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A B S T R A C T   

The technological development in the area of power electronics has paved the way for the construction of High 
Voltage Direct Current (HVDC) systems. The utilization of HVDC grids alongside conventional High Voltage 
Alternating Current (HVAC) grids poses several challenges, especially, from stability and control points of view. 
Indeed, moving towards such systems in the context of conventional Alternating Current (AC) power systems 
cannot be possible without ensuring the overall stability of hybrid HVAC/HVDC grids. This paper analyzes 
different aspects of the stability of Voltage Source Converter (VSC)-based HVDC grids and presents various 
methods of improving stability based on a systematic and comprehensive review. In addition, this paper provides 
a concise classification of various control methods to improve the operation of such grids and the advantages of 
each method.   

1. Introduction 

Due to the increase in the use of Renewable Energy Sources (RESs), 
especially offshore wind farms, and the need to coordinate and integrate 
them into the existing power grids, the tendency to use overlay High 
Voltage Direct Current (HVDC) grids is increasing day-by-day [1,2]. 
Multi-Terminal High Voltage Direct Current (MT-HVDC) systems are a 
promising solution for the efficient integration of HVDC grids. One of the 
most important challenges in the deployment of MT-HVDC grids is 
protecting such systems against Direct Current (DC) faults [3–5]. The 
capacitive behavior of HVDC cables and their relatively low impedances 
lead to a significant increase in the DC fault current. 

Using DC Circuit Breakers (DC CBs) is one of the most effective so-
lutions for fast DC fault isolation [6–8]. Despite developments in DC CB 
technology, they still need relatively large DC reactors to limit the rate of 
rise of the DC fault current [9]. Capacitors and DC reactors connected to 
HVDC grids and inductance and capacitance of HVDC transmission lines 
are the determining factors in designing LC filters, which significantly 
affect the dynamic response of DC-link voltage and its instantaneous 
power in MT-HVDC grids, especially in long DC transmission lines [10]. 

There are two major power converter technologies for HVDC grids, 
namely thyristor-based classical technology, which are based on Line- 
Commutated Converters (LCC) and Voltage Source Converter (VSC) 
technology. Various types of HVDC converters are shown in Fig. 1. 

VSC-based systems have numerous advantages compared to classical 
systems. Therefore, in recent years, due to the presence and develop-
ment of VSC technology and its advantages over the LCC, it has had a 
prominent role in various HVDC projects [11]. Additionally, it has been 
proven that the Modular Multilevel Converter (MMC) technology has 
more advantages than the two-level and three-level VSC technology 
[12], and more focus should be on the development of HVDC grids based 
on the MMC technology [11,13]. 

From the stability point of view, in the case of an unexpected 
disruption or change in power systems, the traditional synchronous 
generators can supply the potential energy stored through their rotating 
parts [14]. One of the main factors in improving the stability of modern 
power systems is inertia improvement [15]. To date, various methods 
have been proposed to improve the system inertia. The presented 
methods in [16,17] enable the wind turbines to emulate inertia during 
the fault or disturbance on the Alternating Current (AC) side. In [17], the 
inertia of the system is emulated by controlling the output power of the 
inverter according to frequency oscillations. However, recovering/-
restoring the rotor speed after acceleration is the main issue with those 
methods. Although the presented time-derivative grid frequency control 
strategy in [18] is capable of adjusting the power and inertia via the 
LCC-HVDC converter, it has the same rotor speed recovery issue similar 
to the one presented in [17]. 

It should be noted that the controllability and flexibility of VSC- 
HVDC technology can improve the dynamics of the host AC systems. 
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However, large-scale power grids, which also have a large number of 
power electronic devices, can expect to have unwanted interactions with 
other grid components. Some of those interactions are identified and 
investigated in [19–26] due to the notable development of power elec-
tronic devices. Furthermore, in [27] and [28], the interactions among 
VSC-HVDC and STATic synchronous COMpensators (STATCOMs) are 
investigated. 

Considering the previous research studies and the future trends in the 
expansion of HVDC transmission systems, the main focus of this paper is 
on the stability of VSC-based HVDC grids. Thus, the objective of this 
paper is to investigate the factors affecting the stability of VSC-based 
HVDC grids and to select proper methods to minimize the adverse im-
pacts of such factors on the stability of VSC-based HVDC grids. This 
study analyzes various aspects of the stability of VSC-based HVDC grids 
and different methods of improving stability based on a systematic and 
comprehensive review. In addition, this paper provides a general clas-
sification of the various methods of stability improvement based on the 
operation and advantages of each method. 

The rest of the paper is structured as follows. Section 2 describes the 
modeling of hybrid HVAC/HVDC grids. Section 3 presents a summary of 
the various control methods for VSC-HVDC converters. Section 4 dis-
cusses VSC-based HVDC grid stability issues. Section 5 provides rec-
ommendations for future research. Finally, Section 6 concludes this 
paper. 

2. Hybrid HVAC/HVDC grids modeling 

A typical configuration of hybrid HVAC/HVDC grids is shown in 
Fig. 2. It is well-known that hybrid HVAC/HVDC grids are beneficial as 
they can reduce transmission line loading, minimize operating costs, and 
increase the utilization of grid infrastructure by enabling higher power 
transfer capability. However, the overall efficiency of the system may be 
reduced as a consequence of power converter losses [29]. 

2.1. HVDC transmission lines model 

2.1.1. Cables 
The best option for long-distance offshore power integration into 

pwoer grids is to use cables. Depending on the cost and installation 
factors, Mass-Impregnated (MI) and Cross-Linked Polyethylene (XLPE) 
cables are widely used in VSC-based HVDC systems [30]. Currently, MI 
submarine cables are used up to 600 kV, and XLPE cables can only be 
used in VSC-based HVDC systems up to 400 kV (due to space charge 
phenomena) [31]. Among all the cable models, the most accurate model 
is the Frequency-Dependent Phase Model (FDPM) [32]. Therefore, with 
this type of modeling, it is possible to determine changes in the voltage 
and current along transmission lines for protection purposes. If a 
detailed cable model is not required in the analysis of a system, a simpler 
model can be considered for cable modeling [32]. In this regard, a mass 
model of the determining parameters of the cable, i.e., a 
series-connected resistor, a series-connected inductor, and a shunt 
capacitor, are added together to form a π circuit or a cascade π circuit 
[33]. Furthermore, the dynamics of DC cables can be removed from the 

Nomenclature 

AVR Automatic Voltage Regulation 
AC Alternating Current 
RES Renewable Energy Sources 
MICable Mass-Impregnated Cable 
XLPECable Cross-Linked Polyethylene Cable 
FDPM Frequency-Dependent Phase Model 
IGBT Insulated-Gate Bipolar Transistor 
SM Submodule 
SPDC − PFC Serial-Parallel DC Power Flow Controller 
FCL Fault Current Limiter 
PCC Point of Common Coupling 
GVD Generalized Voltage Droop 
SVC Static Var Compensator 
FGS − PLL Fuzzy Gain Scheduling Phase Locked Loop 
MPC Model Predictive Control 

LMI Linear Matrix Inequality 
SSO Sub-Synchronous Oscillations 
HVDC High Voltage Direct Current 
HVAC High Voltage Alternating Current 
MT − HVDC Multi-Terminal High Voltage Direct Current 
LCC Line-Commutated Converter 
VSC Voltage Source Converter 
DCCB Direct Current Circuit Breaker 
DC − PSS Direct Current-Power System Stabilizer 
MMC Modular Multilevel Converter 
EMT Electromagnetic Transients 
WPP Wind Power Plant 
FRT Fault Right Through 
FGS Fuzzy Gain Scheduling 
POD Power Oscillation Damping 
IPFC Interline DC Power Flow Controller 
PLL Phase Locked Loop  

Fig. 1. HVDC converter technology: (a) LCC-HVDC, (b) VSC-HVDC.  

Fig. 2. A typical configuration of hybrid HVAC/HVDC grids.  
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calculations by showing pure resistance instead of the cable [33]. The 
representation of cables with an accurate frequency-dependent 
modeling is difficult in the state space, and it has a great deal of math-
ematical complexity. However, an accurate modeling of DC cables is 
very important for analyzing low-frequency oscillations in HVDC sys-
tems. In addition, in long cables, the lowest resonant frequencies within 
the cable determine the dynamics of HVDC converters [9,34,35]. 
Therefore, the importance of DC resistance and impedance character-
istics in a wider frequency range in cable modeling cannot be ignored. 
Moreover, it is shown that disregarding the frequency-dependent char-
acteristics of HVDC cables leads to a misleading assessment of tradi-
tional π-section models of the system [33]. Accordingly, a 
frequency-dependent π model (FD-π model) comprising a lumped cir-
cuit with several parallel RL branches in each π-section should be used to 
analyze the frequency-dependent characteristics of the cable [36]. 
Modeling of power converters and transmission lines are among the 
factors whose modeling has a great impact on the results of system 
analysis. In cable modeling, it should also be considered that a typical 
π-section model can show the performance of a cable only at a certain 
frequency. Therefore, an FD-π model can be used to analyze the fre-
quency dependence of cable features [33]. Fig. 3 shows the cable model 
based on the π model [9]. Also, the cable model based on the FD-π model 
is shown in Fig. 4 [36]. In both figures, the number of the parallel branch 
is shown by m, and Lbr and Rbr are the inductance and resistance of the 
DC reactor, respectively. 

2.1.2. Overhead lines 
Overhead lines are used with both LCC and VSC technologies. Since 

overhead lines are always exposed to lightning and pollution, DC-link 
short circuit faults may occur due to insulation failure [37,38]. In 
MT-HVDC grids, this scenario can even be worse as non-permanent DC 
faults in each overhead line, which can lead to the instability of the 
entire grid. Since non-permanent DC faults in overhead lines are inevi-
table and the above scenario may occur occasionally, this severely un-
dermines the reliability of power transmission systems. Therefore, to 
clear the fault and to perform an automatic and rapid system recovery, it 
is necessary to design a protection plan for non-permanent faults in 
overhead lines [37]. 

2.2. Converter stations modeling 

As mentioned earlier, HVDC converter stations can be categorized 
according to their technologies, i.e., LCC-HVDC [39] and VSC-HVDC 
[40,41] technologies. 

2.2.1. LCC-HVDC structure 
In typical LCC-HVDC systems, each terminal consists of power con-

verters, transformers, filters, power equipment, control systems, and 
other components. Due to some constraints, such as the Maximum 
Available Power (MAP) [42], voltage regulation, and susceptibility to 
commutation failure [43], the use of LCC-HVDC-based systems is more 
limited. In this regard, the main concerns are the complexity of the 
control system in a grid with several converter stations and the need for 
rapid communication links for the proper functionality of a central 
master control [44]. 

2.2.2. VSC-HVDC structure 
VSC-HVDC systems can have significant impacts on power grids, and 

therefore, it is crucial to understand the dynamic behavior of power 

converters and their controllers under different operating conditions. 
Converters, including two-level and three-level types, are typically 
designed to maintain the voltage of DC-side capacitors at a nearly con-
stant DC voltage level regardless of AC side current [9]. This type of 
power converter has a switching frequency of ∼1 kHz and consists of 
several power Insulated-Gate Bipolar Transistors (IGBTs) [45,46]. For 
the first time, MMC technology was proposed in 2002 and implemented 
in 2010 in the ±200 kV Trans Bay Cable project (San Francisco, CA) 
[47]. The linear small-signal MMC model is important for system sta-
bility analysis, and thus, the controller design and the dynamics of MMC 
should be considered in its design process. If the internal dynamics of the 
MMC are ignored, the MMC model can be simplified as a two-level 
VSC-HVDC system [48]. 

2.3. DC-DC power converters modeling 

The methods of achieving DC-DC conversion in low- and medium- 
voltage are well-known [49–52]. However, it is not easy to use such 
methods in high-voltage grids. HVDC converters require the connection 
of several low-voltage components, such as power semiconductor 
switches [53] and/or low-voltage converters [50], which makes the 
direct use of classical conversion methods impractical. Rather than only 
the voltage regulation, advantages, such as power flow control, fault 
isolation, and interface of different DC transmission schemes, lead to 
more interest in using DC-DC power converters in HVDC grids [54–58]. 
An intelligent and fast pulse-width modulation-based type-II fuzzy 
controller for DC-DC boost converter is presented in [59]. The experi-
mental results show that the controller has a faster and more robust 
response in comparison to the previously presented control techniques. 

2.3.1. Voltage regulation 
HVDC lines with various voltage levels need DC transformers for the 

integration into power grids [58]. However, it is not possible to use 
conventional transformers in HVDC networks for voltage conversion. 
There are different DC-DC power converter topologies for low-power 
applications, but most of those topologies cannot be easily utilized for 
hundreds of kilovolt and megawatt power ranges due to several tech-
nical constraints, such as power losses, operational costs, the size of the 
filters, and voltage rating of the semiconductors, etc. Therefore, new 
DC-DC power converter topologies based on modular structure have 
been recently presented that use the series connection of Submodules 
(SMs) instead of the series connection of semiconductors [60]. Based on 
galvanic isolation, two categories can be considered for new DC-DC 
power converter topologies, including isolated types [61–65] and 
non-isolated types [53,66–73]. In the presented method in [70], an 
additional SM branch is used at the low-voltage DC terminal to reduce 
the injected AC voltage. In [71], a specific type of DC autotransformer is 
introduced, in which a part of the total power is transferred through the 
AC transformer, and the remaining part is transferred through the DC 
branch. Also, a multi-port DC autotransformer topology is presented in 
[72]. In addition, a new hybrid cascaded DC-DC power converter is 
presented in [53], in which two branches of series-connected IGBTs and 
one branch of cascaded SMs are used. The voltage stability by consid-
ering the integration of MMC and LCC-HVDC into the Norwegian power 
systems is studied in [74]. Fig. 3. The π model of power transmission lines.  

Fig. 4. The FD-π model of cable.  
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2.3.2. Power flow controller 
To mitigate line overloading and grid bottlenecks, a power flow 

controller is presented in [75,76]. Accordingly, compared to the costly 
solution of establishing new HVDC lines, power flow control in 
MT-HVDC grids has attracted research interests [77,78]. Some previous 
research studies in the literature introduce different DC-DC power 
converter topologies [54,79] and some introduce multi-port topologies 
for connecting to any number of transmission lines [80–82]. An efficient 
control framework that utilizes DC-DC power converters to achieve 
flexible power flow control in MT-HVDC grids is presented in [79]. The 
power flow control through a power converter with a different 
connection using a Serial-Parallel DC Power Flow Controller 
(SPDC-PFC) is investigated in [54]. The presented method in [83] for a 
multi-port interline DC power flow controller has fewer switches and 
series-connected diodes. 

2.4. Fault current limiters and DC circuit breakers 

According to the research conducted by CIGRE, the fault current is 
one of the most serious challenges in HVDC grids, because its rate of rise 
is very high and it reaches its maximum level within a few milliseconds. 
Therefore, it is necessary to design a controller with additional capa-
bilities to limit the rate of rise of the fault current in its early stages. The 
use of Fault Current Limiters (FCLs) is a promising solution [84–89]. 
FCLs can be classified based on their operating principle and the key 
technological components. Generally, the method of implementing FCLs 
can be divided into several categories, including passive nonlinear ele-
ments [90–92], inductive devices [93,94], semiconductor switches [95, 
96], and classified hybrid approaches [97–99]. However, due to power 
constraints and requirements related to the semiconductors and super-
conductors, few of them are appropriate for HVDC grids. The DC fault 
current waveform includes a high-frequency fault factor. Hence, one of 
the most effective developed methods is the use of a large inductor in the 
FCL structure, which can provide a very large impedance to the system 
with a high-frequency component [100,101]. Also, due to the de-
pendency of the decaying constant δ of the fault current in HVDC sys-
tems on the inductance L, an effective solution is to increase L and 
reduce the rate of rise in the fault current [102]. 

In addition to some specific topologies designed for fault tolerance 
[103], VSC-HVDC converters have an inherent weakness of over-current 
[104]. The capacitive behavior of HVDC cables and their relatively low 
impedance leads to an increase in fault current. By blocking VSCs and 
transforming them into uncontrollable diode bridges to protect the 
switching devices, the entire HVDC grid should be shut down, which is 
undoubtedly unacceptable. Therefore, DC CBs are considered the most 
effective method for rapid fault isolation [105]. Even though, DC CBs are 
being manufactured with very short failure times, large DC reactors are 
still required to limit the rate of rise in fault current [106]. The breaking 
time and breaking capacity determine the size of this reactor (>100 mH) 
[9,107], which can lead to dynamic instability [9]. In HVDC grids, an 
important parameter of VSC stations connected to power grids is the 
DC-link voltage, which is determined based on voltage ripple and dy-
namics of controllers [108,109]. It should be noted that due to the ad-
vancements in MMC-based converters technology, connecting a large 
DC-link capacitor to DC grids is no longer required, but there are still 
some concerns about the inductive DC network problem for DC CBs and 
long DC lines [9]. The presence of a DC reactor leads to increased losses 
and affects the stability of the system. This is due to the fact that using a 
large DC reactor in any of the transmission lines of HVDC grids can lead 
to adverse fluctuations in DC voltage, and even, instability. In addition, 
increasing the size of the DC reactor reduces the propagation rate of 
dynamic changes in DC current from one terminal to another [9]. In 
addition, capacitors and inductors that are connected to DC grids and 
inductors and capacitors in DC transmission lines create an LC filter. This 
filter affects the dynamic response of DC-link voltage and power in 
HVDC systems, especially in long transmission lines. Therefore, the role 

of inductances and capacitances cannot be ignored [110]. Different parts 
of modeling a typical VSC-based HVDC system are shown in Fig. 5. 

3. Control of VSC-HVDC power converters 

Generally, the control system of VSC-HVDC stations has a cascade 
structure. The structure of the VSC-HVDC controller is shown in Fig. 6. 
The external controller (high-level) of power converters is usually based 
on vector control, which is responsible for controlling the input and 
output variables of the AC-DC converter. However, the structure of the 
internal controller (low-level) varies depending on the converter type. 

As is shown in Table 1, a VSC-HVDC station may be connected to an 
AC grid or an offshore Wind Power Plant (WPP). According to Table 1, 
the outer controllers of power converters perform specific tasks. In 
cascade controllers, higher-level controllers operate at higher band-
width and lower-level controllers operate at lower bandwidth [111, 
112]. Typically, in an ideal system, the performance range of the 
lower-level controller must be at least 4 times (up to 10 times) faster 
than the previous higher-level control [113]. 

3.1. Low-level control 

In HVDC grids, the lowest level of control in a hierarchical control 
structure must operate independently and maintain the system opera-
tional and stable without the need for external communication channels. 
The DC-link voltage can be used as a global decision-making parameter, 
and the control actions can be performed locally based on the DC-link 
voltage. 

Since, in HVDC grids, each converter is part of a larger grid, con-
trollers may have different control objectives, such as voltage margin 
control and droop controller [114–116]. In a voltage margin controller, 
which is an extended version of master-slave control, if the DC-voltage 
regulating converter fails to operate, the DC voltage stability is 
compromised. In the control scheme presented in [117], two or more 
converter stations of an HVDC grid are equipped with a droop controller 
and the rest of the converters have a power controller. In the case study 
of [117], several converters are involved in controlling DC voltage. A 
Generalized Voltage Droop (GVD) control strategy for control and power 
sharing in voltage source converters is presented in [118]. In the pre-
sented approach, the conventional voltage droop characteristics of 
voltage-regulating VSC stations are replaced by the GVD characteristics. 
The presented GVD control strategy can be operated in three different 
control modes, including conventional voltage droop control, fixed 
active power control, and fixed DC voltage control by proper adjustment 
of the GVD characteristics of the voltage-regulating converters. Hence, if 
a terminal is disconnected, the rest of the converters ensure the DC 
voltage stability, which is also called the master-salve with droop con-
trol. However, this control scheme is suitable for small-scale DC grids, 
and using it in larger grids requires difficult synchronization. Also, the 
primary control leads to inefficient use of the grid capacity. The 

Fig. 5. Different parts of modeling a typical VSC-based HVDC system.  
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classification of such methods is shown in Table 2. 
Low-level control strategies include master-slave control strategy 

[119], voltage margin control strategy, and droop control strategy 
[120]. 

3.1.1. Master-slave control strategy 
In the master-slave control method, the main power converter should 

perform voltage control, and the rest of the power converters should 
regulate the flow of power. The main problem in this strategy is the 
instability due to not considering the reliability of the entire network. 
Therefore, DC voltage control is completely at risk and correct operation 
cannot be guaranteed in case of the main power converter outage [121]. 
In addition, in this control strategy, the main power converter should be 
connected to a stiff AC grid to ensure the quick conditioning of DC grids 
and avoid negative impacts on the AC side. However, the master-slave 
control is a suitable method for practical MT-HVDC systems, such as 
the current Zhangbei, Nan’ao, and Zhoushan HVDC projects in China. 
Since this type of control is suitable for power dispatching, the DC 
voltage control backup power converter is developed in the main control 
for fault conditions [122]. 

3.1.2. Voltage margin control 
The voltage margin control method can be considered as an extended 

form of the master-slave strategy. In this control method, there are 
special power converters that are responsible for maintaining the DC 

voltage if the power exceeds its normal limits [123]. In addition, in this 
control method, backup power converters can be used to regulate the DC 
voltage in an emergency case [124]. In this control method, the main 
problem is instability, because changing the main power converter can 
lead to fluctuations in the DC voltage. It is also necessary to correctly 
choose the magnitude of the voltage margin as considering a small value 
for the voltage margin causes unnecessary displacement of the main 
power converter, while too high a value may lead to under-utilization of 
HVDC systems capacity [115]. 

3.1.3. Voltage droop control 
Unlike the master-slave and voltage margin control strategies, which 

are based on centralized control, droop control is a decentralized control 
strategy [125]. Nowadays, droop controllers are very popular; however, 
this type of controller has limitations for some converter stations. 
Among these limitations is that this control scheme is not able to 
guarantee constant DC voltage and power sharing in all control modes. 
In [118], a uniform control strategy for DC voltage regulation and power 
sharing in HVDC networks is presented. In [126], a DC-PSS is added to 
the droop controller; however, in this method, the DC-PSS input signal is 
supplied from battery energy storage systems. 

3.2. High-level control 

It is well-known that the purpose of high-level control in HVDC 
systems is similar to the secondary control of AC systems, meaning that 
the high-level control is responsible for generating reference signals for 
the local controllers. In high-level control of HVDC grids, the power 
control loop (or optimal power control loop) provides an optimal setting 
for the outer controller [15]. In general, for HVDC grids and in the 
steady-state, the main objectives of the high-level or secondary control 
layer are as follows:  

• Correcting and maintaining the power exchange across the entire 
grid  

• Controlling the DC voltage 

In a high-level control structure, the lower-level control always 
operates much faster than the upper control layer. In HVDC grids, unlike 
AC systems, where the frequency is a global parameter and is only 
monitored, all DC-link voltage must be controlled. In this regard, a DC 
voltage control and power sharing strategy for HVDC grids based on an 
optimal method of power and voltage-droop control is presented in [15, 
127]. 

4. VSC-based HVDC grids stability 

This section investigates the impacts of HVDC power converters and 
their control systems on the stability of VSC-based HVDC grids. In 
addition, various control and stability methods for grid stability are 
mentioned in this section. An investigation of previous research studies 
on stability shows that stability in power systems can be divided into 
several basic categories, including voltage stability, angle stability 
(under small and large disturbances), and frequency stability [128,129]. 

4.1. Voltage stability 

In [130], the simultaneous impacts of LCC-HVDC and VSC-HVDC on 
a similar bus to check the voltage stability are investigated by consid-
ering the Pac − Qac controller and the Vac − Qac controller. Some issues 
with designing LCC-HVDC are the susceptibility to commutation fail-
ures, voltage regulation, and maximum available power in a weak 
network. Several structures are common for controlling the voltage, 
among which a vector control structure with an internal current loop is 
more common. This controller provides better performance compared 
with resonant controllers in steady-state and phase errors [113,131]. 

Fig. 6. The structure of the VSC-HVDC controller  

Table 1 
Control of VSC-HVDC Power Converters  

Controllers for VSC-HVDC Power Converter 

VSC-HVDC Converter Connected to an 
AC Grid 

VSC-HVDC Converter Connected to an 
Offshore WPP 

• DC-Link Voltage (Vdc) Control  
• Input/Output Active Power Balance 

(Pac) 
• AC Voltage Magnitude Control 

• Reactive Power (Qac) or AC Voltage 
(Vac) Control 

• AC-Side Frequency Support 

• Support for Point of Common 
Coupling (PCC)   

Table 2 
Comparison Among Low-Level Control Approaches  

Presented 
Methods 

Advantages Non-Analyzed Topics 

Voltage Margin 
Control 

Reliable operation of HVDC 
systems without the need for 
fast communication systems 

DC voltage instability due to 
the loss of DC voltage- 
regulating converters 

Droop Control Acceptable load sharing Difficult coordination and 
complicated parameter tuning 
process when used in large- 
scale grids 

Master-Slave 
with Droop 
Control 

Acceptable load sharing and 
voltage control 

Non-efficient use of DC 
network capacity due to the 
primary choice of a converter 
and complexity of the control 
scheme due to the large 
number of converter stations  
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The advantages of the method presented in [130] are the improvement 
of the maximum available power and the reduction of overvoltage. Due 
to the variety of controllers for HVDC systems, the stability of voltage of 
LCC-HVDC systems is investigated in the literature using VSC-HVDC and 
LCC-HVDC [132–134]; however, those research studies use a simplified 
model of AC grids. Despite the independence of voltage controllers in 
VSCs, the interaction among power converter controllers has been the 
subject of many recent research studies. In [135], the interaction be-
tween the dynamics of load and LCC-HVDC without considering the 
dynamics of AC systems is discussed. As investigated in [136,137], the 
use of the DC Power System Stabilizer (DC-PSS) can reduce the DC 
voltage oscillations caused by the DC reactors and improve the stability 
of the entire grid. 

The dynamic and static models of the load with the impact of the 
current limitations are considered in [138] to determine their conse-
quences on Pac − Qac and Vac − Qac control methods. The voltage sta-
bility by considering the integration of MMC and LCC-HVDC into the 
Norwegian power systems is studied in [74]. A new control method is 
introduced in [139] by adding an extra control loop to the secondary 
control system. Also, a control algorithm based on the eigenvalue 
sensitivity is presented in [140] to improve coupling capabilities and 
enhance the quasistatic voltage stability. A modified droop control 
structure for simultaneous power sharing and DC voltage oscillation 
damping in MT-HVDC grids is presented in [120]. 

Table 3 shows the summaries of the aforementioned methods based 
on their advantages and analyzed topics. 

4.2. Angle stability 

4.2.1. Small-disturbance angle stability 
The small-signal rotor-angle stability of power grids should be 

considered in the design process of VSC-HVDC stations. The controllers 
affect the electromechanical behavior of AC systems and stabilize the 
low-frequency oscillations of power systems. 

In [141], the impacts of VSC-HVDC link control and bandwidth on 
the electromechanical conditions of AC systems are investigated. From 
the analysis of a systematic comparison of the reduced model and the 
realistic model of the British system, it can be concluded that DC-link 
performance, the structure of the network, and control of the AC 
voltage have direct impacts on the inter-area oscillations of the host AC 
system. This method has no significant overshoot, but has a 10%-90% 
rise time of 0.1 s with no steady-state error. In [142], the dynamic in-
teractions between an HVDC network based on MMC converters and the 
AC system following AC disturbances are investigated. The controlla-
bility of MMC-VSC-HVDC systems on inter-area and local oscillations in 
interconnected power systems are studied in [143]. The procedures for 
tuning a parameter of the general Power Oscillation Damping (POD) 
considering the impact of the Automatic Voltage Regulator (AVR) and 
the marine WPP constraints are addressed in [144]. The presented 
method in [145] provides maximum relative control capability without 
the need for connection among DC terminals in Nordic 32. 

Tuning parameters of PI controllers may result in a higher overshoot, 
settling time, and steady-state error [146]. The presented controller in 
[147] shows reasonable performance for coordinating control between 
the VSC-HVDC network and offshore wind generation networks. How-
ever, the possibility of employing such a multi-faceted controller in an 
accurate system requires extra thorough evaluation. POD based on H∞ 

complex sensitivity theory for MT-HVDC grids is presented in [148]. It 
should be noted that the strategy of the controller using the H∞ mixture 
sensitivity theory suffers from poor selection of weighting function. The 
enhancement of the small-signal stability of power systems is given by 
the optimal controller allocation within VSC-HVDC systems [149]. 
However, the presented controller has an incomplete scenario. A robust 
control strategy using a finite set of non-local signals for multiple 
embedded DC links is presented in [150]. 

An alternative control method for a VSC-HVDC point-to-point link is 

presented in [151] to mimic the behavior of synchronous generators. 
However, it should be noted that the presented controller differs from 
well-established vector control. A full characterization of the acceptable 
power injections of dynamically controlled HVDC links is presented in 
[152]. One of the factors affecting the small-signal stability is the 
VSC-HVDC design, which can significantly change the overall stability 
of the system [153]. 

Table 4 shows the categorization of the above-mentioned methods 
based on their merits and not-analyzed topics. 

4.2.2. Large-disturbance angle stability 
Modeling of VSC-HVDC systems by considering transient stability 

conditions is investigated in [154]. Despite the significant impacts of the 
complexity of modeling and bandwidth control on the transient stability 
of the system, the provided results are not generalizable as the system is 
not a complex one, and VSC-HVDC systems control parameters are not 

Table 3 
Comparison of Voltage Control Methods of VSC-HVDC Power Converters  

Presented 
Methods 

Test Systems Tuning 
Methods 

Advantages Non-Analyzed 
Topics 

[74] Norwegian 
power systems 
with LCC and 
MMC 

Yes Improving the 
AC voltage 
regulation 

Disregarding 
the impacts of 
the controller 
on the overall 
stability of the 
system 

[130] 
LCC and VSC 
stations with a 
single generator 
in a host AC grid 

No •• Improving the 
maximum 
available power 
• Reducing 
voltage 
transients 

Disregarding 
AC system 
dynamics 

[135] 
LCC and VSC 
stations with 
two generators 
in a host AC grid 

No Providing the 
interaction 
between the 
dynamics of load 
and LCC-HVDC 

Disregarding 
AC system 
dynamics 

[138] 
Power systems 
in western 
Denmark with 
LCC, VSC, and 
two generators 
in a host AC grid 

No • Considering 
various load 
models •
Examining the 
impact of current 
limitations •
Providing an 
adaptive current 
limitation 
scheme to 
overcome the 
constant current 
limitation in 
VSC-HVDC 
systems 

Disregarding 
the impacts of 
the controller 
on the overall 
stability of the 
system 

[139] 
A network 
including three 
connected areas 
by AC overhead 
lines with DC 
lines in parallel 
with two 380-kV 
AC overhead 
lines 

No Supporting the 
dynamic voltage 
after short circuit 
faults 

Providing little 
information 
and limited 
results about 
the control 
scheme 

[140] 6-bus and 118- 
bus test systems 
with and 
without Static 
Var 
Compensators 
(SVCs) 

No Providing 
supplementary 
control 
algorithm based 
on the 
eigenvalue 
sensitivity that 
utilizes the 
capabilities of 
VSC-based 
embedded HVDC 
systems 

Disregarding 
the case for all 
MT-HVDC 
systems  
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well-determined. The impacts of VSC-HVDC systems on the transient 
stability of the Belgian network are investigated in [155]. The impacts of 
both VSC-HVDC and LCC-HVDC power converters on transient stability 
with different HVDC control strategies are analyzed in [156], and it is 
evident that the improvement in the VSC-HVDC systems performance in 
some operating conditions is significant compared to the LCC-HVDC 
one. In addition, the current constraints on power control of 
VSC-HVDC systems affect the transient stability of the AC system. The 
results of the transient stability analysis for the Danish power system are 
presented in [157]. The amount and direction of the power in HVDC 
links have a significant impact on transient stability [158]. 

The dynamics of AC-DC systems using Fault Ride Through (FRT) 
after a fault is discussed in [159]. The test system in [159] is a realistic 
model representing the future power system of northwestern Europe. It 
is also shown that as the topology of the system does not have much 
impact on transient stability, the rate of active power recovery can affect 
the improvement of transient stability. 

In [160], it is noticed that the parameters of the droop controller 
significantly affect the AC-DC system dynamics. However, the structure 
of the HVDC network has a slight impact on the interactions. The im-
pacts of the controller of power converters and Phase Lock Loop (PLL) 
parameters on the transient stability of AC systems are investigated in 

[161]. To ensure the precise operation of the power converter’s inner 
current controller, it is important to estimate the grid frequency, which 
is achieved by the PLL [162]. It is shown in [163] that by adding 
additional transfer functions, a more accurate model can be achieved to 
evaluate PLL dynamic effects and delayed measurements. In [164], a 
Fuzzy Gain Scheduling PLL (FGS-PLL) is presented that has a robust 
performance in severe voltage drops and even phase jump conditions. In 
the presented method, a fuzzy gain scheduling technique is used to 
adjust the proportional and integral gains during amplitude, phase, and 
frequency changes in the grid voltage waveform to create a flexible PLL. 
In [165], it is indicated that fast control of AC voltage can improve the 
transient stability of the system. Since changing the reactive power 
mode can change the angular separation between generators and affect 
the transient stability of the system, it is necessary to consider different 
active and reactive power for various control modes [166,167]. 

A method for correctly placing power electronics-based devices, such 
as VSC-HVDC systems, is presented in [152] to improve transient sta-
bility. However, the stability of AC systems should be considered during 
the HVDC network planning stage [168–170]. 

A supplementary active power controller is employed in [171] to 
improve the transient stability of the system. However, the results pro-
vided in [171] for a simple system cannot be generalized to other types 

Table 4 
Methods for Small-Disturbance Angle Stability  

Presented 
Methods 

Test Systems Tuning 
Methods 

Advantages Non-Analyzed Topics 

[141] 
• A classical two-area AC system with a 
point-to-point VSC-HVDC link • United 
Kingdom transmission system with detailed 
models of the generator, excitation systems, 
and PSSs 

No Demonstrating of probable negative impacts of 
the controller on AC voltage fluctuations 

• Disregarding the limitations in a simple 
general model of an AC voltage controller •
Disregarding the network code adaptation 
current limitation scheme for AC side faults 

[142] 
5 MMC stations and 10 turbine generators No • Utilizing each MMC as a fixed power supply to 

operate during transient electromechanical 
fluctuations • Improving dynamic interactions 
between AC subsystems that are only connected 
via the HVDC network 

• Not giving the information of controllers •
Disregarding the impacts of different control 
approaches • Disregarding the dynamic 
interaction during DC-side disturbances • Not 
contributing to damping of the AC system 
oscillations during AC-side disturbances 

[143] 
A two-area power system connected by a 
point-to-point HVDC system with three 
generators in AC side 

No Demonstrating the controllability of MMC-VSC- 
HVDC systems on inter-area and local oscillations 
in interconnected power systems 

Disregarding the dependence of the model for 
dynamic behavior reproduction on parameter 
recognition techniques 

[144] IEEE 12-bus system with VSC-HVDC at Bus 
1 

No Providing power oscillation damping on offshore 
wind power plants by modulating active and 
reactive power injection 

Disregarding the coordination between active 
and reactive power modulation 

[145] Nordic32 test system No Providing maximum relative control capability 
without the need for connection among DC 
terminals 

Unacceptable performance during major 
events, such as disconnection of the power 
converter pole or AC line without a robust 
damping controller 

[147] An offshore wind farm connected to a 
mainland AC grid via VSC-HVDC links 

No Providing a coordinated power oscillation 
damping control through offshore wind farms and 
onshore VSC-HVDC power converters 

A lack of explanation of the implementation of 
the presented method in HVDC systems and also 
a lack of comparison of the performance of the 
presented controller with the existing methods 

[148] 
A 6-machine 3-area system and a 16-ma-
chine, 5-area system 

No Designing a damping controller based on H∞ 

mixed-sensitivity formulation in the Linear Matrix 
Inequality (LMI) framework 

Providing a poor selection of weight 
performance in design 

[149] 
Four-machine grid with two-area test 
system and a VSC-HVDC link 

No Improving small-signal stability of power systems 
by the optimal controller allocation in VSC-HVDC 
systems 

Providing an incomplete scenario 

[150] Multi-infeed with two DC links No Reducing communication delays Considering a simple network (point-to-point 
DC links) 

[151] Weak AC systems consist of a DC line with 
two synchronous units 

Yes 
(residues 
method) 

Providing a control strategy of HVDC 
transmission yielding increased power transfer 
capacity and enhanced transient stability of weak 
interconnected systems 

A lack of detailed analysis and validation 

[152] A two-area AC system No Deriving the HVDC constraint set based on the AC 
grid model and the original voltage and current 
bounds 

Using a simple AC network model 

[153] 
CIGRE test system No • State-space and small-signal analyses based on 

the linearization about an operating point and 
calculating the eigenvalues • Improving the 
stability of MT-HVDC by ensuring the optimized 
value of the DC-link capacitor and tuning the 
controller 

Using non-exact conventional models to 
describe the dynamic characteristics of the 
system, especially when the filter cutoff 
frequency is close to the switching frequency  
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of external controllers. A supervising global Model Predictive Control 
(MPC) based on the relative frequency error between the AC system and 
generators for VSC-HVDC systems is presented [172] to improve the 
transient stability. A transient stability improvement method based on 
MPC for the representative Great Britain system is also provided in 
[173]. However, since MPC design for large systems is complicated, the 
possibility of using such a control method in real power systems is not 
assessed. In [174], VSC controllers for MT-HVDC transmission systems 
are used and it is shown that the peak overshoot of the MPC controller 
with a value of 2.86 is smaller than the PI controller with a value of 8. In 
[175], the time optimal power injection modulation control strategy for 
HVDC systems based on Lapanov’s theory with the aim of rotor angle 
stability of AC systems is presented. A robust control-based modulation 
slider is presented in [176]. Although, this method has a problem with 
nonlinear control in power systems. The impacts of local frequency and 
mean weight in power loops on transient stability are investigated in 
[177,178]. 

One of the common phenomena in power systems is low-frequency 
inter-area power oscillations [179], which are in fact the main reason 
for cascading failure [180]. Damper windings of modern synchronous 
devices and digital electronic control systems cannot effectively reduce 
intra-area fluctuations without measuring the global signal [181]. In 
[181], a concept called homotopy is used to derive a diagonal block 
controller from a set of full controllers to ensure specified closed-loop 
performance for various operating conditions. 

Table 5 summarizes the aforementioned methods based on their 
advantages and non-analyzed topics. 

4.3. Frequency stability 

Despite the limitations of DC voltage controller and the choice of 
droop rate that can disrupt the design performance, the frequency 
control based on droop control in onshore converters is presented in 
[182–184]. The impacts of changing the gains of the droop controller of 
VSC-HVDC systems to support the AC frequency system are discussed in 
[185]. To support system inertia, a controller for artificial inertia is 
presented in [18,186,187] that relies on the energy of the DC-link 
capacitor. The advantage of this method is that it can reduce the time 
delay problem of communication by limiting the amount of intrinsic 
energy available in VSC-HVDC systems with the capacitor size. In [188], 
a method for the simultaneous use of capacitor energy of VSC-HVDC and 
WPP inertia to initial frequency and inertia support for a point-to-point 
HVDC link is presented. The scheme presented in [189], which is based 
on a DC voltage management strategy, regulates the active power so that 
each terminal in HVDC systems has a minimum frequency slope. The 
presented cascading control method in [190] for a four-terminal HVDC 
network demonstrates the effectiveness of a communication-less fre-
quency response mechanism. A method for the load angle synchronism 
of a synchronous machine for inertia mimicry control is emulated in 
[191]. An integrated reference controller for the control and operation 
of HVDC networks is presented in [192]. In [193], the issues with the 
possibility of exchanging primary reserves are investigated in an HVDC 
network that connects asynchronous AC networks. In [194], a distrib-
uted dynamic controller is presented for sharing both frequency oscil-
lation damping and restoration reserves of asynchronous AC systems 
connected via HVDC links. Moreover, this control strategy can optimize 
the performance of HVDC systems by minimizing the quadratic cost 
functions of voltage deviation and power generation. 

Compared to the conventional two-level VSCs, the MMC needs more 
complicated internal controllers to properly control the system dy-
namics. Additionally, the internal energy storage of the MMC may 
provide a potentially enhanced capability to stabilize the AC systems as 
well as the DC networks [180]. A dynamic controller for frequency 
control and restoration of asynchronously connected networks via 
HVDC networks is presented [194], which uses only local information to 
tune the controller and adjust the DC voltage in HVDC systems. 

Table 5 
Technical aspects related to large-disturbance angle stability and HVDC link  

Presented 
Methods 

Test Systems Tuning 
Methods 

Advantages Non-Analyzed 
Topics 

[154] 
MMC and VSC- 
HVDC models 

No • Model 
complexity with a 
significant impact 
on transient 
stability •
Comparing the 
transient stability 
dynamics of 
various mixed AC- 
DC models with 
different 
generators and 
VSC-HVDC 
models. 

Not properly 
defining the 
parameters of 
the controllers 

[156] 
A two-area 
four-machine 
power system 
without an 
HVDC link 

No Improving 
transient stability 
of HVDC links 
generally by 
increasing the 
critical clearing 
time 

Reducing 
transient 
stability 
through 
inappropriate 
handling of 
current limits 
of VSC by 
reducing either 
active or 
reactive power 

[159] The future 
Northwestern 
European 
power systems 

No Providing several 
important 
sensitivities, such 
as FRT 
implementation, 
the post-fault 
active power- 
recovery rates, the 
AC network 
dynamic 
characteristics, 
and the HVDC 
topology 

Not delivering 
continuous 
active power to 
the system 
during the fault 
condition 

[161] 
MMC and VSC- 
HVDC models 

No Investigating the 
dynamic behavior 
of PLL on system 
stability 

• Longer time 
required for 
nonlinear 
simulation •
Providing less 
information 
about stability 
and oscillations 
of the system 
observed in the 
time-domain 
responses 

[165] 
A synchronous 
generator, an 
MMC-VSC 
system, and 
Thévenin 
equivalents of 
large power 
systems 

No • Improving 
transient stability 
improvement by 
using a VSC with 
fast AC voltage 
control • Using 
the critical fault 
clearing time as 
the indicator of 
the stability of 
power systems 

Disregarding 
different 
reactive power 
injections for 
reactive power 
control modes 

[171] 
A VSC-HVDC 
system 
connected to a 
synchronous 
generator 

No Improving the 
transient stability 
by supplementary 
active power 
controller 

Analyzing the 
performance of 
the presented 
method in a 
simple system 

[173] Great Britain 
system 

No Providing 
coordinated 
control action 
without limiting 
pre-fault transfer 
levels 

A lack of 
testing the 
presented 
method in real 
power systems 

(continued on next page) 
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Controller interactions at a higher frequency range (100-1000 Hz) 
are challenges due to the increasing number of power electronics-based 
devices [195,196]. It is shown in [196] that resonances in the control 
system can lead to instability of HVDC systems. The impacts of con-
trollers and their bandwidth on the system stability are investigated in 
[197], and it is shown that MMC-HVDC systems have much more 
complex internal dynamics. Similarly, in [198], the impacts of the ratio 
between the bandwidths of the interconnected areas are assessed by 
analyzing the Sub-Synchronous Oscillations (SSOs) and harmonic reso-
nance in the interconnection of a WPP and VSC-HVDC systems. 

In [199], by retuning the control parameters and using an artificial 
bus for converter-grid synchronization, the dynamic stability of HVDC 
systems of VSC-HVDC systems is improved. Time domain simulations 
with Electromagnetic Transient Analysis (EMT) for evaluating the har-
monics based on HVDC-MMC links are presented in [200]. In addition, 
the harmonic analysis of a system with an MMC-HVDC link connected to 
AC grids is presented in [19]. It is shown in [201] that operation in less 
wind conditions can cause instability of HVDC systems. A state-space 
method in [202] is presented to evaluate the interaction between a 
network with a simple structure and MMC-HVDC links. It is observed 
that the weak internal state of MMC can be a source of instability [202]. 
One method for evaluating stability in HVDC systems is the impedance 
analysis method. The impact of VSC-HVDC systems on the 
sub-synchronous damping characteristics of a nearby synchronous 
generator is assessed in [203] and the power synchronization control 
strategy instead of the conventional vector control is applied to 
VSC-HVDC systems. According to field experiences, it is noticed that 
SSOs mainly occur in direct-drive wind farms with VSC-HVDC systems. 
In [204], a dynamic mathematical model of direct-drive wind farms 
with VSC-HVDC systems is developed in which the characteristics of 
SSOs are analyzed through the eigenvalue method. It is also reported 
that by considering the participation factor, SSOs should be affected by 
the grid-side converter controller of wind turbine units, VSC-HVDC 
rectifier controller, and also the system parameters. 

Table 6 shows the major characteristics of the aforementioned 
methods, which are based on frequency stability. 

5. Recommendations for future research 

As mentioned earlier, challenges associated with stability and con-
trol are among the major issues in developing HVDC grids alongside 
conventional AC power systems. The main discussion about stability and 
control strategies can be summarized as follows: 

• Most case studies are small-scale experimental testbeds and/or pro-
totypes under laboratory conditions.  

• Since HVDC grids are overlaid on conventional AC power systems, 
the dynamics of AC systems must also be considered in stability 
determination and improvement.  

• Due to the use of multiple MMCs in power systems, it is necessary to 
consider the internal dynamics of MMCs and DC networks in the 
design of the controllers.  

• Due to the existence of multiple droop controllers in HVDC grids, it is 
required to further investigate the issues related to the simultaneous 
improvement of DC voltage oscillations and network power. 

Table 5 (continued ) 

Presented 
Methods 

Test Systems Tuning 
Methods 

Advantages Non-Analyzed 
Topics 

[175] Nordic32 test 
system 

No Power oscillation 
damping of an AC 
system by active 
power injection 

Disregarding 
the interactions 
in the control 
loop and effects 
on the 
performance of 
controllers  

Table 6 
Comparison among methods for frequency stability of HVDC grids  

Presented 
Methods 

Test Systems Tuning 
Methods 

Advantages Non-Analyzed 
Topics 

[191] CIGRE test 
system 

No Adding inertia 
mimicry 
capability to a 
VSC-HVDC 
converter station 
in an HVDC grid 
connected to a 
weak AC or 
islanded grid 

A lack of 
providing 
complete 
demonstration of 
transient analysis 
and experimental 
validation in the 
presence of 
network 
frequency 
changes 

[192] CIGRE test 
system 

No Introducing the 
concept of 
inertial sharing 
for control and 
operation of 
HVDC networks 

Providing 
simplified and 
linearized models 
for power 
systems 
components 

[194] IEEE 14-bus 
networks 
connected 
through a six- 
terminal 
HVDC system 

Yes Allocation of 
dynamic 
controllers for 
sharing both 
frequency 
oscillation 
damping and 
restoration 
reserves of 
asynchronous 
AC systems 
connected 
through a multi- 
terminal HVDC 
grid 

A lack of detailed 
theoretical 
analysis 

[196] 
Multi-infeed 
HVDC system 
with two 
power 
converters 

No • Investigation 
of instability due 
to an increase in 
the control 
bandwidth •
Considering 
higher 
frequency 
dynamics 

A lack of 
analyzing 
instability when 
the VSC control 
bandwidth is 
close to the 
frequencies of the 
high-frequency 
oscillation modes 
of AC power 
systems 

[197] 
An offshore 
wind farm 
based on two- 
level full- 
power back-to- 
back 
converters and 
an MMC HVDC 
system 
comprises 
converter 
transformer, 
submarine DC 
cables, wind 
farm side of 
MMC, and grid 
side of MMC 

No • Prediction of 
possible 
instabilities of 
interconnected 
systems through 
Nyquist 
diagrams •
Investigation of 
MMC circulating 
current control 
in the stability of 
interconnected 
systems 

• Disregarding 
arm current and 
insertion indices, 
including 
significant 
second 
harmonics due to 
circulating 
current in the 
developed 
models •
Disregarding the 
type of 
synchronization 
with the AC 
network using a 
PLL or other 
methods 

[198] 
HVDC systems 
consisting of 
converter 
transformers, 
offshore HVDC 
rectifiers, 
submarine DC 
cables, and 
onshore HVDC 
inverters 

No Providing a 
small-signal 
impedance 
model and 
stability analysis 
based on a 
series-parallel 
structure for 
HVDC systems 
seen from the DC 
terminal 

Requiring a 
detailed 
modeling of the 
power electronics 
converter’s 
control system to 
derive the 
analytical model 
of the 
impedances 

(continued on next page) 
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6. Conclusions 

This paper discusses VSC-based HVDC grids stability issues in a 
systematic approach and presents various control strategies to improve 
the stability of VSC-based HVDC grids. Critical factors affecting the 
stability and challenges related to the control of VSC-based HVDC grids 
are investigated and reported. The approaches to enhance the stability of 
VSC-based HVDC grids in several fundamental categories, including 

voltage stability, angle stability (under small and large disturbances), 
and frequency stability, are systematically and comprehensively inves-
tigated. Moreover, the importance and superiority of each method are 
discussed, and a classification of various control methods to enhance 
control of VSC-based HVDC grids is provided. 
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MMC station 
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to control 
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AC network 
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exists only in 
normal operating 
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time period 
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damping of 
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harmonic modes 
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purpose by 
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circulating 
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suppression 
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presented 
method 
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dynamics of 
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which leads to 
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model analogous 
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level VSC system 
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controller 
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performance in 
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connection 
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presented 
method  
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