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Chapter 1

Effective Forces

The properties of homogeneous nuclear and neutron matter at high densi-
ties play a crucial role in the determination of the structure of neutron star
interiors [1, 2, 3]. Terrestrial nuclei do not provide enough information to
constrain an equation of state (EoS) under the extreme conditions of density
and isospin asymmetry, and also a possible spin polarization that we can find
inside neutron stars. Thus, a potentially safe way to obtain the EoS relies
on microscopic many-body calculations based on realistic nucleon-nucleon
(NN) interactions [4].

These realistic NN interactions should fulfil a minimum set of require-
ments. In particular, realistic potentials are build to reproduce the Nijmegen
database [5], which contains a full set of NN elastic scattering phase-shifts
up to energies of about 350 MeV and also to reproduce the properties of the
only two nucleon bound state: the deuteron, which is bound by 2.22 MeV in
the partial wave 3S1 − 3D1.

In principle, the realistic interactions are the apppropiate ones to be used
in the so called ab initio many-body calculations, which aim at providing a
first-principles description of the EoS of symmetric nuclear matter and neu-
tron matter.

The NN interactions fulfilling these minimum requirements have a no-
torious complexity and depend on the spin and isospin degrees of freedom
of the NN system. In particular, the tensor dependence, which is the direct
responsible of the coupling between the 3S1 and 3D1 partial waves in the
deuteron, increases the complexity of the problem.

Several many-body techniques have been developed to deal with these
realistic interactions. Due to the strong repulsion present in any realistic in-
teraction, they require the use of correlated wave functions or the sum of infi-
nite perturbative diagrams (ladder diagrams) [6]. The large complexity of the
calculations and the NN interactions themselves make very convenient the
use of effective NN interactions, which are commonly implemented in the
Hartree-Fock approximation and, therefore, easier to treat. Although effec-
tive forces have successfully been used in both finite nuclei and nuclear mat-
ter, they do not reproduce the phase-shifts nor the properties of the deuteron.

By construction, most of the effective forces used in the literature are well
behaved around the saturation density of nuclear matter and for moderate
isospin asymmetries. In general, these effective interactions depend on a set
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of parameters that are determined by reproducing basic properties of sym-
metric nuclear matter as the saturation density ρ0, the binding energy e0(ρ0),
the incompressibility modulus κ(ρ0) and the symmetry energy esym(ρ0) to-
gether with the binding energy of some double magic nuclei [7].

Once a parametrization is determined, one can, for instance, study nuclei
and nuclear matter under conditions far from those used to define the force,
in quite a simple way. When doing so, however, one must always keep in
mind the particular limitations of the parametrization that has been using.

In this work, we will use two types of effective interactions: the Skyrme
interaction [8, 9], that has a zero-range character and a simple spin-isospin
dependence, and the Gogny interaction [10], which besides a zero-range term
has finite-range terms of Gaussian shape along with a spin-isospin depen-
dence.

The main objective will be to build the Hartree-Fock framework to calcu-
late single-particle potentials and total energy per particle of polarized asym-
metric nuclear matter and explore the possible spin instabilities of nuclear
and neutron matter with effective forces constructed using conditions of zero
spin polarization.

1.1 The Skyrme interaction

The Skyrme forces where introduced by T. H. R. Skyrme [8] around 1950 and,
since the pioneering work of Vautherin and Brink [9], there has been an in-
tensive and successful use of Skyrme effective NN interactions [11, 12]. They
are characterized by a zero-range interaction (contact interactions) that leads
to simple analytical expressions for basic properties of nuclear matter such
as the ones we have already mentioned (binding energy, incompressibility
modulus, saturation density and symmetry energy). A Skyrme force has the
following structure:

v̂Sk(r) =t0(1 + x0P̂σ)δ(r)

+
1

6
t3(1 + x3P̂σ)[ρ(R)]γδ(r)

+
1

2
t1(1 + x1P̂σ)

[
δ(r)k′

2
+ k2δ(r)

]
+

1

2
t4(1 + x4P̂σ)

[
δ(r)ρ(R)k′

2
+ k2ρ(R)δ(r)

]
+t2(1 + x2P̂σ)k′δ(r)k + t5(1 + x5P̂σ)k′ρ(R)δ(r)k

+iW0(σ + σ′) · k′ × δ(r)k ,

(1.1)

where r = r1 − r2, R = (r1 + r2)/2, k = (∇1 −∇2)/2i is the relative mo-
mentum acting on the right and k′ is its conjugate acting on the left, P̂σ =
(1+σ ·σ′)/2 is the spin exchange operator and γ, ti and xi are the parameters
of the force. The contact terms provide the S-wave contributions while mo-
mentum dependent ones (gradient terms) give the P-wave components. The
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spin-orbit term (W0) is irrelevant for infinite nuclear and neutron matter and
we will not consider it in our calculations.

The main advantage of these forces comes from their analytical charac-
ter which makes it very useful to get a physical insight into problems where
the fully microscopic calculations are either very time-consuming or not yet
possible to implement. Notice that not all the Skyrme parameters can be
completely well determined through the fits of given sets of data and only
certain combinations related to the basic properties mentioned before are re-
ally empirically determined [13].

This leads to a scenario where, for instance, different Skyrme forces pro-
duce similar EoS for symmetric nuclear matter but very different results for
neutron matter. This is easily understood if one considers that neutron mat-
ter or, equivalently, systems with large isospin asymmetry are not part of the
common input data employed to determine the parameters of the interaction.
This feature should be corrected if Skyrme-type forces are to be used in con-
ditions of large neutron to proton ratios such as neutron matter in neutron
stars or nuclei near the drip line.

Recently, an extensive and systematic study has tested the capabilities
of almost 90 existing Skyrme parametrizations to provide good neutron-star
properties [14]. It was found that only 27 of these forces passed the restric-
tive tests imposed, the key being the behaviour (increasing) of the symmetry
energy Esym(ρ) with density. A very convenient set of Skyrme forces are the
ones provided by the Lyon group [15, 16], which also take into account vari-
ational results for neutron matter obtained with realistic interactions to fix
the parameters of the force [17]. In particular, we have chosen SLy4 for our
calculations. The parameters which define SLy4 are reported in table 1.1. The
properties of symmetric nuclear matter provided by SLy4 are shown in table
1.3.

t0 = −2488.9 MeVfm3 t1 = 486.8 MeVfm5 t2 = −546.4 MeVfm5 t3 = 13 777 MeVfm7/2

x0 = 0.83 x1 = −0.34 x2 = −1 x3 = 1.35

TABLE 1.1: Parameters of the Skyrme SLy4 interaction. Not
shown parameters are zero. γ = 1/6.

1.2 The Gogny interaction

The Gogny interaction, proposed in 1980 by D. Gogny [10], is a well known
and extensively used effective nuclear interaction. Unlike the Skyrme force,
the Gogny interaction has a build-in finite-range which brings the Gogny
force closer to a realistic interaction.
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There are about ten available Gogny parametrizations in the literatue [18,
19, 20, 21]. However, in our calculations we will only use the original D1
force proposed by D. Gogny.

A Gogny interaction has the following structure:

v̂G(r) =
2∑
i=1

(Wi +BiP̂σ −HiP̂τ −MiP̂σP̂τ )e
−r2/µ2i

+t0(1 + x0P̂σ)ργδ(r) + iWLS(σ + σ′)∇′δ(r)∇ ,

(1.2)

where P̂σ = (1 +σ ·σ′)/2 are the spin exchange operators, P̂τ = (1 + τ · τ ′)/2
are the isospin exchange operators and γ,Wi, Bi, Hi,Mi, ti, xi and µi are the
parameters of the force. Notice that ∇ acts on the right while ∇′ acts on the
left.

The finite-range part is modelled by two Gaussians with two different
ranges. The force also includes a variety of spin-isospin exchange terms pro-
viding a rich spin-isospin structure. The zero-range density-dependent term
helps at reproducing saturation and accounts for the effects of three-body
forces. As in the Skyrme case, the spin-orbit term (W(LS)) can be dropped for
infinite nuclear and neutron matter.

The parameters which define D1 are reported in table 1.2 and the proper-
ties of symmetric nuclear matter provided by D1 are shown in table 1.3.

i µi Wi Bi Hi Mi

1 0.7 -402.40 -100.00 -496.20 -23.56

2 1.2 -21.30 -11.77 37.27 -68.81

TABLE 1.2: Parameters of the Gogny force D1. t0 =
1350 MeVfm4, x0 = 1 and γ = 1/3. µi are in fm and the other,

in MeV.

ρ0[fm−3] e0(ρ0)[MeV] esym(ρ0)[MeV] κ(ρ0)[MeV]

Skyrme SLy4 0.16 -15.97 32.04 230.9

Gogny D1 0.166 -16.30 30.70 229.4

TABLE 1.3: Properties of symmetric nuclear matter provided by
the Skyrme SLy4 and Gogny D1 interactions.
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Chapter 2

Hartree-Fock Formalism

In the previous chapter, we introduced the effective forces of Skyrme and
Gogny-type that we are going to employ in this master thesis. In the present
chapter, we present the Hartree-Fock formalism used to calculate the nuclear
matter properties far away from the conditions that have been used to de-
fine the parameters of the effective forces, i.e., mainly properties of polar-
ized asymmetric nuclear matter. We will study polarized asymmetric nuclear
matter considered as an infinite nuclear system with four different fermionic
states: neutrons with spin up and spin down having densities ρn↑ and ρn↓,
and protons with spin up and spin down with densities ρp↑ and ρp↓. The total
density for neutrons (ρn), protons (ρp) and nucleons (ρ) are given by:

ρn = ρn↑ + ρn↓ , ρp = ρp↑ + ρp↓ , ρ = ρn + ρp . (2.1)

The asymmetry (β) and spin polarization (∆) can be defined as

β =
ρn − ρp

ρ
, ∆n =

ρn↑ − ρn↓
ρn

, ∆p =
ρp↑ − ρp↓

ρp
. (2.2)

Notice that β = 0 denotes symmetric nuclear matter and β = 1 denotes
neutron matter. Notice as well that ∆n = ∆p = 0 stands for non-polarized
matter (ρn↑ = ρn↓, ρp↑ = ρp↓) while ∆n = ∆p = ±1 defines totally polarized
matter (all spins are aligned along the same direction) and ∆n = −∆p =
±1 denotes anti-polarized matter (neutron spins are aligned along the same
direction while proton spins are aligned along the opposite direction).

Therefore, the single-component densities as a function of the asymmetry
and the polarization are given by:

ρτσ =
ρ

4
(1± β)(1±∆τ ) , (2.3)

where (1 + β) is for neutrons, (1 − β) is for protons, (1 + ∆τ ) is for spin up
polarization and (1 − ∆τ ) is for spin down polarization. The third isospin
component is indicated as τ , and τ = n, p stands for neutron and proton,
respectively, while the third component of the spin is indicated as σ, where
σ =↑, ↓ stands for spin-up and spin-down, respectively.
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2.1 Mean field description: Hartree-Fock

We are considering a fermionic many-body system at zero temperature under
a two-body force interaction. The Hamiltonian, in second quantization, reads

Ĥ = T̂ + V̂ =
∑
ij

〈i|t̂|j〉 a†iaj +
1

2

∑
ijkl

〈ij|v̂|kl〉 a†ia
†
jalak , (2.4)

where a†i and aj are the creation and annihilation single-particle operators
used to describe the system.

In our case, for infinite nuclear matter, the eigenfunctions are plane waves
characterized by the quantum numbers: momentum (k), spin (σ) and isospin
(τ ).

|kστ〉 =
1√
Ω
eik·rχσχτ , (2.5)

where χσ and χτ for σ, τ = +1
2
,−1

2
are the Pauli-spinors

χ+ 1
2

=

(
1
0

)
, χ− 1

2
=

(
0
1

)
, (2.6)

respectively. The states |kστ〉 are normalized to volume:

〈kστ |k′σ′τ ′〉 = δkk′δσσ′δττ ′ . (2.7)

At the end of the calculations we take the thermodynamic limit, Ω → ∞
and N → ∞, keeping the density defined by the ratio N/Ω constant, with N
being the number of particles and Ω being the volume.

The solution of the Hartree-Fock equations for an infinite system is di-
rectly provided by the plane waves. Therefore, the ground state wave func-
tion in the Hartree-Fock approximation is defined as the Slater determinant
with all the single-particle levels occupied up to the Fermi level. In this case,
the Hartree-Fock energy per particle coincides with the expectation value of
the Hamiltonian in the free Fermi sea wave function, ΨFS :

e =
E

N
=

1

N

[
〈ΨFS|T̂ |ΨFS〉+ 〈ΨFS|V̂ |ΨFS〉

]
=

1

N

∑
kστ

〈kστ |t̂|kστ〉+
1

2N

∑
kk′σσ′ττ ′

〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉A .
(2.8)

Notice that the kinetic energy 〈kστ |t̂|kστ〉 = ~2k2
2m

is diagonal in this basis
and the interaction energy is defined as the sum of all antisymmetrized two-
body matrix elements which can be constructed with the pairs of particles.
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In the Hartree-Fock approximation, the single-particle energy of a nu-
cleon of momentum k is

εστ (k) =
~2k2

2mτ

+ Uστ (k) , (2.9)

where Uστ (k) is the single-particle potential representing the mean field felt
by the nucleon of momentum k with spin σ and isospin τ due to the interac-
tion with all the other nucleons in the system,

Uστ (k) =
∑
σ′τ ′

∑
k′≤k′

Fσ′τ ′

〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉A , (2.10)

being k′Fσ′τ ′ the Fermi momentum of each nucleon species. Notice that the
antisymmetrized two-body matrix elements can be defined in the following
way:

〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉A = 〈kστ,k′σ′τ ′|v̂Â|kστ,k′σ′τ ′〉 (2.11)

where Â = (1− P̂rP̂σP̂τ ) is the antisymmetry operator and P̂r, P̂σ and P̂τ are
the position, spin and isospin exchange operators, respectively,

P̂σ |σσ′〉 = |σ′σ〉 , P̂τ |ττ ′〉 = |τ ′τ〉 . (2.12)

Instead of working with the third component of the spin and the isospin,
we can also characterize the two-body states by the total spin S and isospin
T and their third components MS and MT . At the same time, we also use
the center of mass system by defining KCM = (k + k′)/2 and the relative
momentum kr = k− k′. Then, P̂r, P̂σ and P̂τ operators act as follows:

P̂r |KCM ,kr〉 = |KCM ,−kr〉 ,
P̂σ |SMS〉 = (−1)S+1 |SMS〉 ,
P̂τ |TMT 〉 = (−1)T+1 |TMT 〉 .

(2.13)

Before going into the calculation of the energy contributions, let us com-
pute the number of particles, given by:

N =
∑
στ

∑
k≤kFστ

1 =
∑
στ

Ω

(2π)3

∫
d3k θ(kFστ − k) =

∑
στ

ΩkFστ
3

6π2
, (2.14)

where we took the prescription∑
k

−→ Ω

(2π3)

∫
d3k (2.15)
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in order to perform the sum over momentum. Now, we can relate the Fermi
momentum and the density of each species.

ρστ =
kFστ

3

6π2
, kFστ =

(
6π2ρστ

)1/3
. (2.16)

Notice that in the Hartree-Fock approximation only the diagonal matrix
elements are used.

2.2 Two-body matrix elements

In the next step we should calculate the antisymmetrized two-body matrix
elements which we decomposed in a direct and an exchange term:

• Direct term:

〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉 =

=

∫ ∫
d3r1 d3r2

1√
Ω
e−ik·r1

1√
Ω
e−ik

′·r2 v̂(r1 − r2)

× 1√
Ω
eik·r1

1√
Ω
eik
′·r2 〈σσ′|Ôσ|σσ′〉 〈ττ ′|Ôτ |ττ ′〉

=
1

Ω2

∫ ∫
d3r1 d3r2 v̂(r1 − r2) 〈σσ′|Ôσ|σσ′〉 〈ττ ′|Ôτ |ττ ′〉 .

(2.17)

• Exchange term:

〈kστ,k′σ′τ ′|v̂|k′σ′τ ′,kστ〉 =

=

∫ ∫
d3r1 d3r2

1√
Ω
e−ik·r1

1√
Ω
e−ik

′·r2 v̂(r1 − r2)

× 1√
Ω
eik
′·r1 1√

Ω
eik·r2 〈σσ′|Ôσ|σ′σ〉 〈ττ ′|Ôτ |τ ′τ〉

=
1

Ω2

∫ ∫
d3r1 d3r2 v̂(r1 − r2)e−ik·(r1−r2)eik

′·(r1−r2) 〈σσ′|Ôσ|σ′σ〉 〈ττ ′|Ôτ |τ ′τ〉 .

(2.18)
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In the case of the Skyrme interaction, the antisymmetrized two-body ma-
trix elements can be written as

〈kστ,k′σ′τ ′|v̂Sk(r)|kστ,k′σ′τ ′〉A =

=
1

Ω

[
t0 +

1

6
t3ρ

γ +
1

4
(k− k′)2(t1 + t2)

+

{
t0x0 +

1

6
t3x3ρ

γ +
1

4
(k− k′)2(t1x1 + t2x2)

}
δσσ′

−
{
t0 +

1

6
t3ρ

γ +
1

4
(k− k′)2(t1 − t2)

}
δσσ′δττ ′

−
{
t0x0 +

1

6
t3x3ρ

γ +
1

4
(k− k′)2(t1x1 − t2x2)

}
δττ ′

]
,

(2.19)

while for the Gogny interaction we have

〈k1s1τ1, k2s2τ2|v̂G(r)|k1s1τ1, k2s2τ2〉A =

=
1

Ω
ργt0[(1− δs1s2δτ1τ2) + x0(δs1s2 − δτ1τ2)]

+
1

Ω
π3/2

∑
i

µ3
i

×
[
Wi

(
1− δs1s2δτ1τ2e−

µ2i
4
|q|2
)

+Bi

(
δs1s2 − δτ1τ2e−

µ2i
4
|q|2
)

−Hi

(
δτ1τ2 − δs1s2e−

µ2i
4
|q|2
)
−Mi

(
δs1s2δτ1τ2 − e−

µ2i
4
|q|2
)]

,

(2.20)

where q = k− k′.
In Fig. 2.1 we present the matrix elements of the Skyrme SLy4 (letf) and

Gogny D1 (right) interactions times volume as functions of the momentum k′

at saturation density ρ0 = 0.16 fm−3 with k = 0 fm−1. Notice that Eqs. (2.19)
and (2.20) are symmetric under the exchange of k and k′.

The Skyrme SLy4 diagonal matrix elements where nucleons have the same
third spin component (σ = σ′) and the same isospin third component (τ = τ ′)
are set to zero in the SLy4 parametrization. Otherwise, all the Gogny D1 ma-
trix elements are different than zero, although the ones with the same third
spin and isospin component are almost null.
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FIGURE 2.1: Matrix elements of the Skyrme SLy4 (letf) and
Gogny D1 (right) interactions times volume as functions of
the momentum k′ at saturation density ρ0 = 0.16 fm−3 with

k = 0 fm−1.
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Chapter 3

Energy Contributions

After presenting the two families of effective forces (Skyrme and Gogny) con-
sidered in Chapter 1, and with the framework developed in Chapter 2, in this
chapter we present the calculations of the total energy of polarized asymme-
tric nuclear matter and the single-particle potential that feels a nucleon with
momentum k and a given third component of the spin (σ) and isospin (τ ) due
to the interaction with the other nucleons.

We calculate first the single-particle potential followed by the calculation
of the kinetic and potential energies, which define the total energy of the sys-
tem. The calculation of the potential energy is performed by summing all
the two-body matrix elements. After that, we present an alternative calcula-
tion for the potential energy using the Slater functions, which is equivalent
to the calculation of the distribution function of the free Fermi sea. Finally,
we calculate the isospin and spin symmetry energies.

3.1 Single-Particle Potential

The single-particle potential, defined in Eq. (2.10), is

Uστ (k) =
∑
σ′τ ′

∑
k′≤k′

Fσ′τ ′

〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉A . (3.1)

In the case of the Skyrme interaction, the single-particle potential for a given
σ and τ , calculated using Eq. (2.19) and Eq. (3.1), has the following expres-
sion:

USk
στ (k) =

∑
σ′τ ′

{[
t0 +

1

6
t3ρ

γ +
1

4

(
k2 +

3

5
k′Fσ′τ ′

2

)
(t1 + t2)

]
ρσ′τ ′

+

[
t0x0 +

1

6
t3x3ρ

γ +
1

4

(
k2 +

3

5
k′Fσ′τ ′

2

)
(t1x1 + t2x2)

]
ρσ′τ ′δσσ′

−
[
t0 +

1

6
t3ρ

γ +
1

4

(
k2 +

3

5
k′Fσ′τ ′

2

)
(t1 − t2)

]
ρσ′τ ′δσσ′δττ ′

−
[
t0x0 +

1

6
t3x3ρ

γ +
1

4

(
k2 +

3

5
k′Fσ′τ ′

2

)
(t1x1 − t2x2)

]
ρσ′τ ′δττ ′

}
,

(3.2)
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being k′Fσ′τ ′ the Fermi momentum for the σ′τ ′ component, Eq. (2.16). Notice
that the single-particle spectrum is parabolic in k and, therefore, the effective
mass is momentum independent.

For the Gogny force, the single-particle potential for a given στ , calculated
using Eq. (2.20) and Eq. (3.1), reads

UG
στ (k) =

∑
σ′τ ′

{
ργt0[(1− δσσ′δττ ′) + x0(δσσ′ − δττ ′)]ρσ′τ ′

+ π3/2
∑
i

µ3
i [Wi +Biδσσ′ −Hiδττ ′ −Miδσσ′δττ

′]ρσ′τ ′

− 1√
π

∑
i

[Wiδσσ′δττ ′ +Biδττ ′ −Hiδσσ′ −Mi]

×
[

1

µik

(
e−q

2
+ − e−q2−

)
+

√
π

2
erf(q−, q+)

]}
,

(3.3)

where q± = µi
2

(k ± k′Fσ′τ ′) and erf(a, b) = 2√
π

∫ b
a

dx e−x
2 is the error function.

Notice that the last term of the previous equation should be carefully com-
puted when k = 0. In this case UG

στ (k = 0) reads

UG
στ (0) =

∑
σ′τ ′

{
ργt0[(1− δσσ′δττ ′) + x0(δσσ′ − δττ ′)]ρσ′τ ′

+ π3/2
∑
i

µ3
i [Wi +Biδσσ′ −Hiδττ ′ −Miδσσ′δττ

′]ρσ′τ ′

− 1√
π

∑
i

[Wiδσσ′δττ ′ +Biδττ ′ −Hiδσσ′ −Mi]

×
[√

π erf

(
µik
′
Fσ′τ ′

2

)
− µik′Fσ′τ ′e−

µi
4
k′
Fσ′τ ′

]}
.

(3.4)

In Figs. 3.1 and 3.2, we show the results of the single-particle potential for
the Skyrme SLy4 interaction and the Gogny D1 interaction, respectively. Both
figures show the neutron (Un↑(k) , Un↓(k)) (upper panels) and proton (Up↑(k),
Up↓(k)) (lower panels) single-particle potentials for different asymmetries (β)
and spin polarizations (∆n,∆p) at saturation density ρ0 = 0.16 fm−3. The
results for symmetric nuclear matter (β = 0) are shown in the left and central
columns, whereas the results for asymmetric nuclear matter with β = 0.5
are shown in the right column. Solid black lines show the results of non-
polarized matter (∆n = ∆p = 0) as a reference. Dotted red and green lines
show the results of spin-polarized matter.

The main difference between the Skyrme SLy4 and the Gogny D1 inter-
actions is that the single-particle potential for the Skyrme SLy4 interaction
shows a parabolic behaviour with k, see Eq. (3.2), whereas the single-particle
potential for the Gogny D1 interaction does not show a global parabolic be-
haviour in the full range of k, see Eq. (3.3), showing a saturation behaviour
for large values of k. This effect is caused because the Skyrme interaction is a
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FIGURE 3.1: Skyrme SLy4 interaction single-particle potentials.
Upper panels show the neutron single-particle potentials and
lower panels show the proton single-particle potentials as a
function of momentum k for different asymmetries and spin
polarizations at saturation density of symmetric nuclear matter
ρ0 = 0.16 fm−3. Left and central panels show results for sym-
metric nuclear matter whereas right panels shows results for
asymmetric matter. Solid black lines show the results for non-
polarized matter (∆n = ∆p = 0) as a reference, whereas dotted
red and green lines show the results for spin-polarized matter.
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Gogny D1
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FIGURE 3.2: Gogny D1 interaction single-particle potentials.
Upper panels show the neutron single-particle potentials and
lower panels show the proton single-particle potentials as a
function of momentum k for different asymmetries and spin
polarizations at saturation density of symmetric nuclear matter
ρ0 = 0.16 fm−3. Left and central panels show results for sym-
metric nuclear matter whereas right panels shows results for
asymmetric matter. Solid black lines show the results for non-
polarized matter (∆n = ∆p = 0) as a reference, whereas dotted
red and green lines show the results for spin-polarized matter.



3.2. Kinetic and Potential Energies 15

zero-range force while the Gogny interaction has a finite-range. Notice that
the saturation behaviour of the single-particle potential for the Gogny inter-
action for large k is a consequence of the fact that the exchange term of the
interaction goes to zero. Thus, the contribution for large k is provided by the
direct term, which has no momentum dependence.

One can point out that for non-polarized asymmetric nuclear matter the
single-particle spectrum for protons becomes more attractive than the one
for neutrons. This is true for both the Skyrme SLy4 and the Gogny D1 inter-
actions. It can be seen by comparing the solid black lines of the upper and
lower right column panels of both previous figures.

Concerning the dependence of the single-particle potentials of the species
with the spin-polarization, we observe an opposite behaviour for the polar-
ized neutrons. In fact, the single-particle potential of the less abundant com-
ponent (n ↓) becomes more attractive than that of the most abundant com-
ponent (n ↑) in the case of the Gogny D1 interaction. The opposite is true for
the Skyrme SLy4 interaction. For the proton single-particle spectrum, we ob-
serve a similar behaviour for both forces, being, in general, the less abundant
component (p ↓) more attractive, for both interactions.

3.2 Kinetic and Potential Energies

We have already calculated the single-particle spectrum of the different species
for different spin polarizations and isospin asymmetries. The next step will
be to calculate the kinetic and the potential energy contributions to the total
energy.

The kinetic energy per particle1, in a fermionic system composed by dif-
ferent species, is the following:

1

N
〈Ψ|T̂ |Ψ〉 =

1

N

∑
στ

∑
k<kFστ

〈kστ |k̂|kστ〉 =
3

5

~2

2mn

(k2
Fn↑ + k2

Fn↓) +
3

5

~2

2mp

(k2
Fp↑ + k2

Fp↓)

=
~2

2mn

1

ρ
(ξn↑ + ξn↓) +

~2

2mp

1

ρ
(ξp↑ + ξp↓) ,

(3.5)

where ξτσ are related to the average kinetic energy of the Fermi model of
nuclear matter [22],

ξτσ =
3

5
k2
Fστρτσ =

3

5
(6π2ρτσ)2/3ρτσ

=
3

20

(
3

2
π2ρ

)2/3

ρ(1± β)5/3(1±∆τ )
5/3 .

(3.6)

1The kinetic energy per particle as a function of the total density ρ, isospin asymmetry β
and neutron and proton spin polarizations ∆n and ∆p is provided in the Eq. (A.10)
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The potential energy per particle can be calculated by performing the sum
over the spin and isospin components and the momentum k up to the Fermi
momentum kFστ of the single-particle potential of nucleons with momentum
k spin σ and isospin τ :

1

N
〈ΨFS|V̂ |ΨFS〉 =

1

2N

∑
στ

∑
k≤kFστ

Uστ (k) . (3.7)

Equivalently, using Eq.(3.1), the previous expression can be written as

〈V 〉
N

=
1

2N

∑
σσ′ττ ′

Ω2

(2π)6

∫
kFστ

∫
k′
Fσ′τ ′

d3k d3k′ 〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉A ,

(3.8)
where the integrals over momentum can be expressed in terms of a function
Φ(k,k′) with a k, k′ dependence, can be found in the appendix A.1 for both
the Skyrme and Gogny interactions.

I[Φ(k,k′); kFστ , k
′
Fσ′τ ′ ] ≡

1

2N

Ω2

(2π)6

∫
kFστ

∫
k′
Fσ′τ ′

d3k d3k′Φ(k,k′) . (3.9)

For the Skyrme interaction, the potential energy per particle2 reads〈
V Sk
〉

N
=

1

4ρ
[2t2(1 + x2)][ξn↑ρn↑ + ξn↓ρn↓ + ξp↑ρp↑ + ξp↓ρp↓]

+
1

4ρ
[t1(1− x1) + t2(1 + x2)][ξn↑ρn↓ + ξn↓ρn↑ + ξp↑ρp↓ + ξp↓ρp↑]

+
1

4ρ
[t1(1 + x1) + t2(1 + x2)][ξn↑ρp↑ + ξn↓ρp↓ + ξp↑ρn↑ + ξp↓ρn↓]

+
1

4ρ
[t1 + t2][ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑]

+
1

ρ

[
t0 +

1

6
t3ρ

γ

]
ρnρp +

1

ρ

[
t0x0 +

1

6
t3x3ρ

γ

]
[ρn↑ρp↑ + ρn↓ρp↓]

+
1

ρ

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
[ρn↑ρn↓ + ρp↑ρp↓] ,

(3.10)

2The Skyrme potential energy per particle as a function of the total density ρ, isospin
asymmetry β and neutron and proton spin polarizations ∆n and ∆p is provided in the
Eq. (A.11)
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while the potential energy per particle for the Gogny interaction reads〈
V G
〉

N
= ργ−1t0(1− x0)(ρn↑ρn↓ + ρp↑ρp↓) + ργ−1t0ρnρp + ργ−1t0x0(ρn↑ρp↑ + ρn↓ρp↓)

+
π3/2

2ρ

∑
i

µ3
i

[
Wiρ

2 +Bi

[
(ρn↑ + ρp↑)

2 + (ρn↓ + ρp↓)
2
]

−Hi(ρ
2
n + ρ2

p)−Mi(ρ
2
n↑ + ρ2

n↓ + ρ2
p↑ + ρ2

p↓)

]
− 1

4ρ
√
π

∑
i

[
(Wi +Bi −Hi −Mi)

(
gi(kFn↑, kFn↑) + gi(kFn↓, kFn↓)

+ gi(kFp↑, kFp↑) + gi(kFp↓, kFp↓)
)

+ (Bi −Mi)
(
gi(kFn↑, kFn↓) + gi(kFn↓, kFn↑)

+ gi(kFp↑, kFp↓) + gi(kFp↓, kFp↑)
)

− (Hi +Mi)
(
gi(kFn↑, kFp↑) + gi(kFn↓, kFp↓)

+ gi(kFp↑, kFn↑) + gi(kFp↓, kFn↓)
)

−Mi

(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑)

+ gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)
)]

,

(3.11)

where

gi(kFστ , k
′
Fσ′τ ′) =

1

3π2µ3
i

[(
µ2
i k

2
Fστ − µikFστµik′Fσ′τ ′ + µ2

i k
′2
Fσ′τ ′ − 2

)
e−

µ2i
4

(kFστ+k′
Fσ′τ ′ )

2

−
(
µ2
i k

2
Fστ + µikFστµik

′
Fσ′τ ′ + µ2

i k
′2
Fσ′τ ′ − 2

)
e−

µ2i
4

(kFστ−k′Fσ′τ ′ )
2

−
√
πµ3

i

2

(
k3
Fστ − k′3Fσ′τ ′

)
erf
(µi

2
(kFστ − k′Fσ′τ ′)

)
+

√
πµ3

i

2

(
k3
Fστ + k′3Fσ′τ ′

)
erf
(µi

2
(kFστ + k′Fσ′τ ′)

)]
.

(3.12)

Notice that gi(kFστ , 0) = gi(0, k
′
Fσ′τ ′) = gi(0, 0) = 0.

In Fig. 3.3 we show the kinetic energy (upper row) and the potential en-
ergy per particle for the Skyrme SLy4 interaction (middle row) and for the
Gogny D1 interaction (lower row) for non-polarized (∆n = ∆p = 0), totally
polarized (∆n = ∆p = ±1) and anti-polarized (∆n = −∆p = ±1) nuclear mat-
ter. The case of symmetric nuclear matter (β = 0) is shown in the left column,
asymmetric nuclear matter with β = 0.5 is shown in the central column and
neutron matter (β = 1) is presented in the right column.

First of all, we observe that the kinetic energy increases with the isospin
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FIGURE 3.3: Kinetic (upper row) and potential (middle and
lower row) energy per particle for the Skyrme SLy4 interac-
tion (middle row) and for the Gogny D1 interaction (lower
row) as functions of the total density for symmetric nuclear
matter (left column), asymmetric nuclear matter (central col-
umn) and neutron matter (right column) and non-polarized
(∆n = ∆p = 0), totally polarized (∆n = ∆p = ±1) and anti-

polarized (∆n = −∆p = ±1) nuclear matter.
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FIGURE 3.4: Gogny D1 potential energy per particle of non-
polarized matter as a function of the total density for diffetent

isospin asymmetry values.

asymmetry regardless of the spin polarization of the system. However, this
statement is not true for the potential energy, for neither the Skyrme SLy4 nor
the Gogny D1 interactions.

For the Skyrme SLy4, the potential energy of non-polarized and anti-
polarized matter becomes more repulsive as the isospin asymmetry increases,
whereas the potential energy of totally polarized matter becomes more at-
tractive. Similarly, the Gogny D1 potential energy of anti-polarized matter
becomes more repulsive as the isospin asymmetry increases and the oppo-
site happens to the potential energy of totally polarized matter.

It is worth to point out the behaviour of the potential energy of non-
polarized matter with the Gogny D1 interaction, showed in Fig. 3.4. There is
a density value around ρ ∼ 0.365 fm−3 at which the potential energy per par-
ticle is almost independent of the isospin asymmetry. Therefore, the potential
energy for non-polarized matter becomes more repulsive for density values
ρ ≤ 0.365 fm−3 and becomes more attractive for density values ρ ≥ 0.365 fm−3

as the isospin asymmetry increases.
Let us now analyse the kinetic energy dependence on the spin polariza-

tion. We observe that the kinetic energy of non-polarized matter is smaller
than that of totally and anti-polarized matter for any isospin asymmetry. This
is a direct consequence of the Fermi character of the nucleon.

In a similar way, the potential energy of non-polarized matter is more
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attractive than that of the fully polarized one, except for the Skyrme SLy4 po-
tential energy of neutron matter, which presents a potential energy-crossing
at ρ ∼ 0.46 fm−3, which lies outside of the figure.

For the Skyrme SLy4 interaction, the potential energy of anti-polarized
matter is the most repulsive one at low densities and the most attractive one
at large densities. In the case of the Gogny D1 interaction, the potential en-
ergy of anti-polarized matter is the most repulsive one up to a centain den-
sity. However, for large density values, the potential energy of fully polarized
matter becomes the most repulsive one.

Notice that the potential energy of totally polarized neutron matter for
the Skyrme SLy4 is zero, and it is almost zero for the Gogny D1 interaction
(see Sec. 2.2). Thus, totally polarized neutron matter can be approximated to
a free Fermi gas.

3.2.1 Potential Energy using the Slater Function

In many realistic situations, the interaction potential v̂(r1 − r2) only depends
on the spatial coordinates. Then, it can be useful to perform the integration
over momentum before the integration over the spatial coordinates to calcu-
late the potential energy. This procedure is described below:

1

N
〈ΨFS|V̂ |ΨFS〉 =

=
1

2N

∑
σσ′ττ ′

Ω2

(2π)6

∫
kFστ

∫
kFσ′τ ′

d3k d3k′ 〈kστ,k′σ′τ ′|v̂(r1 − r2)ÔσÔτ |kστ,k′σ′τ ′〉A

=
1

2N

1

(2π)6

∫
d3r1

∫
d3r2 v̂(r1 − r2)

∑
σσ′ττ ′

∫
kFστ

∫
kFσ′τ ′

d3k d3k′

×
[
〈σσ′|Ôσ|σσ′〉 〈ττ ′|Ôτ |ττ ′〉 − e−ik·(r1−r2)eik

′·(r1−r2) 〈σσ′|ÔσP̂σ|σσ′〉 〈ττ ′|Ôτ P̂τ |ττ ′〉
]
.

(3.13)

Using now ∫
kFστ

d3k = (2π)3ρστ ,∫
kFστ

d3k eik
′·r = (2π)3ρστ`(kFστr) ,

(3.14)

where νσ and ντ are the spin and the isospin degeneracy, r = r1 − r2 is the
relative coordinate and `(kF r) is the so called Slater function,

`(kF r) =
3j1(kF r)

kF r
, j1(kF r) =

sin(kF r)

(kF r)2
− cos(kF r)

kF r
. (3.15)
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In the case of symmetric nuclear matter, one arrives to the following expres-
sion,

1

N
〈ΨFS|V̂ |ΨFS〉 =

ρ

2

1

ν2
σν

2
τ

∫
d3r v̂(r)

×
∑
σσ′ττ ′

[
〈σσ′|Ôσ|σσ′〉 〈ττ ′|Ôτ |ττ ′〉 − 〈σσ′|ÔσP̂σ|σσ′〉 〈ττ ′|Ôτ P̂τ |ττ ′〉 `2(kF r)

]
,

(3.16)

which simplifies the calculation of the potential energy per particle to one
integral over the relative coordinate and the corresponding traces and/or
operators expected value.

We use this method as a check for our previous calculations on the Gogny
interaction since it only depends on the relative coordinate, contrary to the
Skyrme interaction which also has a momentum dependence. The resul-
ting expressions from Eq. (3.16) for non-polarized, totally polarized and anti-
polarized nuclear matter together with non-polarized and totally polarized
neutron matter are reported in the appendix A.3.

In Fig. 3.5 we compare the calculations for the potential energy per parti-
cle integrating first over the momentum space (symbols) and the coordinates
space (solid lines) for the potential energy per particle of non-polarized, to-
tally polarized and anti-polarized nuclear matter and non-polarized and to-
tally polarized neutron matter for the Gogny D1 interaction. This provides a
non-trivial double-check of our numerical calculations.
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FIGURE 3.5: Potential energy per particle of symmetric nuclear
matter (upper panel) and neutron matter (lower panel) for non-
polarized (∆n = ∆p = 0), totally polarized (∆n = ∆p ± 1) and
anti-polarized (∆n = −∆p ± 1) matter as functions of the total
density for the Gogny D1 interaction. Symbols show the result
for the calculation integrating first over the momentum space.
Solid lines show the result for the calculation integrating first

over the coordinates space.
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3.3 Total Energy

Combining the expressions for the kinetic and potential energies, we can
write down the expression for the total energy per particle for both the Skyrme
and Gogny interactions.

For the Skyrme interaction, the total energy per particle is given by:

eSk(ρn↑, ρn↓, ρp↑, ρp↓) =
~2

2mn

1

ρ
[ξn↑ + ξn↓] +

~2

2mp

1

ρ
[ξp↑ + ξp↓]

+
1

4ρ
[2t2(1 + x2)][ξn↑ρn↑ + ξn↓ρn↓ + ξp↑ρp↑ + ξp↓ρp↓]

+
1

4ρ
[t1(1− x1) + t2(1 + x2)][ξn↑ρn↓ + ξn↓ρn↑ + ξp↑ρp↓ + ξp↓ρp↑]

+
1

4ρ
[t1(1 + x1) + t2(1 + x2)][ξn↑ρp↑ + ξn↓ρp↓ + ξp↑ρn↑ + ξp↓ρn↓]

+
1

4ρ
[t1 + t2][ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑]

+
1

ρ

[
t0 +

1

6
t3ρ

γ

]
ρnρp +

1

ρ

[
t0x0 +

1

6
t3x3ρ

γ

]
[ρn↑ρp↑ + ρn↓ρp↓]

+
1

ρ

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
[ρn↑ρn↓ + ρp↑ρp↓] .

(3.17)
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And the total energy per particle for the Gogny interaction is given by:

eG(ρn↑, ρn↓, ρp↑, ρp↓) =

=
~2

2mn

1

ρ
[ξn↑ + ξn↓] +

~2

2mp

1

ρ
[ξp↑ + ξp↓]

+ ργ−1t0(1− x0)(ρn↑ρn↓ + ρp↑ρp↓)

+ ργ−1t0ρnρp + ργ−1t0x0(ρn↑ρp↑ + ρn↓ρp↓)

+
π3/2

2ρ

∑
i

µ3
i

[
Wiρ

2 +Bi

[
(ρn↑ + ρp↑)

2 + (ρn↓ + ρp↓)
2
]

−Hi(ρ
2
n + ρ2

p)−Mi(ρ
2
n↑ + ρ2

n↓ + ρ2
p↑ + ρ2

p↓)

]
− 1

4ρ
√
π

∑
i

[
(Wi +Bi −Hi −Mi)

(
gi(kFn↑, kFn↑) + gi(kFn↓, kFn↓)

+ gi(kFp↑, kFp↑) + gi(kFp↓, kFp↓)
)

+ (Bi −Mi)
(
gi(kFn↑, kFn↓) + gi(kFn↓, kFn↑)

+ gi(kFp↑, kFp↓) + gi(kFp↓, kFp↑)
)

− (Hi +Mi)
(
gi(kFn↑, kFp↑) + gi(kFn↓, kFp↓)

+ gi(kFp↑, kFn↑) + gi(kFp↓, kFn↓)
)

−Mi

(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑)

+ gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)
)]

.

(3.18)

In Fig. 3.6 we present the total energy per particle as a function of the
total density of symmetric nuclear matter (left column), asymmetric nuclear
matter (central column) and neutron matter (right column) for different cases
of spin polarization: non-polarized (∆n = ∆p = 0), totally polarized (∆n =
∆p = ±1) and anti-polarized (∆n = −∆p = ±1) nuclear matter, for both the
Skyrme Sly4 and Gogny D1 interactions.

For the Gogny D1 interaction, non-polarized nuclear matter is always
more attractive than totally and anti-polarized nuclear matter. However,
for the Skyrme SLy4 interaction there is a crossing of the energy of non-
polarized and anti-polarized nuclear matter at a density which increases with
the isospin asymmetry. Thus, the anti-polarized nuclear matter can become
the ground state at certain density regions [23, 24], when described with
SLy4.

Concerning the preference of nuclear matter being totally polarized against
anti-polarized we observe that both interactions predict the existence of a
critical density (ρ̄) such that for densities smaller than ρ̄ the system prefers
the totally polarized state and for larger densities than ρ̄ the anti-polarized
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FIGURE 3.6: Total energy per particle for the Skyrme SLy4 in-
teraction (upper row) and for the Gogny D1 interaction (lower
row) as functions of the total density of symmetric nuclear
matter (left column), asymmetric nuclear matter (central col-
umn) and neutron matter (right column) and non-polarized
(∆n = ∆p = 0), totally polarized (∆n = ∆p ± 1) and anti-

polarized (∆n = −∆p ± 1) nuclear matter.
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state is preferred. The value of ρ̄ increases with the asymmetry and it is al-
ways larger for the Gogny D1 interaction.

We oserve that the energy per particle of non-polarized symmetric mat-
ter for both the Skyrme SLy4 and Gogny D1 interactions is very similar and
becomes more repulsive for large isospin asymmetries. However, they com-
pletly differ for non-polarized neutron matter.

Notice that for the case of totally polarized neutron matter both interac-
tions predict similar results because, as we have already showed in Fig. 2.1
and Fig. 3.3, it can be approximated by a free Fermi gas.

3.3.1 Isospin symmetry energy

Since the energy per particle of non-polarized asymmetric nuclear matter is
a function of the total density and the isospin asymmetry, it can generally be
expressed as a Taylor expansion around β = 0. That is,

e(ρ, β) = e(ρ, 0) + esym(ρ)β2 + e4(ρ)β4 +O(β6) . (3.19)

Assuming charge symmetry of the nuclear forces, the interaction is symmet-
ric under neutron and proton exchange and only even powers of β appear in
the expansion. esym(ρ) is the so called symmetry energy and, if we only take
the expansion up to second order, it can be approximated by,

esym(ρ) ∼ e(ρ, 1)− e(ρ, 0) , (3.20)

where e(ρ, 1) and e(ρ, 0) are the energy per particle of non-polarized neutron
matter (β = 1) and for non-polarized symmetric nuclear matter (β = 0),
respectively. Notice that a change of sign of esym(ρ) would mean that there is
a phase transition from nuclear to neutron matter.

In Fig. 3.7 we show the symmetry energy (solid line) for the Skyrme SLy4
interaction (left panel) and the Gogny D1 interaction (right panel) as func-
tions of the total density. The total energy per particle (dotted lines) of non-
polarized (∆n = ∆p = 0) symmetric nuclear matter (β = 0,∆n = ∆p = 0) and
neutron matter (β = 1) are also plotted in the same figure.

The Skyrme SLy4 interaction shows no phase transition from nuclear mat-
ter to neutron matter at any value of the density. However, the Gogny D1 in-
teraction does show a phase transition at ρt ∼ 0.52 fm−3. This means that, for
non-polarized matter, for ρ > 0.52 fm−3 the ground state ceases to be nuclear
matter to become neutron matter.

The study of the symmetry energy of nuclear matter has also generated
many theoretical works to analyse its density dependence around the satu-
ration density and to understand the physical constraints imposed by exper-
imental data [25, 26, 27, 28, 29].
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FIGURE 3.7: Isospin symmetry energy per particle (solid line)
and total energy per particle (dotted lines) of non-polarized
(∆n = ∆p = 0) symmetric nuclear matter (β = 0) and neu-
tron matter (β = 1) for the Skyrme SLy4 interaction (left panel)
and the Gogny D1 interaction (right panel) as functions of the

total density.

3.3.2 Spin symmetry energy

The energy per particle of spin-polarized neutron matter does not change
when a global flip of the spins is performed. Therefore, it can be expanded
on the spin polarization ∆n as

e(ρ,∆n) = e0(ρ, 0) + Ssym(ρ)∆2
n + S4(ρ)∆4

n +O(∆6
n) , (3.21)

where e0(ρ, 0) is the energy per particle of non-polarized neutron matter (∆n =
0) and Ssym(ρ) is the so called spin symmetry energy,

Ssym(ρ) =
1

2

∂2e(ρ,∆n)

∂∆2
n

∣∣∣∣
∆n=0

. (3.22)

If the dependence of the energy on the spin polarization is practically
parabolic then the contributions from O(4) and higher orders can be ne-
glected. Therefore, in this case, the spin symmetry energy can be estimated
as the difference between the energy per particle of totally polarized (∆n = 1)
and non-polarized neutron matter (∆n = 0),

Ssym(ρ) ∼ e(ρ, 1)− e(ρ, 0) . (3.23)

A change of sign of Ssym(ρ) would indicate a ferromagnetic phase transition
from non-polarized to totally polarized neutron matter.

In Fig. 3.8 we present the spin symmetry energy (solid line) for the Skyrme
SLy4 interaction (left panel) and the Gogny D1 interaction (right panel) as a
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functions of the total density. The total energy per particle (dotted lines) of
non-polarized (∆n = 0) and totally polarized (∆n = 1) neutron matter (β = 1)
are also plotted.

The Skyrme SLy4 interaction predicts a spin instability at ρs ∼ 0.72 fm−3.
Hence, non-polarized neutron matter is no longer the ground state of the
system. The Gogny D1 interaction predicts no spin instability at any density.
Therefore, the ground state is always non-polarized neutron matter.

In Fig. 3.9 we show the total energy per particle of neutron matter at dif-
ferent density values for the Skyrme SLy4 interaction (left panel) and the
Gogny D1 interaction (right panel) as a function of the neutron spin polariza-
tion. We can see that for higher densities than a critical density ρc = 0.6 fm−3,
provided by the magnetic susceptibility criteria (see Chapter 6), the Skyrme
SLy4 interaction presents a spontaneous spin symmetry breaking where the
non-polarized state is no longer stable, driving the system to a nonzero po-
larized state. Thus, the parabolic approximation is no longer valid [22]. A
further increase of the density drives the system to a ferromagnetic state, i.e.,
totally polarized.

The Gogny D1 interaction keeps the parabolic behaviour as a function of
the spin polarization in all the range of densities considered [30].

In Chapter 6 we discuss the spin instability of nuclear matter analyzing
the magnetic susceptibility.
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Chapter 4

Spin-Isospin Channel
Contributions

The spin-isospin structure of the nucleon-nucleon interactions plays a very
important role in describing the richness of the nucleon-nucleon scattering
data and the structure of nuclei. To get further insight into the difference
between the two forces we are considering, we discuss in this chapter the
contribution to the potential energy of the different spin-isospin channels of
the two-particle states.

The diagonal two-body matrix elements of the Skyrme interaction in terms
of the spin-isospin channels are given by

〈kk′STMSMT |v̂Sk(r)|kk′STMSMT 〉A =

=
1

Ω

[
t0 +

1

6
t3ρ

γ +
1

4
(k− k′)2(t1 + t2)

+

{
t0x0 +

1

6
t3x3ρ

γ +
1

4
(k− k′)2(t1x1 + t2x2)

}
(−1)S+1

−
{
t0 +

1

6
t3ρ

γ +
1

4
(k− k′)2(t1 − t2)

}
(−1)S+T

−
{
t0x0 +

1

6
t3x3ρ

γ +
1

4
(k− k′)2(t1x1 − t2x2)

}
(−1)T+1

]
,

(4.1)

which lead to the following contributions of each spin-isospin channel to the
potential energy per particle 〈VST 〉) for polarized asymmetric nuclear matter:〈
V Sk

11

〉
N

=
1

4

{
1

4ρ
[2t2(1 + x2)]

[
(ξn↑ + ξn↓ + ξp↑ + ξp↓)ρ+ (ξn↑ + ξn↓)ρn + (ξp↑ + ξp↓)ρp

+ (ξn↑ + ξp↑)(ρn↑ + ρp↑) + (ξn↓ + ξp↓)(ρn↓ + ρp↓)

+ ξn↑ρn↑ + ξn↓ρn↓ + ξp↑ρp↑ + ξp↓ρp↓

]}
;

(4.2)
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V Sk

10

〉
N

=
1

2

{
1

ρ

[
t0(1 + x0) +

1

6
t3(1 + x3)ργ

]
(ρnρp + ρn↑ρp↑ + ρn↓ρp↓)

+
1

4ρ
[t1(1 + x1)]

[
ξn↑ρp↑ + ξn↓ρp↓ + ξp↑ρn↑ + ξp↓ρn↓

+ (ξn↑ + ξn↓)ρp + (ξp↑ + ξp↓)ρn

]}
;

(4.3)

〈
V Sk

01

〉
N

=
1

2

{
1

ρ

[
t0(1− x0) +

1

6
t3(1− x3)ργ

][
(ρn↑ + ρp↑)(ρn↓ + ρp↓) + ρn↑ρn↓ + ρp↑ρp↓

]
+

1

4ρ
[t1(1 + x1)]

[
ξn↑ρn↓ + ξn↓ρn↑ + ξp↑ρp↓ + ξp↓ρp↑

+ (ξn↑ + ξp↑)(ρn↓ + ρp↓) + (ξn↓ + ξp↓)(ρn↑ + ρp↑)
]}

;

(4.4)〈
V Sk

00

〉
N

=
1

4

{
1

4ρ
[t2(1− x2)] (ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑)

}
. (4.5)

Adding up together all the spin-isospin channel contributions in Eqs. (4.2)-
(4.5) we recover the potential energy contribution in Eq. (3.10).

For the Gogny interaction, the spin-isospin structure of the diagonal two-
body matrix elements of the Gogny reads

〈kk′STMSMT |v̂G(r)|kk′STMSMT 〉A =

=
1

Ω

{
ργt0

[(
1− (−1)S+T

)
+ x0

(
(−1)S+1 − (−1)T+1

)]
+ π3/2

∑
i

µ3
i

[
Wi +Bi(−1)S+1 −Hi(−1)T+1 −Mi(−1)S+T

]
− π3/2

∑
i

µ3
i e
−µ

2
i
4
|q|2[(−1)S+TWi + (−1)T+1Bi − (−1)S+1Hi −Mi

]}
.

(4.6)
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Then, the potential energy per particle in terms of the spin and isospin chan-
nels (〈VST 〉) is given by〈
V G

11

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]

×
[
ρ2
n↑ + ρ2

n↓ + ρ2
p↑ + ρ2

p↓ + ρn↑ρn↓ + ρp↑ρp↓ +
1

2
(ρn↑ρp↑ + ρn↓ρp↓ + ρnρp)

]
− 1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]

×
[
gi(kFn↑, kFn↑) + gi(kFn↓, kFn↓) + gi(kFp↑, kFp↑) + gi(kFp↓, kFp↓)

+
1

2

(
gi(kFn↑, kFp↑) + gi(kFn↓, kFp↓) + gi(kFp↑, kFn↑) + gi(kFp↓, kFn↓)

+ gi(kFn↑, kFn↓) + gi(kFn↓, kFn↑) + gi(kFp↑, kFp↓) + gi(kFp↓, kFp↑)
)

+
1

4

(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑) + gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)

)]
;

(4.7)〈
V G

10

〉
N

=
1

2
ργ−1t0[1 + x0][ρn↑ρp↑ + ρn↓ρp↓ + ρnρp]

+
1

2

π3/2

2ρ

∑
i

µ3
i [Wi +Bi +Hi +Mi](ρn↑ρp↑ + ρn↓ρp↓ + ρnρp)

− 1

4ρ
√
π

∑
i

[−Wi −Bi −Hi −Mi]

×
[

1

2

(
gi(kFn↑, kFp↑) + gi(kFn↓, kFp↓) + gi(kFp↑, kFn↑) + gi(kFp↓, kFn↓)

)
+

1

4

(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑) + gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)

)]
;

(4.8)〈
V G

01

〉
N

=
1

2
ργ−1t0[1− x0]

[
ρn↑ρn↓ + ρp↑ρp↓ + (ρn↑ + ρp↑)(ρn↓ + ρp↓)

]
+

1

2

π3/2

2ρ

∑
i

µ3
i [Wi −Bi −Hi +Mi]

[
ρn↑ρn↓ + ρp↑ρp↓ + (ρn↑ + ρp↑)(ρn↓ + ρp↓)

]
− 1

4ρ
√
π

∑
i

[−Wi +Bi +Hi −Mi]

×
[

1

2

(
gi(kFn↑, kFn↓) + gi(kFn↓, kFn↑) + gi(kFp↑, kFp↓) + gi(kFp↓, kFp↑)

)
+

1

4

(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑) + gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)

)]
;

(4.9)
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V G

00

〉
N

=
1

2

π3/2

2ρ

∑
i

µ3
i [Wi −Bi +Hi −Mi][ρn↑ρp↓ + ρn↓ρp↑]

− 1

4

1

4ρ
√
π

∑
i

[Wi −Bi +Hi −Mi]

×
[
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑) + gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)

]
.

(4.10)

Again, adding up together all spin-isospin channel contributions in Eqs. (4.7)-
(4.10) we recover Eq. (3.11).

One can still perform an additional decomposition by analysing the con-
tribution to the potential energy of the different third components of the spin-
isospin two-body states. The expressions can be found in appendix A.4.

In Fig.4.1 and Fig. 4.2 are shown the contributions of each channel (dotted
lines) to the potential energy per particle (solid line) for different values of
the isospin asymmetry (β) and the spin polarizations (∆n,∆p) for both the
Skyrme and Gogny interactions, respectively.

Looking at Eqs. (4.2)-(4.5), Eqs. (4.7)-(4.10) and Fig. 4.1 and Fig. 4.2, one
can see that the contribution of the channel 〈V11〉 is zero by construction for
the Skyrme SLy4 as imposed in the parametrization of the force. For the
Gogny D1 interaction 〈V11〉 is not strictly zero, but really small compared to
the other contributing channels.

The contribution of T = 0 channels, 〈V10〉 and 〈V00〉, decrease when the
asymmetry increases and become zero for neutron matter. Similarly, the S =
0 channels, 〈V01〉 and 〈V00〉, do not contribute for totally polarized matter.
〈V00〉 only contributes for nuclear matter when nucleons have different spin
polarizations. It might seem zero for the Gogny D1 interaction, but it does
contribute within the proper conditions, just as 〈V11〉.

4.1 Partial Wave Decomposition

A deeper insight in the understanding on the interaction can be obtained by
performing a partial wave decomposition of the interaction energy. This can
be useful to compare different interactions and enlighten the differences with
realistic interactions.

It is convenient to express the two-body states in terms of the center of
mass and the relative motion.

|KCMkrSTMSMT 〉 =
1

Ω
eiKCMReikrrχSMS

χTMT

=
1

Ω
eiKCMR4π

∑
`m

i`j`(kr)Y
∗
`m(k̂)Y`m(r̂)χSMS

χTMT
,

(4.11)

where r = r1 − r2 is the relative coordinate between, R = (r1 + r2)/2 is the
center of mass coordinate, kr = k − k′ is the relative momentum, KCM =
(k+k′)/2 is the center of mass momentum. The plane wave associated to the
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FIGURE 4.1: Skyrme SLy4 interaction potential energy per
particle spin-isospin channel contributions for symmetric nu-
clear matter (upper row), asymmetric nuclear matter with β =
0.5 (middle row) and neutron matter (lower row) and non-
polarized (left column), totally polarized (center column) and
anti-polarized (right column) matter as functions of total den-
sity. Solid line shows the total potential energy per particle.
Dotted lines show the spin-isospin channel contributions. Non-
contributing channels are not plotted. 〈V11〉 never appears be-

cause it is set to zero by SLy4.
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FIGURE 4.2: Gogny D1 interaction potential energy per par-
ticle spin-isospin channel contributions for symmetric nuclear
matter (upper row), asymmetric nuclear matter with β =
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polarized (left column), totally polarized (center column) and
anti-polarized (right column) matter as functions of total den-
sity. Solid line shows the total potential energy per particle.
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relative momentum is expressed in terms of the different potential waves,
characterized by their angular momentum, `with the help of the Bessel func-
tions j`(kr) and the spherical harmonics Y ∗`m.

The antisymmetrization of the two-body state acts only on the relative
motion, and the spin and isospin wave functions, see Eq. (2.13), results in

|KCMkrSTMSMT 〉A =
1

Ω
eiKR4π

∑
`m

i`j`(kr)
(
1− (−1)`+S+T

)
Y ∗`m(k̂)Y`m(r̂)χSMS

χTMT
.

(4.12)

Thus, not all partial wave functions are allowed, and only those with `+S+T
odd are permitted.

First, we calculate the contribution of the coefficient partial waves to the
single-particle potential, which is given by:

U(k) =
1

νσντ

∑
k′≤k′F

∑
SMS

∑
TMT

A 〈kk′STMSMT |v(r)|kk′STMSMT 〉A

=
1

νσντ

Ω

(2π)3

∫
k′≤k′F

d3k′
(

1

Ω

∫
e−iKReiKRd3R

)
×

×
∑

SMSTMT

∑
`m`′m′

(4π)2
(
1− (−1)`+S+T

)
Y`m(k̂)Y`′m(k̂)χS∗MS

χSMS
χT∗MT

χTMT
×

× i`′−` 1

Ω

∫
dr r2j`(kr)v(r)j′`(kr)

∫
Y`m(r̂)Y`′m(r̂)dΩr

=
1

νσντ

1

(2π)3

∑
`ST

4π(2`+ 1)(2S + 1)(2T + 1)
(
1− (−1)`+S+T

)
×

×
∫
k′≤k′F

d3k′
∫

dr r2j`(kr)v(r)j′`(kr) .

(4.13)

It is convenient to define

V `
kr =

2

π

∫
dr r2j`(kr)v(r)j`(kr) , (4.14)

which corresponds to the diagonal matrix elements of the interaction in mo-
mentum space for the different partial waves. Using V `

kr
, the single-particle

potential reads

U(k) =
1

νσντ

1

2π2

π

2

∑
`ST

(2`+ 1)(2S + 1)(2T + 1)
(
1− (−1)`+S+T

) ∫
k′≤k′F

d3k′ V `
kr .

(4.15)
Notice that the integral is extended to all momenta k′ inside the Fermi sphere
and that in the numerical procedure to compute U(k) we need to determine
the relative momentum kr associated to each external momentum k (located
at the Z-axis) and each internal momentum k′.
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FIGURE 4.3: Potential energy per particle contributions of the
partial waves that contribute the most (`sj = 000, 202, 011) as a

function of density for the Gogny D1 interaction.

Once we have the single-particle potential, which for non-polarized sym-
metric nuclear matter is the same regardless of the spin and isospin com-
ponent of the nucleon, we can easily compute the total potential energy by
integrating U(k) inside the Fermi sphere and adding a 1

2
factor to avoid the

double-counting.
In Fig. 4.3 we show the partial waves that contribute the most to the

potential energy per particle as functions of density for the Gogny D1 in-
teraction. These partial waves correspond to the quantum numbers `Sj =
000, 202, 011 which define the partial waves (2S+1`j) 1S0,

1D2,
3 S1, respectively,

being j the total angular momentum.
The contribution of all depicted partial wave is attractive in a wide range

of densities. The partial wave ` = 0 collects the main contributions. As
` increases, this contributions decrease rather rapidly. The addition of all
partial waves restore the results obtained previously. Notice also that the
contribution of ` = 1 is much smaller than the ` = 2. Here is also useful to
remind that for the Skyrme interaction, including the gradient terms we only
have S and P waves.

It is the presence of the finite range in the Gogny force that allows to have
contributions of higher partial waves.
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Chapter 5

Interaction Potential
Parametrization

In order to qualitatively understand the effect of neutron and proton spin po-
larizations and isospin asymmetry on the potential energy contribution, one
can analyse the partial contributions of the single-particle potential Uστσ′τ ′(k)
to single out explicitly the dependence on the phase space [31]:

Uστσ′τ ′(k) = gστσ′τ ′ρσ′τ ′ , (5.1)

where gστσ′τ ′ is the average value of the matrix element 〈kστ,k′σ′τ ′|v̂|kστ,k′σ′τ ′〉A
in the Fermi sphere with radius k′ ≤ k′Fσ′τ ′ . The density factor ρσ′τ ′ arises
from the integral over the corresponding Fermi sea.

For small values of the asymmetry (β � 1) and the neutron and proton
spin polarizations (|∆n|, |∆p| � 1), one can neglect the dependence on β,∆n

and ∆p assuming gστσ′τ ′ ∼ gστσ′τ ′(k, ρ) and

gστστ = g1 gστσ′τ = g2 gστστ ′ = g3 gστσ′τ ′ = g4 . (5.2)

with σ 6= σ′ , τ 6= τ ′.
With these assumptions, we can express Eq. (3.8) in terms of Eq. (5.1), as

〈V 〉
N

=
1

2N

∑
σσ′

∑
ττ ′

∑
k≤kFστ

gστσ′τ ′(k, ρ)ρσ′τ ′ . (5.3)

After performing the averages of gi(k, ρ) over the Fermi sphere of radius kστ
and after some algebra, one arrives to

〈V 〉
N
≈ ρ2

4
(ḡ1 + ḡ2 + ḡ3 + ḡ4) +

ρ2

4
(ḡ1 + ḡ2 − ḡ3 − ḡ4)β2

+
ρ2

8
(ḡ1 − ḡ2)(1 + β)2∆2

n +
ρ2

8
(ḡ1 − ḡ2)(1− β)2∆2

p

+
ρ2

4
(ḡ3 − ḡ4)(1− β2)∆n∆p .

(5.4)
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Thus, we can write the total energy per particle as a function of the pa-
rameters β,∆n and ∆p using Eq. (A.10) and Eq .(5.4):

e(ρ, β,∆n,∆p) =
〈T 〉
N

(ρ, β,∆n,∆p) + V0(ρ) + V1(ρ)β2

+ V2(ρ)(1 + β)2∆2
n + V2(ρ)(1− β)2∆2

p

+ V3(ρ)(1− β2)∆n∆p .

(5.5)

The coefficients V0(ρ), V1(ρ), V2(ρ) and V3(ρ) (see Fig. 5.1) have been deter-
mined as follows:

V0 =
〈V 〉
N

(β = 0,∆n = 0,∆p = 0) ,

V1 =
〈V 〉
N

(β = 1,∆n = 0,∆p = 0)− V0 ,

V2 =
〈V 〉
N

(β = 0,∆n = 1,∆p = 0)− V0 ,

V3 =
〈V 〉
N

(β = 0,∆n = 1,∆p = 1)− V0 − 2V2 .

(5.6)

This parametrization is consistent with the spin and isospin structure of
the nucleon-nucleon interaction in the sense that, for a given configuration
of β,∆n and ∆p, a global spin-flip does not change the energy whereas a flip
only over all neutrons or protons spins does.

The dependence on the density of Vi(ρ) coefficients is shown in Fig. 5.1
for both interactions. The behaviour of V0 and V2 is rather similar for both
interactions. However, V1 and V3 show a very different behaviour.

In Fig. 5.2 we test the quality of the previously defined fit by comparing
the total energy per particle, as a function of proton spin polarization (∆p),
provided by Eq. (5.5) and the exact total energy expressions, see Eq. (3.17)
and Eq. (3.18). The comparison is performed per particle for the Skyrme SLy4
interaction (upper row) and Gogny D1 interaction (lower row) for different
values of the neutron spin polarization (∆n = 0, 0.5, 0.75, 1) and different
isospin asymmetries (β = 0.25, 0.5) at saturation density ρ0 = 0.16 fm−3. In
general, the parametrization reproduces successfully the exact results. How-
ever, it worsens when the asymmetry and/or the polarizations become large.

The goodness of the parametrization as a function of the density for dif-
ferent asymmetries and polarization is shown for both interactions in Fig. 5.3.
We observe an overall agreement that worsens beyond the assumptions de-
fined to perform the parametrization.
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FIGURE 5.1: Skyrme SLy4 interaction (top panels) and
Gogny D1 interaction (lower panels) potential parameters from

Eq. (5.6) as functions of total density.
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Chapter 6

Magnetic Susceptibility

In the astrophysical context, pulsars are known to be rapidly rotating neutron
stars with an intense magnetic field [32, 33, 34, 35]. Therefore, the possibi-
lity of phase transition to a ferromagnetic state in neutron matter has been
a field of study that still presents some contradictory results. This transition
could have important consequences for the evolution of protoneutron stars,
in particular for the spin correlations in the medium that strongly affect the
neutrino cross-sections and mean free paths inside the star [36].

Some studies done with microscopic calculations show that there is no
possible ferromagnetic phase transition [31, 37, 38, 39, 40, 41, 42, 43, 44, 45],
and so do others using effectives forces [30, 46]. On the other hand, calcula-
tions using different effective forces do find a ferromagnetic phase transition
[22, 47]. Some of the results are, however, merely academic since they cannot
be reached by protoneutron stars.

The magnetic susceptibility χ(ρ) characterizes the response of the system
to an external magnetic field and gives a measure of the energy required to
produce a net spin alignment in the direction of the field. For nuclear matter,
it is defined as a 2× 2 matrix

1

χ
=

(
1/χnn 1/χnp
1/χpn 1/χpp

)
, (6.1)

where the matrix elements 1/χij are given by

1

χij
=

∂Hi

∂Mj

i, j = n, p. (6.2)

HereMj is the magnetization of the species j per unit volume,

Mj = µj(ρj↑ − ρj↓) = µjρj∆j , (6.3)

where µj is the magnetic moment of the species j,

µn = −1.913µN , µp = 2.792µN , µN =
e~

2mp

= 0.105 e fm , (6.4)
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and Hi is the magnetic field induced by the magnetization of the species i,
which can be obtained from

Hi = ρ
∂e

∂Mi

, (6.5)

where e = e(ρ, β,∆n,∆p) is the total energy per particle.
Using Eqs. (6.3) and (6.5), the matrix elements 1/χij

1 can be written as

1

χij
=

ρ

µiρiµjρj

∂2e

∂∆i∂∆j

, (6.6)

where the second derivatives can be taken at ∆i = ∆j = 0 if the field is
assumed to be small.

The stability of matter against spin fluctuations is guaranteed if det(1/χ) >
0. A change of sign of the determinant indicates the existence of a spin in-
stability and the onset of a phase transition towards a new spin ordering. It
is convenient in order to highlight the role of the nucleon-nucleon interac-
tion to study the magnetic susceptibility of the system in terms of the ratio
det(1/χ)/det(1/χF ), where χF is the magnetic susceptibility of the two com-
ponent free Fermi gas,

1

χF
=

ρ

µiρiµjρj

∂2eF
∂∆i∂∆j

, (6.7)

where the free Fermi gas energy per particle (eF ) is equal to the kinetic energy
per particle, see (3.5). Thus, the two components read

1

χFnn
=

ρ

µ2
nρ

2
n

10

9

~2ξ

2mnρ
(1 + β)5/3

[
(1 + ∆n)−1/3 + (1−∆p)

−1/3
]
,

1

χFpp
=

ρ

µ2
pρ

2
p

10

9

~2ξ

2mpρ
(1 + β)5/3

[
(1 + ∆p)

−1/3 + (1−∆p)
−1/3

]
.

(6.8)

Expressing the total energy per particle as the sum of the kinetic and po-
tential energy per particle, one can write the ratio det(1/χ)/det(1/χF ) as fol-
lows:

det(1/χ)

det(1/χF )
=

1 +

∂2(V/N)

∂2∆n

∂2(T/N)

∂2∆n


1 +

∂2(V/N)

∂2∆p

∂2(T/N)

∂2∆p



−


∂2(V/N)

∂∆n∂∆p

∂2(T/N)

∂2∆n



∂2(V/N)

∂∆p∂∆n

∂2(T/N)

∂2∆p

 .

(6.9)

1Analytic expressions of the magnetic susceptibility matrix elements for the Skyrme in-
teraction are reported in the appendix A.5.
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FIGURE 6.1: Ratio det(1/χ)/det(1/χF ) nuclear matter with dif-
ferent isospin asymmetries (β = 0, 0.25, 0.5, 0.75, 1) as a func-

tion of the total density for the Skyrme SLy4 interaction.

For neutron matter, the matrix (6.1) reduces to 1/χnn. Using the spin sym-
metry energy, see Eqs. (3.22) and (3.23), one can write down 1/χnn as

1

χnn
=

2ρ

µ2
nρ

2
n

Ssym(ρ) , (6.10)

which can be handy when the interaction is too complex to compute the
derivatives.

In Fig. 6.1 we present the ratio det(1/χ)/det(1/χF ) of asymmetric nuclear
matter with β = 0, 0.25, 0.5, 0.75, 1 as a function of the total density for the
Skyrme SLy4 interaction. A phase transition appears at a critical density ρc ∼
0.6 fm−3 for neutron matter with the Skyrme SLy4 interaction. That is, for
ρ > 0.6 fm−3 appears a spontaneous polarization of the ground state. As β
decreases, ρt moves toward larger density values.

In Fig. 6.2 we compare the ratio det(1/χ)/det(1/χF ) of neutron matter as
a function of the total density between the Skyrme SLy4 and the Gogny D1 in-
teractions. We observe that, for densities ρ < 0.1 fm−3, the ratio det(1/χ)/ det(1/χF )
for both the Skyrme SLy4 and Gogny D1 interactions present a similar be-
haviour. As density increases further away from ρ = 0.1 fm−3, the SLy4
ratio starts decreasing to eventually become negative at the critical density
ρc ∼ 0.6 fm−3, as we have already mentioned. Contrary, the D1 ratio keeps
smoothly increasing with density thus, no spin instability is found at any
density.
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These results of pure neutron matter are consistent with the ones obtained
for the spin symmetry energy (see subsection 3.3.2).

Notice that, for neutron matter, a change of sign on the spin symmetry
energy approximation (3.23) is a sufficient condition for a phase transition,
whereas a change of sign in the ratio det(1/χ)/det(1/χF ) is a necessary con-
dition. That is why the densities at which the phase transition is predicted
are different for the spin symmetry energy (ρs ∼ 0.72 fm−3) and the magnetic
susceptibility ρc ∼ 0.6 fm−3.
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Summary and Conclusions

In this master thesis we have constructed the formalism to calculate the single-
particle potential and energy per particle of homogeneous nuclear matter
with any isospin asymmetry and spin polarization. The calculations have
been performed in the framework of the Hartree-Fock formalism using ef-
fective interactions. We have considered the Skyrme SLy4 as an example of
zero-range interactions and the original Gogny D1 as a characteristic finite-
range force.

We have prepared a complete framework that allows the computation of:
spin-isospin channel contributions, partial wave decompositions and calcu-
lations using the Slater function that permit to check the numerical calcula-
tions.

Once we have obtained the energy per particle, we have also considered
the second derivatives of this energy with respect to isospin asymmetry to
calculate the isospin symmetry energy, and with respect to the spin pola-
rization to determinate the spin symmetry energy and study the magnetic
susceptibility.

It has been found, in agreement with the existing literature, that the Skyrme
SLy4, whose parametrization has incorporated microscopic results for neu-
tron matter, does not show isospin instability and the symmetry energy is
always positive, i.e., neutron matter never becomes the ground state. On the
contrary, the symmetry energy for the Gogny interaction becomes zero at a
density ρs ∼ 0.52 fm−3.

We have also checked that a parametrization of the energy per particle,
previously suggested by Vidaña and Bombaci [31] for realistic interactions,
adapts well to the effective interactions studied in the thesis, at least for small
isospin asymmetries and spin polarizations. This parametrization allows us
to express the energy per particle in terms of a few average matrix elements.

By computing the magnetic susceptibility, we have found that SLy4 pre-
dicts a spin instability at both neutron matter and asymmetric nuclear mat-
ter, with a critical density that shifts to smaller densities when increasing the
isospin asymmetry. In the Gogny case, we have only performed the calcula-
tions for neutron matter and no sign of an instability has been found. Similar
results, using other effective interactions, are found in the literature [46]. One
should keep in mind that previous microscopic results [37, 31] do not show
any spin instability. It would be useful to incorporate these results into the
parametrization of the effective interactions [48].

Finally, we would like to extend this analysis to a wider family of Skyrme
forces and the recent proposed Gogny forces. Also, we consider doing a
similar analysis to explore the spinodal instabilities.
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Appendix A

Integrals and Formulae

A.1 Useful integrals

When solving the potential energy per particle, see Eq. (3.8), the integrals
over momentum expressed in terms of a function Φ(k,k′) with a k, k′ depen-
dence,

I[Φ(k,k′); kFστ , k
′
Fσ′τ ′ ] ≡

1

2N

Ω2

(2π)6

∫
kFστ

∫
k′
Fσ′τ ′

d3k d3k′Φ(k,k′) , (A.1)

where Ω is the volume of the system and N the number of particles, result in
Eqs. (A.2), (A.3) and (A.4) for the Skyrme interaction and in Eqs. (A.2) and
(A.5) for the Gogny interaction.

I[Ω−1; kFστ , k
′
Fσ′τ ′ ] =

1

2N

Ω

(2π)6

(
4

3
πkFστ

3

)(
4

3
πk′Fσ′τ ′

3

)
=

1

2ρ
ρστρσ′τ ′ ; (A.2)

I[Ω−1(k2 + k′2); kFστ , k
′
Fσ′τ ′ ] =

1

2N

Ω

(2π)6

[(
4

3
πkFστ

3

)(
4

5
πk′Fσ′τ ′

5

)
+

(
4

3
πk′Fσ′τ ′

3

)(
4

5
πkFστ

5

)]
=

1

2ρ
(ξσ′τ ′ρστ + ξστρσ′τ ′) ;

(A.3)

I[Ω−1(k · k′); kFστ , kFσ′τ ′ ] = 0 ; (A.4)
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I

[
Ω−1e−

µ2i
4
|k−k′|2 ; kFστ , k

′
Fσ′τ ′

]
=

=
1

2ρ

1

2π2µ3
i

1

3π2µ3
i

×
[(
µ2
i kFστ

2 − µikFστµik′Fσ′τ ′ + µ2
i k
′
Fσ′τ ′

2 − 2
)
e−

µ2i
4

(kFστ+k′
Fσ′τ ′ )

2

−
(
µ2
i kFστ

2 + µikFστµik
′
Fσ′τ ′ + µ2

i k
′
Fσ′τ ′

2 − 2
)
e−

µ2i
4

(kFστ−k′Fσ′τ ′ )
2

−
√
πµ3

i

2

(
kFστ

3 − k′Fσ′τ ′3
)

erf
(µi

2
(kFστ − k′Fσ′τ ′)

)
+

√
πµ3

i

2

(
kFστ

3 + k′Fσ′τ ′
3
)

erf
(µi

2
(kFστ + k′Fσ′τ ′)

)]
=

1

4ρπ2µ3
i

g(kFστ , k
′
Fσ′τ ′) .

(A.5)

The single-component density ρστ is related with the single-component
Fermi momentum kFστ by Eq. (2.16):

ρστ =
kFστ

3

6π2
, kFστ =

(
6π2ρστ

)1/3
. (A.6)

ξτσ are related to the average kinetic energy of the Fermi model of nuclear
matter [22], expressed in Eq. (3.6):

ξτσ =
3

5
k2
Fστρτσ =

3

5
(6π2ρτσ)2/3ρτσ

=
3

20

(
3

2
π2ρ

)2/3

ρ(1± β)5/3(1±∆τ )
5/3 .

(A.7)

gi(kFστ , k
′
Fσ′τ ′) is given in Eq. (3.12) by:

gi(kFστ , k
′
Fσ′τ ′) =

1

3π2µ3
i

[(
µ2
i k

2
Fστ − µikFστµik′Fσ′τ ′ + µ2

i k
′2
Fσ′τ ′ − 2

)
e−

µ2i
4

(kFστ+k′
Fσ′τ ′ )

2

−
(
µ2
i k

2
Fστ + µikFστµik

′
Fσ′τ ′ + µ2

i k
′2
Fσ′τ ′ − 2

)
e−

µ2i
4

(kFστ−k′Fσ′τ ′ )
2

−
√
πµ3

i

2

(
k3
Fστ − k′3Fσ′τ ′

)
erf
(µi

2
(kFστ − k′Fσ′τ ′)

)
+

√
πµ3

i

2

(
k3
Fστ + k′3Fσ′τ ′

)
erf
(µi

2
(kFστ + k′Fσ′τ ′)

)]
.

(A.8)

Notice that gi(kFστ , 0) = gi(0, k
′
Fσ′τ ′) = gi(0, 0) = 0.
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A.2 Skyrme kinetic and potential energy

For a more convenient notation, we define

ξ =
3

20

(
3

2
π2ρ

)2/3

ρ , (A.9)

from Eq. (A.7).
Using Eqs. (2.1), (2.2) and (2.3), we write down the kinetic energy per

particle as a function of ρ, β,∆n and ∆p:

〈T 〉
N

=
~2ξ

2mnρ
(1 + β)5/3

[
(1 + ∆n)5/3 + (1−∆n)5/3

]
+

~2ξ

2mpρ
(1− β)5/3

[
(1 + ∆p)

5/3 + (1−∆p)
5/3
]
.

(A.10)
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The same goes for the Skyrme potential energy per particle:〈
V Sk
〉

N
=

ξ

16
[2t2(1 + x2)]

[
(1 + β)8/3

{
(1 + ∆n)8/3 + (1−∆n)8/3

}
+ (1− β)8/3

{
(1 + ∆p)

8/3 + (1−∆p)
8/3
}]

+
ξ

16
[t1(1− x1) + t2(1 + x2)]

[
(1 + β)8/3

{
(1 + ∆n)5/3(1−∆n)

+ (1−∆n)5/3(1 + ∆n)
}

+ (1− β)8/3
{

(1 + ∆p)
5/3(1−∆p)

+ (1−∆p)
5/3(1 + ∆p)

}]
+

ξ

16
[t1(1 + x1) + t2(1 + x2)]

×
[
(1 + β)5/3(1− β)

{
(1 + ∆n)5/3(1 + ∆p) + (1−∆n)5/3(1−∆p)

}
+ (1− β)5/3(1 + β)

{
(1 + ∆p)

5/3(1 + ∆n) + (1−∆p)
5/3(1−∆n)

}]
+

ξ

16
[t1 + t2]

×
[
(1 + β)5/3(1− β)

{
(1 + ∆n)5/3(1−∆p) + (1−∆n)5/3(1 + ∆p)

}
+ (1− β)5/3(1 + β)

{
(1 + ∆p)

5/3(1−∆n) + (1−∆p)
5/3(1 + ∆n)

}]
+
ρ

4

[
t0 +

1

6
t3ρ

γ

](
1− β2

)
+

ρ

16

[
t0x0 +

1

6
t3x3ρ

γ

](
1− β2

)
[(1 + ∆n)(1 + ∆p) + (1−∆n)(1−∆p)]

+
ρ

16

[
t0(1− x0) +

1

6
t3(1− x3)ργ

][
(1 + β)2(1−∆2

n) + (1− β)2(1−∆2
p)
]

(A.11)
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A.3 Slater results for the Gogny interaction

The potential energy per particle expressed in terms of the Slater function,
see Eq. (3.16), results in the following expressions for the Gogny interaction:

• Non-polarized nuclear matter:〈
V G
〉

N
=

3

8
t0ρ

γ+1 +
ρ

2

1

ν2
σν

2
τ

∫
d3r v̂(r)

×
∑
σσ′ττ ′

[(
Wi +

1

2
Bi −

1

2
Hi −

1

4
Mi

)
−
(

1

4
Wi +

1

2
Bi −

1

2
Hi −Mi

)
`2(kF r)

]
;

(A.12)

• Polarized nuclear matter:〈
V G
〉

N
=

1

2
t0(1 + x0)ργ+1 +

ρ

2

1

ν2
σν

2
τ

∫
d3r v̂(r)

×
∑
σσ′ττ ′

[(
Wi +Bi −

1

2
Hi −

1

2
Mi

)
−
(

1

2
Wi +

1

2
Bi −Hi −Mi

)
`2(kF r)

]
;

(A.13)

• Anti-polarized nuclear matter:〈
V G
〉

N
=

1

4
t0x0ρ

γ+1 +
ρ

2

1

ν2
σν

2
τ

∫
d3r v̂(r)

×
∑
σσ′ττ ′

[(
Wi +

1

2
Bi −

1

8
Hi −

1

2
Mi

)
−
(

1

2
Wi +

1

8
Bi −

1

2
Hi −Mi

)
`2(kF r)

]
;

(A.14)

• Non-polarized neutron matter:〈
V G
〉

N
=
ρ

2

1

ν2
σν

2
τ

∫
d3r v̂(r)

×
∑
σσ′ττ ′

[(
Wi +

1

2
Bi −Hi −

1

2
Mi

)
−
(

1

2
Wi +Bi −

1

2
Hi −Mi

)
`2(kF r)

]
;

(A.15)

• Polarized neutron matter:〈
V G
〉

N
=
ρ

2

1

ν2
σν

2
τ

∫
d3r v̂(r)

∑
σσ′ττ ′

[
(Wi +Bi −Hi −Mi)(1− `2(kF r))

]
.

(A.16)
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A.4 Spin-isospin third component channel contri-
butions

There are a total of 16 contributions of the spin-isospin (S, T ) third compo-
nent (MS , MT ) channels to the potential energy per particle. All of them are
provided below for both the Skyrme and Gogny interactions.

For the Skyrme interaction, the
〈
V Sk
STMSMT

〉
/N contributions read〈

V Sk
1111

〉
N

=
1

4ρ
[2t2(1 + x2)]ξp↑ρp↑ ; (A.17)

〈
V Sk

1110

〉
N

=
1

2

{
1

4ρ
[2t2(1 + x2)](ξn↑ρp↑ + ξp↑ρn↑)

}
; (A.18)

〈
V Sk

111−1

〉
N

=
1

4ρ
[2t2(1 + x2)]ξn↑ρn↑ ; (A.19)

〈
V Sk

1101

〉
N

=
1

2

{
1

4ρ
[2t2(1 + x2)](ξp↑ρp↓ + ξp↓ρp↑)

}
; (A.20)

〈
V Sk

1100

〉
N

=
1

4

{
1

4ρ
[2t2(1 + x2)](ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑)

}
; (A.21)

〈
V Sk

110−1

〉
N

=
1

2

{
1

4ρ
[2t2(1 + x2)](ξn↑ρn↓ + ξn↓ρn↑)

}
; (A.22)

〈
V Sk

11−11

〉
N

=
1

4ρ
[2t2(1 + x2)]ξp↓ρp↓ ; (A.23)

〈
V Sk

11−10

〉
N

=
1

2

{
1

4ρ
[2t2(1 + x2)](ξn↓ρp↓ + ξp↓ρn↓)

}
; (A.24)

〈
V Sk

11−1−1

〉
N

=
1

4ρ
[2t2(1 + x2)]ξn↓ρn↓ ; (A.25)
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〈
V Sk

1010

〉
N

=
1

2

{
2

ρ

[
t0(1 + x0) +

1

6
t3(1 + x3)ργ

]
ρn↑ρp↑

+
1

4ρ
[2t1(1 + x1)] (ξn↑ρp↑ + ξp↑ρn↑)

}
; (A.26)

〈
V Sk

1000

〉
N

=
1

4

{
2

ρ

[
t0(1 + x0) +

1

6
t3(1 + x3)ργ

]
(ρn↑ρp↓ + ρn↓ρp↑)

+
1

4ρ
[2t1(1 + x1)] (ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑)

}
; (A.27)

〈
V Sk

10−10

〉
N

=
1

2

{
2

ρ

[
t0(1 + x0) +

1

6
t3(1 + x3)ργ

]
ρn↓ρp↓

+
1

4ρ
[2t1(1 + x1)] (ξn↓ρp↓ + ξp↓ρn↓)

}
; (A.28)

〈
V Sk

0101

〉
N

=
1

2

{
2

ρ

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
ρp↑ρp↓

+
1

4ρ
[2t1(1− x1)] (ξp↑ρp↓ + ξp↓ρp↑)

}
; (A.29)

〈
V Sk

0100

〉
N

=
1

4

{
2

ρ

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
(ρn↑ρp↓ + ρn↓ρp↑)

+
1

4ρ
[2t1(1− x1)] (ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑)

}
; (A.30)

〈
V Sk

010−1

〉
N

=
1

2

{
2

ρ

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
ρn↑ρn↓

+
1

4ρ
[2t1(1− x1)] (ξn↑ρn↓ + ξn↓ρn↑)

}
; (A.31)

〈
V Sk

0000

〉
N

=
1

4

{
1

4ρ
[2t2(1− x2)] (ξn↑ρp↓ + ξn↓ρp↑ + ξp↑ρn↓ + ξp↓ρn↑)

}
; (A.32)
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For the Gogny interaction, the
〈
V G
STMSMT

〉
/N contributions read〈

V G
1111

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρ

2
p↑

− 1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]gi(kFp↑, kFp↑) ; (A.33)

〈
V G

1110

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρn↑ρp↑

− 1

2

1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]
(
gi(kFn↑, kFp↑) + gi(kFp↑, kFn↑)

)
;

(A.34)

〈
V G

111−1

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρ

2
n↑

− 1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]gi(kFn↑, kFn↑) ; (A.35)

〈
V G

1101

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρp↑ρp↓

− 1

2

1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]
(
gi(kFp↑, kFp↓) + gi(kFp↓, kFp↑)

)
;

(A.36)

〈
V G

1100

〉
N

=
1

2

π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi](ρn↑ρp↓ + ρn↓ρp↑)

− 1

4

1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]
(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑)

+ gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)
)

;

(A.37)

〈
V G

110−1

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρn↑ρn↓

− 1

2

1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]
(
gi(kFn↑, kFn↓) + gi(kFn↓, kFn↑)

)
;

(A.38)
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〈
V G

11−11

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρ

2
p↓

− 1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]gi(kFp↓, kFp↓) ; (A.39)

〈
V G

11−10

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρn↓ρp↓

− 1

2

1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]
(
gi(kFn↓, kFp↓) + gi(kFp↓, kFn↓)

)
;

(A.40)

〈
V G

11−1−1

〉
N

=
π3/2

2ρ

∑
i

µ3
i [Wi +Bi −Hi −Mi]ρ

2
n↓

− 1

4ρ
√
π

∑
i

[Wi +Bi −Hi −Mi]gi(kFn↓, kFn↓) ; (A.41)

〈
V G

1010

〉
N

= ργ−1t0[1 + x0]ρn↑ρp↑

+
π3/2

2ρ

∑
i

µ3
i [Wi +Bi +Hi +Mi]ρn↑ρp↑

− 1

2

1

4ρ
√
π

∑
i

[−Wi −Bi −Hi −Mi]
(
gi(kFn↑, kFp↑) + gi(kFp↑, kFn↑)

)
;

(A.42)

〈
V G

1000

〉
N

=
1

2
ργ−1t0[1 + x0](ρn↑ρp↓ + ρn↓ρp↑)

+
1

2

π3/2

2ρ

∑
i

µ3
i [Wi +Bi +Hi +Mi](ρn↑ρp↓ + ρn↓ρp↑)

− 1

4

1

4ρ
√
π

∑
i

[−Wi −Bi −Hi −Mi]
(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑)

+ gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)
)

;

(A.43)
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〈
V G

10−10

〉
N

= ργ−1t0[1 + x0]ρn↓ρp↓

+
π3/2

2ρ

∑
i

µ3
i [Wi +Bi +Hi +Mi]ρn↓ρp↓

− 1

2

1

4ρ
√
π

∑
i

[−Wi −Bi −Hi −Mi]
(
gi(kFn↓, kFp↓) + gi(kFp↓, kFn↓)

)
;

(A.44)

〈
V G

0101

〉
N

= ργ−1t0[1− x0]ρp↑ρp↓

+
π3/2

2ρ

∑
i

µ3
i [Wi −Bi −Hi +Mi]ρp↑ρp↓

− 1

2

1

4ρ
√
π

∑
i

[−Wi +Bi +Hi −Mi]
(
gi(kFp↑, kFp↓) + gi(kFp↓, kFp↑)

)
;

(A.45)

〈
V G

0100

〉
N

=
1

2
ργ−1t0[1− x0](ρn↑ρp↓ + ρn↓ρp↑)

+
1

2

π3/2

2ρ

∑
i

µ3
i [Wi −Bi −Hi +Mi](ρn↑ρp↓ + ρn↓ρp↑)

− 1

4

1

4ρ
√
π

∑
i

[−Wi +Bi +Hi −Mi]
(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑)

+ gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)
)

;

(A.46)

〈
V G

010−1

〉
N

= ργ−1t0[1− x0]ρn↑ρn↓

+
π3/2

2ρ

∑
i

µ3
i [Wi −Bi −Hi +Mi]ρn↑ρn↓

− 1

2

1

4ρ
√
π

∑
i

[−Wi +Bi +Hi −Mi]
(
gi(kFn↑, kFn↓) + gi(kFn↓, kFn↑)

)
;

(A.47)
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〈
V G

0000

〉
N

=
1

2

π3/2

2ρ

∑
i

µ3
i [Wi −Bi +Hi −Mi](ρn↑ρp↓ + ρn↓ρp↑)

− 1

4

1

4ρ
√
π

∑
i

[Wi −Bi +Hi −Mi]
(
gi(kFn↑, kFp↓) + gi(kFn↓, kFp↑)

+ gi(kFp↑, kFn↓) + gi(kFp↓, kFn↑)
)

;

(A.48)

A.5 Magnetic susceptibility matrix elements for the
Skyrme interaction

Analytic expressions of the Skyrme interaction magnetic susceptibility ma-
trix elements, see Eq. (6.6), are pesented below:

1

χnn
=

ρ

µ2
nρ

2
n

{
10

9

~2ξ

2mnρ
(1 + β)5/3

[
(1 + ∆n)−1/3 + (1−∆n)−1/3

]
+

ξ

16

40

9
[2t2(1 + x2)](1 + β)8/3

[
(1 + ∆n)2/3 + (1−∆n)2/3

]
+

ξ

16

10

9
[t1(1− x1) + t2(1 + x2)]

× (1 + β)8/3
[
(1 + ∆n)−1/3(1−∆n)− 3(1 + ∆n)2/3

+ (1−∆n)−1/3(1 + ∆n)− 3(1−∆n)2/3
]

+
ξ

16

10

9
[t1(1 + x1) + t2(1 + x2)]

× (1 + β)5/3(1− β)
[
(1 + ∆n)−1/3(1 + ∆p) + (1−∆n)−1/3(1−∆p)

]
+

ξ

16

10

9
[t1 + t2]

× (1 + β)5/3(1− β)
[
(1 + ∆n)−1/3(1−∆p) + (1−∆n)−1/3(1 + ∆p)

]
− 2ρ

16

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
(1 + β)2

}
;

(A.49)
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1

χpp
=

ρ

µ2
pρ

2
p

{
10

9

~2ξ

2mpρ
(1− β)5/3

[
(1 + ∆p)

−1/3 + (1−∆p)
−1/3

]
+

ξ

16

40

9
[2t2(1 + x2)](1− β)8/3

[
(1 + ∆p)

2/3 + (1−∆p)
2/3
]

+
ξ

16

10

9
[t1(1− x1) + t2(1 + x2)]

× (1− β)8/3
[
(1 + ∆p)

−1/3(1−∆p)− 3(1 + ∆p)
2/3

+ (1−∆p)
−1/3(1 + ∆p)− 3(1−∆p)

2/3
]

+
ξ

16

10

9
[t1(1 + x1) + t2(1 + x2)]

× (1− β)5/3(1 + β)
[
(1 + ∆p)

−1/3(1 + ∆n) + (1−∆p)
−1/3(1−∆n)

]
+

ξ

16

10

9
[t1 + t2]

× (1− β)5/3(1 + β)
[
(1 + ∆p)

−1/3(1−∆n) + (1−∆p)
−1/3(1 + ∆n)

]
− 2ρ

16

[
t0(1− x0) +

1

6
t3(1− x3)ργ

]
(1− β)2

}
;

(A.50)

1

χnp
=

1

χpn
=

ρ

µnρnµpρp

{
ξ

16

5

3
[t1x1 + t2x2]

×
[
(1 + β)5/3(1− β)

{
(1 + ∆n)2/3 + (1−∆n)2/3

}
+ (1− β)5/3(1 + β)

{
(1 + ∆p)

2/3 + (1−∆p)
2/3
}]

+
2ρ

16

[
t0x0 +

1

6
t3x3ρ

γ

]
(1− β2)

}
;

(A.51)
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