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Here we report the production of monodisperse microbubbles by taking advantage of
the large values of both the pressure gradients and of the local velocities existing at the
leading edge of airfoils in relative motion with a liquid. It is shown here that the scaling
laws for the bubbling frequencies and the bubble diameters are identical to those found in
microfluidics. Therefore, the meter-sized geometry presented here is a feasible candidate
to circumvent the inherent problems of using micron-sized geometries in real applica-
tions namely, wettability, the low productivity and the clogging of the microchannels by
particles or other impurities.

1. Introduction

Producing monodisperse micron-sized bubbles possess countless applications in a num-
ber of industrial processes, such as water purification, water aeration, biomass processing,
separation (Garcia-Ochoa & Gomez 2009; Rosso et al. 2008; Zimmerman et al. 2011), and
also in medicine, where they are currently used in lithotripsy (Yoshizawa et al. 2009), as
ultrasound contrast agents (UCAS) or for drug delivery purposes (Ferrara et al. 2007).

Many different processes in industry and medicine, like the ones enumerated above,
demand a precise control over the diameters, db, over the production frequencies, fb,
and over the polydispersity index (PDI) of the bubbles produced. But the controlled
mass production of monodisperse micron-sized bubbles, namely, those for which PDI<
0.05 and db < 10−3 m, for real industrial and medical applications, still constitutes a
technological challenge (Rodŕıguez-Rodŕıguez et al. 2015). This is partly due to the fact
that producing microbubbles is a process that very much differs from the analogous
case of drop generation in air: while a continuous liquid stream fragments into drops
because of the growth of capillary instabilities (Eggers & Villermaux 2008; Villermaux
2007), bubbles form as a consequence of the differences in pressure at the liquid side of
the interface. Indeed, following the seminal contribution by Oguz & Prosperetti (1993),
Rodŕıguez-Rodŕıguez et al. (2015) used a very simple model, based on the Rayleigh-
Plesset equation for the time-varying bubble radius Rb(t) and on the continuity equation,
namely,
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to scale both db and fb for several of the vast number of existing technologies aimed at
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producing bubbles in a controlled manner. In equation (1.1), ∆pexit refers to the time-
varying gas pressure at the nozzle exit relative to that in the liquid far away from the
bubble and σ indicates the interfacial tension coefficient.

The reason why a number of technological alternatives have appeared in the literature
to generate bubbles is that their production from the direct injection of a gas inside a
stagnant liquid pool possesses two clear shortcomings, namely, the coalescence between
neighbors and the fact that the diameters of the bubbles produced are much larger
than the diameter of the injector. To overcome these disadvantages, the novel bubble
generation techniques reported in the recent literature can be classified depending on the
way ∆pexit in equation (1.1), is controlled. For instance, Shirota et al. (2008) report a
method in which ∆pexit is forced to vary in time by exciting the gas stream acoustically,
a fact that favors the rapid collapse of the neck of the growing bubble and, an analogous
effect is achieved using the approach described in Zimmerman et al. (2011), where the gas
flow rate and, consequently, the gas pressure at the exit orifice, oscillates in time. But,
∆pexit in equation (1.1) can also be controlled by changing the liquid pressure around
the bubble using either a coflow or a crossflow. This production method has become very
popular since the advent of microfluidics, thanks to the easiness of manufacturing narrow
channels in PDMS (Garstecki et al. 2004; Hettiarachchi et al. 2007; Fu & Youguang 2015;
Campo-Cortés et al. 2016).

In the technological approaches that resort on using a liquid flow to promote the
formation of bubbles, ∆ pexit in equation (1.1) represents the pressure difference in a
distance of the order of the length of the bubble namely, ∆ pexit = ∇ p db, with ∇ p the
value of the local pressure gradient. Therefore, in the high Reynolds number limit and
in the case of capillary stresses can be neglected, the inertial terms in equation (1.1) are
balanced with the pressure difference ∆ pexit,

ρRbR̈b ∼ ρ d2b f2b ∼ ∆ p ∼ ∇ p db ⇒ fb ∝

√
|∇ p|
ρ db

. (1.3)

Substituting fb in (1.3) into equation (1.2) yields the following expression for db:

d3b

√
|∇ p|
ρ db

∝ Qg ⇒ db ∝

(
Qg√
|∇ p|/ρ

)2/5

. (1.4)

Notice that the couple of equations (1.3)-(1.4) have been deduced assuming that ∆ pexit
in (1.1) dominates over capillarity, namely, if the local Bond number based on the pressure
gradient ∇ p is such that
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If condition (1.5) is not fulfilled, the role played by the pressure gradient in the bubble
generation process is negligible. Under these circumstances, if the outer flow is able to
overcome the interfacial tension confinement forces, namely if We = ρU2 dg/σ & 1, with
dg the diameter of the gas ligament from which bubbles are produced and U the local
liquid velocity where the gas is injected, a bubble is formed once its tip is convected
downstream a distance proportional to dg, so that capillarity can force the pinch-off of
the gas thread (Gordillo et al. 2007; Campo-Cortés et al. 2016); therefore,

fb ∝
U

dg
, db ∝

(
Qg dg
U

)1/3

, (1.6)
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where use of equation (1.2) has been made.
In summary, provided that viscous effects are negligible and that the gas flow rate Qg is

constant during the bubble formation process (Oguz & Prosperetti 1993), the frequency
fb and the diameters db of the bubbles produced can be predicted using either the couple
of equations (1.3) and (1.4) or equations (1.6) depending on whether the condition in
equation (1.5) is satisfied or not, irrespective of the way the local pressure gradient ∇ p
and the local velocity U are generated.

The reason for which microfluidic geometries are used to produce microbubbles relies on
the fact that the characteristic length scale of the channels and orifices, L, is of the order
of tens of microns (Ganan-Calvo & Gordillo 2001). Indeed, under these circumstances,
the diameter of the gas ligament, dg, is very small and the associated pressure gradients,
|∇ p| ∼ O(ρU2/L), are much larger than those produced in a stagnant liquid pool, namely
|∇ p| � ρ g. Therefore, by virtue of equation (1.4), the diameters of the bubbles is reduced
because the equivalent gravity produced by the flow field |∇ p|/ρ ∼ O(U2/L) is orders of
magnitude larger than g - see equations (1.3) and (1.4)-.

However, the use of microfluidic geometries possess two clear drawbacks for real appli-
cations: i) the production rates are very low, a limitation which could be partially solved
by multiplexing the geometry of the unit production cell and ii) the narrow channels are
prone to clogging by solid particles or other impurities.

To circumvent the operating problems associated with the use of microchannels, here
we present a method to massively produce monodisperse micron-sized bubbles avoiding
the use of microfluidic geometries by injecting the gas at the leading edge of an airfoil
of characteristic chord c moving with a relative speed U∞ inside a liquid of density ρ.
The reason behind this design is motivated by the fact that, in this region of an airfoil,
the local liquid velocities are of the order of meters per second and much larger than
U∞ and, in addition, the associated favorable pressure gradients are orders of magnitude
larger than ∼ O(ρU2

∞/c) and comparable to those in microfluidic devices for sufficiently
large values of the angle of attack, α, formed between the chord of the airfoil and the
incident stream.

2. Bubbling at the leading edge of an airfoil

Figure 1 shows a rectangular wing of span b = 0.27 m and chord c = 0.3 m composed
by NACA 0012 airfoils, see e.g. Abbot & Von Doenhoff (1959) for details about the
definition of the geometry of this common type of standardized lifting surface. The wing
is immersed inside a square-section water tunnel of width w = 0.3 m ' b (see figure 1a);
therefore, no wing tip vortices are created and the flow field is two dimensional, i.e., the
velocity vectors are contained in planes perpendicular to the span direction. The flow
rate is controlled by varying the angular velocity of the impeller of a centrifugal pump
and it is measured using a particle tracking method. The gas is injected into the liquid
from a pressurized reservoir located inside the airfoil to the different orifices placed at the
leading edge region through injection tubes of length lt = 6× 10−2 m and inner diameter
dt = 1.6 × 10−4 m, see figure 1b. Since the ratio lt/dt � 1, the flow resistance is large
enough to keep the gas flow rate constant during the bubble formation process (Oguz
& Prosperetti 1993). The gas flow rate, Qg, is controlled using high precision pressure
regulators to fix the value of the gas pressure Pg in figure 1b. Experiments are visualized
using a high speed camera Phantom v710 operated at 10000 fps. The focal distance is
' 0.11 m and the final spatial resolution of the images captured is 20 µm/pixel.

Since bubbles are formed periodically, bubbling frequencies are determined from the
analysis of the videos recorded. This is done measuring the time required for 20 bubbles
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Figure 1: (a) Rectangular wing composed by NACA 0012 airfoils located inside the
water tunnel at an angle of attack of α = 10◦. (b) Sketch of the hollow airfoil where the
pressurized chamber, the gas injection tube and the boundaries of the system (2.2), are
shown. Here, h indicates the airfoil distance to the wall.

to cross an imaginary line located downstream the gas injection orifice. The gas flow
rate could have been determined as a function of the pressure difference Pg − Pa but,
since the Reynolds number characterizing the flow inside the injection tubes is such that
Retdt/lt = Qg/ (νg lt) ∼ O(1), with νg = 1.5 × 10−5 m2 s−1 the kinematic viscosity of
the gas, the gas velocity profile inside the injection tubes is not Poiseuille-like and we
found that the most precise way to calculate Qg is to make use of equation (1.2) with
db also measured from the experimental images. The local liquid velocity and the local
pressure gradient at the gas injection orifices, where bubbles are generated, is calculated
numerically, using potential flow theory.

Indeed, since vorticity is confined to thin boundary layers if the flow around the airfoil
is not separated, i.e., for angles of attack verifying the condition α < α∗, with α∗ ≈ 15◦

the angle above which the boundary layer is no longer attached, the velocity field can be
expressed as

v = ∇φ , (2.1)

with φ the velocity potential satisfying the Laplace equation, subjected to the zero normal
velocity condition at the airfoil surface Σs and at the wall, this latter boundary condition
being satisfied using the method of images as sketched in figure 1b, and to the boundary
condition at infinity, namely,

∇2φ = 0 , ∇φ · n = 0 x ∈ Σs , ∇φ→ U∞ |x| → ∞ . (2.2)

The numerical solution to the system (2.2), which also needs to satisfy the so-called
Kutta condition i.e., that the flow cannot turn around the airfoil trailing edge, is found
using a standard two-dimensional boundary integral method whose details can be found
in e.g., Pozrikidis (2002).

Figures 2 and 3 show, for exactly the same geometry as that used in experiments (see
figure 1), the calculated values of the pressure coefficient

Cp =
p− p∞

1/2ρU2
∞

= 1−
(
∂φ̄

∂ s̄

)2

, (2.3)

and of the dimensionless pressure gradient −dCp/ds̄, with s̄ = s/c and φ̄ = φ/(U∞ c)
indicating, respectively, the dimensionless arclength along the airfoil surface and the
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Figure 2: Variation of the pressure coefficient with the dimenssionless distance to the
leading edge, −Cp(x/c), at both sides of the NACA 0012 airfoil sketched in the top part
of figure 1b for two different values of the angle of attack: (a) α = 6◦ (deg) and (b)
α = 12◦ (deg). Notice that the maximum values of −Cp exhibited by the curves in (a)
and (b) are larger than the ones corresponding to the case of isolated airfoils: indeed, for
isolated airfoils, the maximum values of −Cp for α = 6◦ (deg) and α = 12◦ (deg) are,
respectively, 2.7 and 8.6. Our design takes advantage of the geometrical arrangement in
figure 1 to increase the values of both the suction peak and of the pressure gradient at
the leadding edge of the airfoil.

dimensionless velocity potential, see figure 1b. The results in figure 3 reveal that the
sign and the magnitude of the pressure gradient do strongly depend on the position of
the injection orifice: for instance, while the pressure gradient is favorable and increases
monotonically with the angle of attack for x̄ = x/c = 0, the pressure gradient changes
sign with α for x̄� 1. The numerical results in figure 3 are confirmed by the experimental
evidence in figure 4: here, the process of bubble formation for α ' 12◦ at two neighboring
orifices, is illustrated. While bubbles are formed periodically at the injection orifice where
the pressure gradient is strongly favorable, −dCp/ds̄(x̄ = 0) ' 800, no bubbles but a
long gas jet is formed at the orifice where the value of the pressure gradient is adverse,
−dCp/ds̄(x̄ = 0.0025) ' −100 (see figure 3b). Indeed, even in the case individual bubbles
were formed at the injection orifice at which the pressure gradient is adverse, these
bubbles would coalesce because they would be strongly decelerated in the downstream
direction as a consequence of the smallness of the gas to liquid density ratio.

Therefore, the strategy followed here to produce monodisperse microbubbles is to inject
the gas in a region of the flow where −Cp is as large as possible, so that the local pressure
p = p∞ + 1/2ρU2

∞ Cp(α) is as small as possible and hence the overpressures needed to
make the gas flow through the pipes are as low as possible. In this way, the energy
consumption associated with the injection of the gas, is clearly reduced with respect to
the case in which the local liquid pressure is ' p∞. In addition, in order to minimize
the diameters of the bubbles formed, the gas needs to be injected in a region of the
flow where the modulus of the favorable pressure gradient is as large as possible, see
equation (1.4). These restrictions, together with the evidences depicted in figures 3-4,
suggest that the appropriate location to produce the bubbles is the leading edge of the
airfoil. Consequently, from now on, we will limit ourselves to analyze the production of
bubbles from orifices located at x̄ = 0 for the range of experimental parameters shown
in table 1.

Figure 5 shows the influence of α, Qg and U∞ on the bubble generation process. As it
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Figure 3: (a) Cp vs α at the three different locations nearby the leading edge of the airfoil
illustrated in figure 4b. (b) dCp/ds̄ vs α at the same spatial locations as in (a).
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Figure 4: (a) Production of bubbles at two orifices, located respectively at x̄1 = x1/c = 0
(right) and at x̄2 = x2/c = 0.0025 (left) for α = 11.41◦ (deg), U∞ = 0.72 m/s. The
production of bubbles is periodic at the orifice located at x̄1 = 0, where the pressure
gradient is favorable but, in contrast, no bubbles are formed at x̄2 = 0.0025, where the
pressure gradient is adverse (see figure 3b). The scale bar indicates 1 mm. (b) This figure
illustrates the spatial locations where the different values of the curves in figure 3 are
calculated. This figure shows how close the orifice at the left in figure (a) is located
from the leading edge of the airfoil; therefore, the sign and the modulus of the pressure
gradient is highly dependent on the location of the gas injection orifice.

Parameters Values

U∞ [m/s] [0.36, 0.5, 0.58, 0.72]
α (deg) [4.66, 6.23, 8, 9.61, 11.41]
Pg [mbar] [120, 207, 289, 400, 565, 713, 890]

Table 1: Values of the different parameters explored in the present experimental study.
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(a) (b) (c) (d) (e) (f)

Figure 5: (a)-(b): Effect of Pg on the diameters of the bubbles generated for α = 8◦, U∞ =
0.58 m/s. In (a), Pg = 2.07 × 104 Pa, and in (b), Pg = 7.13 × 104 Pa. (c)-(d): Effect of
U∞ on the diameters of the bubbles generated for α = 9.61◦, Pg = 2.07× 104 Pa. In (c)
U∞ = 0.36 m/s and in (d) U∞ = 0.58 m/s. (e)-(f): Effect of α on the diameters of the
bubbles generated for U∞ = 0.5 m/s, Pg = 2.89 × 104 Pa. In (e), α = 4.66◦ and in (f),
α = 11.41◦.
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Figure 6: (a)-(b) Bubbling frequencies for two different values of the incident velocity.
(c)-(d) Diameters of the bubbles generated corresponding to the bubbling frequencies
depicted in figures (a) and (b).

is expected from equation (1.4) and from the results shown in figure 3, figure 5 reveals
that the diameters of the bubbles formed decrease for increasing values of α and U∞ and
decreasing values of Qg -or, equivalently, of the gas pressure in the reservoir, Pg-. The
qualitative observations depicted in figure 5 are quantified in figure 6, where both fb and
db are shown for the values of the parameters in table 1. The exhaustive analysis of the
experimental data yields values of the PDI below 0.05; therefore, the bubbles produced
using our method are monodisperse (Rodŕıguez-Rodŕıguez et al. 2015).

In order to rationalize the experimental observations in figure 6, where the bubbling
frequencies seem to be randomly distributed, notice first that, for the case of the flow
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around the airfoil, the local pressure gradient is

|∇ p| = β(α)
ρU2
∞
c
� ρU2

∞
c

(2.4)

with

β(α) = −1

2

dCp

ds̄
(α, x/c = 0) , (2.5)

and −dCp/ds̄ given by the red curve in figure 3b. Therefore, making use of equations
(1.3) and (1.4) we expect that, if condition (1.5) is satisfied, the bubbling frequencies
and the bubble diameters can be expressed as a function of the control parameters as

fb = Kf1

(
U∞√

c db/β(α)

)
and

db
L

= Kb1

(
Qg

U∞ L2
√
Lβ(α)/c

)2/5

, (2.6)

with L = 10−3 m the same length scale as in Evangelio et al. (2015) and Kf1 and Kb1

constants. However, if condition (1.5) is not satisfied, namely, if

Kb1

(
Qg

U∞ L2
√
Lβ(α)/c

)2/5

. K

(
σ

∇pL2

)1/2

(2.7)

with K = 0.56 an experimentally determined constant, fb and db are expected to be
given by (see equations 1.6),

fb = Kf2
U∞ (1− Cp)

1/2

dt
and

db
L

=

(
6 dt

Kf2π L

)1/3
(

Qg

U∞ L2 (1− Cp)
1/2

)1/3

, (2.8)

where the local velocity at the spatial location where the gas is injected, U , has been
calculated using the definition of the pressure coefficient in equation (2.3),

U = U∞ (1− Cp)
1/2

. (2.9)

The value K = 0.56 in equation (2.7) is the one minimizing the dispersion of the exper-
imental data with respect to the values predicted in equations (2.6) and (2.8). Indeed,
the results obtained for K = 0.56, depicted in figure 7, show that the predictions for fb
and db/L in equation (2.6), are in fair agreement with the experimental measurements
when the values Kf1 = 1.8 and Kb1 = 1.02, given in Evangelio et al. (2015), are used.
For those cases in which the condition (2.7) is verified, i.e., when the value of the local
Bond number defined in equation (1.5) is low enough and, therefore, the role played by
capillary stresses in the bubble formation proccess can no longer be neglected, the inset
in figure 7a also reveals a fair agreement betwen the predicted frequency in equation (2.8)
and the experimental data for Kf2 = 0.1, a value which is very close to that reported in
Campo-Cortés et al. (2016). Let us emphasize that the agreement between measurements
and the predictions in equations (2.6)-(2.8) depicted in figure 7 has been obtained using
already reported values for the constant in microfluidic geometries and using the values
of the pressure gradients and local velocities calculated numerically. These facts indicate
that the bubble generator presented here is, in essence, the same as those reported using
microfluidics, in spite of the evident geometrical differences.

Equations (2.6) and (2.8) predict the precise way the bubble diameter db decreases
when Qg is decreased or the values of both U∞ and α are increased. In particular,
equations (2.6) and (2.8) indicate that, for fixed values of α and Qg, db could have been
decreased below the minimum bubble diameter reported in this study ' 200 µm, if the
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Figure 7: (a) Comparison between the bubbling frequency predicted in equation (2.6)
and experiments. The inset represents the comparison between the bubbling frequency
predicted in equation (2.8) and the few experimental data verifying the condition (2.7).
(b) The experimental values of the bubble diameters not verifying equation (2.7), are
in fair agreement with the scaling for db/L given in equation (2.6). The diameters of
the bubbles corresponding to those experimental conditions for which equation (2.7) is
verified, namely, those experiments for which the role played by interfacial tension stresses
in the bubble formation proccess can no longer be neglected, are not included here.

maximum liquid velocity in the water tunnel could have been increased above ' 0.7 m
s−1.

However, the validity of the strategy described above to decrease the diameters of
bubbles generated using the procedure presented here, possesses one clear limitation that
prevents increasing U∞ without bound: liquid cavitation. Indeed, the gas is injected in a
region of the flow where the pressure is p ' pa+1/2ρU2

∞ Cp(α), with Cp(α) < 0 and pa '
105 Pascals the atmospheric pressure. Therefore, p could be so low for sufficiently large
values of U∞, that vapor bubbles could be nucleated. The description of the interaction of
the gas bubbles produced with the vapor bubbles that would be nucleated at the leading
edge region of the airfoil for sufficiently large values of the incident velocity U∞, is left
for a future study.

3. Conclusions

In this contribution we have presented a method for producing monodisperse microbub-
bles avoiding the use of microchannels. This method consists in injecting a given gas flow
rate at the leading edge of an airfoil placed at an angle of attack α inside a liquid stream.
In this region of the airfoil, the liquid velocities and the pressure gradients are much
higher than U∞ and ρU2

∞/c respectively, a fact favoring the generation of monodisperse
microbubbles with diameters and frequencies identical to those found in microfluidic ge-
ometries. The advantage of the present method with respect to the ones reported in
the literature is that the flow through microchannels, prone to clogging, not straight-
forwardly scalable for mass production in real applications and involving large pressure
losses, is avoided. One of the possible ways to upscale the production of monodisperse
microbubbles from a single orifice would be to inject the gas at the leading edge of blades
rotating at an angular frequency below the one at which liquid cavitation occurs.
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In summary, this contribution presents a feasible method that could help change the
paradigmatic idea that microfluidics is the only way of producing uniformly-sized micron-
sized bubbles or drops in a controllable way.
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Rodŕıguez-Rodŕıguez, J., Sevilla, A., Mart́ınez-Bazán, C. & Gordillo, J. M. 2015
Generation of Microbubbles with Applications to Industry and Medicine. Ann. Rev. Fluid
Mech. 47 (September), 405–429.

Rosso, D., Larson, L. E. & Stenstrom, M. K. 2008 Aeration of large-scale municipal wastew-
ater treatment plants: State of the art. Water Science and Technology 57 (7), 973–978.

Shirota, M., Sanada, T., Sato, A. & Watanabe, M. 2008 Formation of a submillimeter
bubble from an orifice using pulsed acoustic pressure waves in gas phase. Physics of Fluids
20 (4).

Villermaux, E. 2007 Fragmentation. Annual Review of Fluid Mechanics 39 (1), 419–446.
Yoshizawa, S., Ikeda, T., Ito, A., Ota, R., Takagi, S. & Matsumoto, Y. 2009 High in-



Production of monodisperse microbubbles avoiding microfluidics 11

tensity focused ultrasound lithotripsy with cavitating microbubbles. Medical and Biological
Engineering and Computing 47 (8), 851–860.

Zimmerman, W. B., Zandi, M., Hemaka Bandulasena, H. C., Tesa, V., James Gilmour,
D. & Ying, K. 2011 Design of an airlift loop bioreactor and pilot scales studies with fluidic
oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Applied Energy
88 (10), 3357–3369.


