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Here we provide a theoretical framework revealing that the radius Rd of the top droplet
ejected from a bursting bubble of radius Rb and Bo 6 0.05 can be expressed as

Rd/Rb = Kb

(
1− (Oh/Oh′c)

1/2
)

for Oh . Oh′c or as Rd ≈ 18µ2
l /(ρlσ) for Oh & Oh′c

with the numerically fitted constants Kb ≈ 0.2, Oh′c ≈ 0.03, Oh = µl/
√
ρlRb σ � 1 the

Ohnesorge number, Bo = ρl g R
2
b/σ the Bond number, and ρl, µl and σ indicating the

liquid density, dynamic viscosity and interfacial tension coefficient, respectively. These
predictions, which do not only have solid theoretical roots but are also much more
accurate than the usual 10% rule used in the context of marine spray generation via
whitecaps for Rb . 1 mm, agrees very well with both experimental data and numerical
simulations for the values of Oh and Bo investigated. Moreover, making use of a criterion
which reveals the mechanism that controls the growth rate of capillary instabilities,
we also explain here why no droplets are ejected from the tip of the fast Worthington
jet for Oh & 0.04. In addition, our results predict the generation of submicron-sized
aerosol particles with diameters below 100 nm and velocities ∼ σ/µl for bubble radii
10µm . Rb . 20µm, within the range found in natural conditions and in good
agreement with experiments, a fact suggesting that our study could be applied in the
modeling of sea spray aerosol production.

1. Introduction

The breakup of ocean waves entraps air bubbles that disintegrate within the liquid
bulk and burst when they rise back to the surface, ejecting into the atmosphere droplets
which, after evaporation, constitute the so called sea spray aerosol (SSA), which influences
climate by scattering and absorbing radiation and also because part of the solid particles
composing the SSA serve as cloud condensation nuclei and ice nuclei (Veron 2015;
de Leeuw et al. 2011; Erinin et al. 2019). Hence, the understanding, description and
quantification of a fundamental proccess such as the bursting of bubbles at interfaces,
which produce drops with different chemical compositions (Wang et al. 2017) depending
on whether drops are formed through the disintegration of the cap film (Lhuissier &
Villermaux 2012) –film drops– or via the breakup of the jet ejected upwards from the base
of the collapsing cavity (MacIntyre 1972) –jet drops–, will help improve the predictive
capability of climate models.

It is a common belief that most of the submicrometric particles composing SSA origi-
nate from film drops (Veron 2015) but, very recently, Wang et al. (2017) demonstrated
that the fraction of submicrometric SSA which can be attributed to jet drops varies
from 20% to 40% depending on the seawater chemical composition. The flux of SSA
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from jet drops is usually calculated using, as an intermediate step, the well known 10%
rule, which approximates the drop radii as Rd = 0.1Rb, with Rb the bubble radius.
This approximation is commonly used and has been employed very recently in the
paper by Wang et al. (2017). However, the numerical simulations in Duchemin et al.
(2002) demonstrated, almost twenty years ago, that the function Rd/Rb varies non
monotonically with Rb and also that min(Rd/Rb) ∼ O(0.01), a fact further confirmed
by the more accurate numerical results reported in Brasz et al. (2018).

Then, motivated by its atmospheric and climate implications and by the remarkable
findings in Wang et al. (2017), this contribution aims at improving the quantification
of the SSA produced from jet drops. Here we make use of our theory in Gordillo &
Rodŕıguez-Rodŕıguez (2019) and provide equations for Rd and for the initial velocity of
the droplets ejected, Vd, as a function of Rb and of the physical properties of the liquid.
In doing so, we will also present a new model describing the spatio-temporal evolution
of the jet that, among other things, predicts the behaviour of function Rd/Rb around its
minimum. Let us point out that our study is limited to the range of bubble diameters
of interest for SSA production, for which gravitational effects can be neglected in a first
approximation.

The paper is structured as follows: in §2 we briefly describe the numerical simulations
and present some of the results obtained. Section §3 is devoted to develop a model
describing the spatio-temporal evolution of the jet from its inception to its breakup and
to compare our predictions with experimental and numerical results. Finally, section §4
summarizes the main results obtained.

2. Numerical setup and revision of previous results

With the main purpose of analyzing the ejection of droplets from the very fast Wor-
thington jets ejected after the bursting of a bubble of radius Rb, here we have performed
an exhaustive numerical study by varying both the Bond and Ohnesorge numbers,
respectively defined as Bo = ρl g R

2
b/σ and Oh = µl/

√
ρlRb σ, with ρl, µl and σ referring

to the liquid density, dynamic viscosity and interfacial tension coefficient, respectively
[see figure 1 (a)]. Here, lengths, times and pressures are made non-dimensional using as
characteristic values Rb,

√
ρlR3

b/σ and σ/Rb and hence, velocities will be made non-

dimensional using as the characteristic value the capillary velocity, Vc =
√
σ/ (ρlRb).

Dimensionless variables will be written throughout the text in lower-case letters to
differentiate them from their dimensional counterparts -in capitals- and the subscript
d will be used to denote quantities referring to the instant the droplet detaches from the
tip of the jet.

Axisymmetric numerical simulations have been performed using the open-source code
GERRIS (Popinet 2003; Deike et al. 2018; Brasz et al. 2018; Gordillo & Rodŕıguez-
Rodŕıguez 2019) using as values for the density and viscosity ratios those corresponding
to air bubbles in water namely, 1.2× 10−3 and 1.8× 10−2. The computations are started
by suddenly removing the cap of a static bubble at a free surface. The initial shape of
the bubble, [see figure 1 (a)] at T = 0, is calculated solving the Young–Laplace equation
for different values of the Bond number following the procedure detailed in Lhuissier
& Villermaux (2012). Simulations with different grid refinements (maximum level of
refinement varying from 10 to 14) have been carried out to check the grid independence
of the results. We have further validated our numerics by comparing with Brasz et al.
(2018) and the GERRIS script developed here is provided as part of the Supplementary
Material.

Gordillo & Rodŕıguez-Rodŕıguez (2019) explained that bubble bursting jets are pro-
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Figure 1. (a) Sketch showing the sequence of events following the bursting of a bubble at a free
interface. The retraction of the rim causes a convergent flow towards the base of the cavity that
favours the formation of a fast jet of initial velocity Vjet and initial radius Rjet. For sufficiently
small values of the Ohnesorge numbers, a drop of radius Rd and velocity Vd is issued from the
tip of the jet. (b) Numerical results for the dimensionless droplet radius at the ejection time
(rd0, open markers) and at the break-up time (rd, filled markers) corresponding to Bo = 0.01
and different values of the Ohnesorge number. (c) Sketch defining the main variables used in
the model developed here to predict rd and vd.
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Figure 2. Shapes of the collapsing cavity for different values of the Ohnesorge number at
two different instants of time. Observe that a tiny bubble is entrapped below the jet for
Ohc 6 Oh 6 Ohd, with Ohc ' 0.02 and Ohd ' 0.05. Here, Bo = 0.01.
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duced by a purely inertial mechanism in which capillarity transforms the initial spherical
bubble into a truncated cone, with the radius of the base of such a cone decreasing linearly
with λ∗, namely the wavelength of the capillary wave excited during the rim retraction
process (see figure 2). Gordillo & Rodŕıguez-Rodŕıguez (2019) found, both theoretically
and numerically, that λ∗ ∝ Oh1/2 and also that the amplitude of this wave is ∝ λ∗ for
Oh . 0.02. Then, since the radius of the truncated cone varies linearly with λ∗, it was
also predicted in Gordillo & Rodŕıguez-Rodŕıguez (2019) that the radius of the incipient
jet, rjet can be expressed as

rjet ∝ 1− (Oh/Ohc)
1/2

if Oh < Ohc(Bo) ' 0.02 , (2.1)

with Ohc(Bo) the value of the Ohnesorge number for which the crest of the wave reaches
the vertex of the cone. Notice that Ohc depends on the Bond number because the vertex
position depends on the initial shape of the static bubble, which clearly depends on the
Bond number. Gordillo & Rodŕıguez-Rodŕıguez (2019) also explained that, for Oh . Ohc,
the initial velocity of the extremely fast and thin jet, vjet, can be calculated as the flow
generated by a continuous line of sinks extending upwards from the base of the truncated
cone along the axis of symmetry a distance proportional to λ∗ ∝ Oh1/2. Moreover, the
intensity of these sinks also depends on Oh1/2 through the capillary pressure, which
depends on the cone geometry. All these facts explain why vjet depend on Oh1/2, with
the precise functional form of vjet calculated in Gordillo & Rodŕıguez-Rodŕıguez (2019)
as:

vjet ∝ Oh1/2 for Oh� 1 and vjet ∝
(

1− (Oh/Ohc)
1/2
)−1/2

for Oh ≈ Ohc .
(2.2)

The shapes of the collapsing bubbles for different values of the Ohnesorge number
is represented in figure 2 for two different instants of time. Observe that there is a
remarkable difference between the two smaller values of Oh and Oh = 0.02: in this latter
case, a tiny bubble is entrapped below the jet. This bubble is created because the crest
of the capillary wave reaches the vertex of the cone for Oh = Ohc and a point below
the vertex for Oh > Ohc. From equation (2.2), notice that the predicted velocity would
tend to infinite for Oh = Ohc, but this singularity is clearly not realistic. Indeed, it was
shown in Gordillo & Rodŕıguez-Rodŕıguez (2019) that, when a bubble is entrapped, the
jet velocity is limited by viscous stresses and, thus, the dimensional jet velocity and jet
radius are respectively given by Vjet ∝ σ/µl and Rjet ∝ µ2

l /(ρlσ). These are constant
values for fixed physical properties and represent the maximum achievable velocity and
the minimum achievable radius (with slight deviations near Oh = 0.03 as it will be
commented below) which, in dimensionless terms, can be expressed as

rjet ∝ Oh2 and vjet ∝ Oh−1 for Oh > Ohc . (2.3)

The case Oh = 0.032 in figure 2 illustrate a case for which equations (2.3) accurately
predicts the numerical results. However, for the largest value of the Ohnesorge number
illustrated in figure 2, the amplitude of the capillary wave is very much attenuated by
viscosity. Consequently, the crests of the capillary waves do not reach the vertex of the
cone for Oh > Ohd, with Ohd(Bo 6 0.01) ' 0.05. Therefore, bubbles are entrapped
below the jet for values of the Ohnesorge numbers within the range

Ohc(Bo) 6 Oh 6 Ohd(Bo) with Ohc(Bo� 1) ≈ 0.02 and Ohd(Bo� 1) ≈ 0.05 .
(2.4)

Clearly, the predictions in equations (2.1) and (2.2) will deteriorate as Oh approaches
Ohc and, also, there will be deviations from the predictions given in equations (2.3) for
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values of Oh near the boundaries limiting the bubble entrapment regime namely, Ohc
and Ohd. In spite of this, the numerical results depicted in figure 1 (b) verify the scalings
in equations (2.1) and (2.3), confirming the non-monotonic dependence of the initial
radius of the jet predicted in Gordillo & Rodŕıguez-Rodŕıguez (2019). Figure 1 (b) also
reveals that the radii of the ejected droplets, rd, which is the truly important value for
applications, are far larger than their initial value, rd0.

Our goal in this contribution is to provide closed expressions for rd and vd at the
instant the top droplet is emitted from the tip of the jet. For that purpose, we will derive
a system of differential equations that will be integrated making use of the initial values
for the jet radius and the jet velocity, which can be either calculated numerically or
approximated using equations (2.1), (2.2) and (2.3). However, to do so, it will be first
necessary to describe the spatio-temporal evolution of the jet width and of the jet velocity
upstream the jet tip.

3. Modeling the spatio-temporal evolution of the jet

The time evolution of the jet tip velocity, v(t), and of the radius of curvature of the
tip of the jet, b(t), can be calculated using the following mass and momentum balances
(Taylor 1959),

ds

dt
= v,

4

3
π
db3

dt
= π r2j (vj − v) ,

4

3
π b3

dv

dt
= −π rj + π r2j (v − vj)2 − 6π Oh

(
µg

µl

)
b v,

(3.1)

with rj(t) = r(s(t), t) and vj(t) = u(s(t), t) the values of the radius r(z, t) and of the
vertical component of the liquid velocity u(z, t) at the vertical position z = s(t) where
a drop of radius b(t) is located [see figure 1 (c)]. In equation (3.1), notice that the
dimensionless term −π rj , results from the addition of two contributions: the interfacial
tension force along the perimeter of a circle of radius rj , −2πrj , plus the force πrj
associated with the capillary pressure 1/rj exerted on a circle of area π r2j . Equations
(3.1) express that the jet tip is mainly decelerated by the action of interfacial tension
forces, but we have also added the small force exerted by the gas because we checked
that the inclusion of the Stokes drag over a sphere of radius b(t), with µg in (3.1) the gas
viscosity, slightly improves the agreement between the numerical results and the model.

Clearly, the system (3.1) can only be solved once rj(t) and vj(t) are known. For that
purpose, here we make use of the ballistic equations for r(z, t) and u(z, t) in the form
presented in Gekle & Gordillo (2010)

∂r2

∂t
+

∂

∂z

(
r2 u

)
= 0⇒ D

Dt

(
ln r2

)
= −S with S =

∂u

∂z
and

∂u

∂t
+ u

∂u

∂z
= 0⇒ Du

Dt
= 0,

(3.2)

with D/Dt ≡ ∂/∂t+ u ∂/∂z indicating the material derivative and S the strain rate.
The parabolic system of equations (3.2) can be solved using the method of charac-

teristics in the spatio–temporal region s(t) > z > zb(t), with zb(t) the origin of the
ballistic region. The solution can be found once the liquid velocity and the jet radius
u(τ, zb(τ)) = ub(τ) and r(τ, zb(τ)) = rb(τ) are known functions of time at the spatio-
temporal boundary (τ, zb(τ)). Indeed, the integration of the momentum equation in (3.2)
yields that, along rays z = zb(τ)+(t−τ)ub(τ) the liquid velocity is u = ub(τ). Moreover,
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Figure 3. (a) Time sequence showing the comparison between the spatio-temporal evolution of
the jet radius and the model prediction (blue line) calculated for Bo = 0.01 and Oh = 0.024 at
the following instants of time: t = 0.463, 0.476, 0.489 and 0.502. The last frame in the sequence
corresponds to the instant of time, t = 0.506, the jet breaks into drops and includes the shapes
of the jet for instants of time close to its inception to stress the fact that the final drop diameter
is much larger than the initial one. (b) Comparison between the spatio-temporal evolution of the
jet velocity calculated numerically and that predicted by the model (blue line). The predicted
values could be closer to the calculated ones if the pressure gradient term was added into the
momentum equation (3.2), as it is shown in the Supplementary Material. (c) The different
continuous lines indicate the time evolution of the dimensionless wavenumber calculated solving
equations (3.1) using the analytical expressions in (3.7) for values of the Ohnesorge number
around the one the minimum drop radius is attained. The breakup instants calculated using
GERRIS, which are indicated using filled squares, reveal that a drop is ejected when the value of
the ratio π rj/b calculated using the system (3.1), is such that π rj/b = 0.85.

to integrate the continuity equation in (3.2) it is first convenient to notice that

∂

∂z

(
∂u

∂t
+ u

∂u

∂z

)
= 0⇒ DS

Dt
+ S2 = 0⇒ −DS

S2
= Dt⇒ S =

Sb(τ)

1 + (t− τ)Sb(τ)
, (3.3)
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with (see Gekle & Gordillo 2010)

Sb(τ) =
∂u

∂z
(τ, zb(τ)) = − dub/dτ

ub(τ)− dzb/dτ
. (3.4)

Therefore, the substitution of equation (3.4) into the continuity equation in (3.2) yields

D

Dt

(
ln r2

)
= − Sb(τ)

1 + (t− τ)Sb(τ)
⇒ r =

rb(τ)√
1 + (t− τ)Sb(τ)

. (3.5)

The inertio–capillary balance existing for values of the Ohnesorge number Oh ∼ Ohc
(Gordillo & Rodŕıguez-Rodŕıguez 2019) during a short interval of time after the jet is
ejected causes the time evolution of the jet to be self–similar (Zeff et al. 2000; Brasz
et al. 2018; Lai et al. 2018), a fact yielding that the liquid velocity and the jet radius at
zb(τ) can be respectively expressed as ub(τ) = u0 τ

−1/3 and rb(τ) = r0 τ
2/3. Defining the

origin of the jet region at the vertical position zb(τ) = u0 τ
2/3, making use of equation

(3.4) and of the fact that ub(τ) = u0 τ
−1/3 and that z = zb(τ) + ub(τ)(t− τ), yields

Sb(τ) = 1/τ and τ = (u0 t/z)
3
. (3.6)

The substitution of equations (3.6) into u = u0 τ
−1/3 and into equation (3.5) yields

u(z, t) =
z + z0
t+ t0

, r(z, t) = δ
(t+ t0)

3

(z + z0)
7/2

, (3.7)

with δ = r0u
7/2
0 and where t0 and z0 account for the fact that both the time and the

vertical position in the ballistic equations are shifted with respect to the respective origins
in the numerical simulations. The values of t0, z0 and δ in equations (3.7) are determined
making use of the numerical values of vj , rj and of the strain rate, S, calculated from
the numerical simulations right after the jet is ejected, [see figure 1]. The parameter δ,
which measures the ratio between inertial and interfacial tension forces always satisfies
the condition δ � 1, this being the reason why the capillary pressure gradient could be
neglected in the momentum equation (3.2) (see the Supplementary Material for details
of the solution including the capillary pressure gradient term). Indeed, in spite of its
simplicity, the model expressed by equations (3.1), solved using the analytical expressions
in (3.7), correctly reproduces the time evolutions of the radius and vertical liquid velocity
within the jet, r(z, t) and u(z, t), in a finite spatial region located upstream the drop,
which suffices to correctly evaluate the mass and momentum fluxes entering the drop,
see figures 3(a)-(b). Let us point out that the very good agreement depicted in figures
3(a)-(b) between the jet shapes calculated numerically using GERRIS and our analytical
prediction in (3.7), could have been extended to a larger spatial region. This could have
been done providing correct boundary conditions to the parabolic set of equations (3.2)
during a longer time period. However, it is not our goal here to predict the full shapes
of the Worthington jets, but the diameters and the velocities of the droplets ejected. In
this regard, the insets in figure 3(b) show that the time evolutions of the radius and the
velocity of the tip of the jet predicted solving equations (3.1) and (3.7) (blue lines) closely
follow the time evolutions calculated numerically using GERRIS (black lines). We checked
that the good agreement shown in figure 3(a)-(b) between predictions and numerical
results extends to the whole range of values of Oh investigated here.

Since the theoretical model presented here is able to correctly capture the time
evolutions of both v(t) and b(t) (see the inset in figure 3(b)) the only missing ingredient
in order to predict the drop radius and drop velocity is to determine the instant of time
the jet tip breaks into drops.
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3.1. Jet breakup condition

The radius and the velocity of the first droplet ejected is calculated here particularizing
the functions b(t) and v(t) (see the inset in figure 3(b)) at the instant the jet tip breaks as a
consequence of the growth of a capillary instability. Since the wavelength of the capillary
perturbation can be approximated by the diameter of the droplet, as it is suggested
by the inset of figure 3(c), our criterion for capillary breakup can be expressed as the
instant of time for which the dimensionless wavenumber, κ = πrj(t)/b(t), verifies the
condition πrj/b = κc, with κc < 1 (Rayleigh 1878) a constant. We do not predict here
the value of this free constant κc, but fix it here by comparing the model predictions
with the numerical results. Indeed, figure 3(c) represents, with continuous lines, the
time evolutions of the ratio πrj(t)/b(t) obtained solving the model equations (3.1) using
the analytical expressions in (3.7) for several values of Oh. In each of these curves, we
include a filled square corresponding to the jet breakup time calculated using GERRIS

and, in all cases considered, we find that the breakup instant predicted using the GERRIS

values takes place when the ratio πrj/b calculated using our model verifies the condition
πrj/b = κc, with κc = 0.85. This fact confirms our hypothesis that the breakup instant
can be characterized through the value of the ratio πrj/b. Notice that the value for κc
found here is slightly larger than the dimensionless wavenumber of fastest growth rate
of capillary perturbation calculated by Rayleigh (1878) for the case of cylindrical jets,
κc ' 0.7. However, this is not surprising in our case because Gordillo & Gekle (2010)
reported that the wavelengths of capillary perturbations leading to the end-pinching
of stretched Worthington jets is close to the jet perimeter, which implies values of the
dimensionless wavenumber of fastest growth rate larger than 0.7.

The insets in figure 4 show the comparison between the values of rd and vd calculated
numerically using GERRIS (full symbols) and those predicted by our model (open sym-
bols), the latter obtained solving equations (3.1) and applying the jet breakup condition
πrj/b = 0.85. The inset in figure 4(a) shows that most of the predicted values overlap the
ones calculated using GERRIS. The good agreement between predictions and numerical
results in the complex region where both rd and vd behave non monotonically with Oh,
validates our approach.

3.2. Scaling the size and velocity of the primary droplet

While the model developed in the previous sections is capable predict, with great
accuracy, the diameters and velocities of the first drop ejected, it is of little practical use
since it requires to solve a system of ordinary differential equations. The purpose here is
to derive approximate algebraic equations for both rd and vd making use of our recent
result in Gordillo & Rodŕıguez-Rodŕıguez (2019), where we derived expressions for both
the radius and the velocity of the incipient jet, rjet and vjet respectively (see figure 1a),
as a function of the Ohnesorge number.

The model represented by equations (3.1) and (3.7) and, most importantly, the breakup
criterion deduced here, πrj/b = 0.85, are free of parameters, exceptuating the small air
drag term in equation (3.1) -which, in fact, we could have neglected. Since the system
of differential equations only receives information of the bulk flow through the initial
conditions, which depend on Oh1/2 for Oh < Ohc, we assume that

rd = rjet + f(Oh1/2) ' rjet + C1 + C2Oh
1/2 + O(Oh) , (3.8)

where we have made use of the fact that Oh� 1. Hence, making use of equations (2.1)
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Figure 4. Numerical results for the radius (a) and velocity (b) of the top droplet ejected after
the bursting of a bubble for Bo = 0.01 (solid blue dots) and Bo = 0.05 (solid red dots). Figure
(a) includes the experimental data reported in Brasz et al. (2018) (orange and green triangles)
as well as the predicted values of rd calculated using either equation (3.9) or rd = 18.45Oh2,
finding a fair agreement between the predicted and calculated values. The minimum value of
rd is reached at Oh = 0.03. Figure (b) includes the droplet velocities reported in Ghabache
et al. (2014) (green squares) and the predicted values of vd using either equation (3.10) or
vd = 0.784Oh−1, finding a fair agreement between the predicted and calculated values. The
insets in (a)-(b) show the predictions of the full model with κc = 0.85 (see figure 3 (c)) for values
of the Ohnesorge number in the region where both rd and vd experience abrupt variations with
Oh, finding a fair agreement between the values calculated using GERRIS (filled symbols) and
the full model (open symbols): notice that both data sets mostly overlap.

and (3.8), the radius of the ejected droplet can be expressed as

rd = Kb(Bo)
(

1− (Oh/Oh′c(Bo))
1/2
)

if Oh < Oh′c, (3.9)

with Kb(Bo) and Oh′c(Bo) > Ohc(Bo) constants that, we found, hardly vary with Bo
for Bo 6 0.05. Following the same reasoning as before, since the initial radius of the jet
scales as rjet ∝ Oh2 when a bubble is entrapped (see equation 2.3), it is also expected
that rd ∝ Oh2 for larger values of the Ohnesorge number.

Figure 4(a) shows that the values of rd calculated using (3.9) with Kb = 0.22, Oh′c =
0.031, compare favourably with the numerically calculated ones for Oh . 0.028 and
also that rd = 18.45Oh2 approximates well the data for the small interval of values
0.028 6 Oh 6 0.035. We found, however, no simple way of predicting rd in a very
short range of values around Oh = 0.03 and also around Oh ≈ 0.04, but the complex
dependence close to these two values of Oh is reproduced by the full model, which requires
the integration of ordinary differential equations, as it is shown in the inset of figure 4(a).
Our numerical results in figure 4(a) also reveal that no droplets are ejected for Oh & 0.04.
Indeed, the rd ∝ Oh2 prediction deteriorates for the larger values of Oh because, for
values of the Ohnesorge number Oh ≈ Ohd, the amplitude of the capillary waves excited
during the rim retraction process are highly attenuated by viscosity, reducing the size
of the entrapped bubble or even preventing the entrapment (see figure 2) and, as a
consequence, reducing the intensity of the Worthington jet.

Let us finally point out that the numerical results depicted in figure 4(a) also show that
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Figure 5. (a) (Adapted from figure 1 in Wang et al. (2017)): Comparison between the predicted
and measured particle diameters composing the aerosol with Dp = β Rb rd and β = 0.5 (black),
0.7 (blue) and 1 (green), see also figure (b). The inset represents a log-normal fit to the
experimental data in Wang et al. (2017). (b) Particle diameters calculated as Dp = β Rb rd
with rd given in equation (3.11). Seawater physical properties taken from Nayar et al. (2016)
for a temperature of 25o C and a salinity of 30 g/kg. Here # indicates number of particles or
bubbles and f or F indicate the bubble or particle size distribution.

the main influence of the Bond number on rd is appreaciated at the minimum radius,
with min(rd(Bo = 0.05)) ' 0.015 and min(rd(Bo = 0.01)) ' 0.01.

Following the same reasoning as before, the velocity of the droplets ejected can also
be expressed, for Oh < Ohc, as vd = vjet + g(Oh1/2) ' vjet + D1 + D2Oh

1/2 with vjet
given in equation (2.2) and hence, figure 4(b) represents the functions

vd = 1 + 31 (Oh/Ohc)
1/2

if Oh < 0.01,

vd = 12.5
(

1− (Oh/Ohc)
1/2
)−1/2

for 0.01 6 Oh < 0.024 and

vd = 0.784Oh−1 for Oh > 0.024 ,

(3.10)

with the latter expression for vd in (3.10) motivated by equation (2.3). Once the free
constants are properly chosen, the function vd(Oh) in equation (3.10) agrees well with the
numerical results depicted in figure 4(b) except whenOh approximates eitherOhc orOhd,
for the reasons explained above. In these cases, the full model should be used to predict vd,
as the inset of figure 4 (b) shows. To further test the utility of our simplified description
presented here, which already predicts the trend exhibited by the experimental data
reported in Brasz et al. (2018) (see figure 4(a)), we have made use of the results in
Wang et al. (2017) who, in their figure 1, provided the measured aerosol particle flux
produced by a flux of bubbles with a certain size distribution (see figure 5(a)). Assuming
that each bubble produces just one drop, using the 10% rule for rd and approximating
the dry diameter as Dp = 0.5Rd, Wang et al. (2017) obtained the red line in figure
5(a), which compares favourably with part of the experimental data, but which does
not predict the production of submicrometric particles, which play an essential role in
atmospheric dynamics (Wang et al. 2017). Figure 5(a) also includes the distribution of
particles calculated assuming that just one single drop is produced per bursting bubble,
taking Dp = β Rd with β a parameter that accounts for evaporation effects and using
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the equation for rd:

rd = 0.2
(

1− (Oh/0.033)
1/2
)

if Oh 6 0.03 and

rd = 18.45Oh2 for 0.03 < Oh 6 0.035
(3.11)

which also approximates very well the numerical data (see the inset in figure 5(b)). In
Wang et al. (2017) and references therein, it is assumed that β = 0.5 namely, that the
radius of the solid particle is just one-half the original radius. But we have not found a
clear justification for this particular value of β and have chosen to vary this parameter
between β = 0.5 and β = 1, the latter value meaning that, after evaporation, the radius
of the solid particle coincides with the initial drop radius.

The shape of the distribution of diameters obtained using our results is quite similar to
the experimental one and, although slightly shifted to the left, it predicts the generation
of submicron-sized particles with diameters Dp < 100 nm. In any case, the differences
between the predicted and measured values can be attributed to the number of simplifying
hypotheses done in the calculation of Dp: indeed, the bubble coalescence events at the
interface, which would displace the original bubble size distribution to the right, are
not considered here. Also, the use of equation (3.11) rests on the assumption that the
collapse is axisymmetric and that the interface is not rigidized by surfactants or solid
particles. While it is clear that the presence of small particles or surfactants will affect
the jet ejection and breakup processes, the axisymmetry hypothesis is also easily violated
under realistic conditions because collective effects and the influence of neighbouring
bubbles will produce an inclined jet. This is so because geometrical asymmetries cause
the capillary waves traveling along the spherical surface to not reach the bottom of the
cavity at the same time, distorting the base of the truncated cone from which the jet is
issued.

4. Concluding remarks

With the purpose of providing closed expressions for the radius, rd, and velocity, vd, of
the first drops ejected from the tip of the fast and thin vertical jet produced at the base
of the cavity of a bursting bubble, here we have extended the recent results in Gordillo
& Rodŕıguez-Rodŕıguez (2019) by developing a one-dimensional model to describe the
spatio-temporal evolution of the jet. This model, which is coupled with balances of mass
and momentum at the jet tip, very well reproduces the spatio-temporal evolution of the
radius of the jet, of the jet velocity field and the time variations of the thickness, b(t), and
velocity, v(t), of the tip of the jet. The particularization of b(t) and v(t) at the instant
of time the dimensionless wavenumber is such that capillary waves grow and break the
jet, provide the values of rd and vd as a function of the Ohnesorge number, Oh. Since
this method requires the integration of a system of equations, it is not of practical use
in realistic applications. Hence, we have deduced simple algebraic equations for rd and
vd, which are in fair agreement with our own numerical results. The equations for rd
and vd are expressed, for Oh . 0.03, in terms of Oh1/2, with Oh1/2 proportional to the
dimensionless wavelength of the capillary wave which triggers the jet ejection process
from the base of a truncated cone. However, for larger values of the Ohnesorge number,
the entrapment of a bubble below the jet causes viscosity to limit the maximum attainable
velocity and the minimum jet radius, a fact explaining that, for 0.025 . Oh . 0.035,
the radii and velocities of the droplets ejected experience an abrupt change of trend in
a narrow range of values of Oh, with the scales in this region given by rd ∝ Oh2 and
vd ∝ Oh−1. The equation for rd deduced here has been applied to predict the diameters
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of the submicrometric aerosol particles produced by the bubble size distribution reported
in Wang et al. (2017) and our results are similar to the flux of submicron-sized particles
measured experimentally, a fact indicating that our findings could be used to improve
the aspects of climate models related with the production of sea spray aerosol particles,
which play an essential role absorbing and scattering radiation and as ice and cloud
condensation nuclei.
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