiments is better, B′ = Rk b∗(θ = 0), is represented at θ = 3π/2
in the second image (b), of each of the sequences.

10. Appendix D. Determination of R and V from the analysis of
experimental images

Here we provide further experimental information on how the radius and the velocity
of the impacting drop is determined from the processing of the recorded images before
the drop touches and spreads over the solid substrate.

For each experiment, a lateral image sequence of the type depicted in figure 23 is
recorded using a high speed camera Phantom V7.3 which, when operated at 13029 fps,
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provides with images with a spatial resolution of 32.3 µm/pixel, see also figure 3 in the
main text. The Matlab image processing toolbox is used to determine the contour of the
drop in each of the images, the equivalent diameter and the vertical position Ycg of the
center of mass of the drop. These quantities are then plotted as function of the image
index number, permitting us to measure the mean radius of the falling drop, as it is
shown in figure 24(a), and also the slope of the vertical position of the center of mass
of the drop, see figure 24(b). These two quantities are calculated within the range of the
image sequence where the drop shape is not truncated (see figures 23(a)–(c)) and has
not contacted the substrate (see figures 23(m)–(p)).

Using the known frame rate of the camera as well as an appropriate spatial calibration,
we calculate the ratio µm/pixel, which serves to determine the radius of the drop and
its corresponding impact velocity for each of the experimental image sequences recorded.
The impact velocity is modified by changing the distance between the needle from which
the drop is emitted and the glass slide, see figure 3. Drop radii are constant for each
of the two liquids used, water an ethanol, because drops were produced quasi-statically
and also because the diameter of the injection tube is not modified, see figure 25. The
analysis of the experimental images in the main text is carried out using the same type
of procedure as that described here, also using the Matlab toolbox, see e.g., figure 2.
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from the analysis of the experimental images recorded using the Matlab toolbox reveal that the
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vertical lines represent the experimental data points used to determine the radius and velocity
of the drop: the experimental data indicates that the drop is not deformed before touching the
solid substrate.
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