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Here we provide a theoretical framework describing the generation of the fast jet ejected 
vertically out of a liquid when a bubble, resting on a liquid-gas interface, bursts. The self- 
consistent physical mechanism presented here explains the emergence of the liquid jet as 
a consequence of the collapse of the gas cavity driven by the low capillary pressures that 
appear suddenly around its base when the cap, the thin film separating the bubble from 
the ambient gas, pinches. The resulting pressure gradient deforms the bubble which, at 
the moment of jet ejection, adopts the shape of a truncated cone. The dynamics near the 
lower base of the cone, and thus the jet ejection process, is determined by the wavelength 

λ∗ of the smallest capillary wave created during the coalescence of the bubble with the 
atmosphere which is not attenuated by viscosity. The minimum radius at the lower base 
of the cone decreases, and hence the capillary suction and the associated radial velocities 
increase, with the wavelength λ∗. W√e show that λ∗ increases with viscosity as λ∗ ∝ Oh1/2 

for Oh 4 O(0.01), being Oh = µ/   ρ R σ  the Ohnesorge number, R the bubble radius 
and ρ, µ and σ indicating respectively the liquid density, viscosity and interfacial tension 
coefficient. The velocity of the extremely fast and thin jet can be calculated as the flow 
generated by a continuous line of sinks extending along the axis of symmetry a distance 

proportional to λ∗. We find that the jet velocity increases with the Ohnesorge number 
and reaches a maximum for Oh = Ohc, the value for which the crest of the capillary wave 
reaches the vertex of the cone, and which depends on the Bond number Bo = ρ g R2/σ. 
For Oh > Ohc, the jet is ejected after a bubble is pinched off; in this regime, viscosity 
delays the formation of the jet, which is thereafter emitted at a velocity which is inversely 
proportional to the liquid viscosity. 

 

1. Introduction 

The description of the physical mechanisms governing the ejection of drops from 
bubbles laying on a liquid-gas interface has been the subject of recent research efforts for 
its implication in many natural and industrial processes as diverse as climate (MacIntyre 
1972; Veron 2015), the dispersion of contaminants (Walls et al. 2014) or wine industry 
(Ghabache et al. 2016). Indeed, the bursting of the type of bubbles generated by breaking 
waves in the ocean, whitecaps, produces a sea spray composed by drops which, after 
evaporation, is responsible for the emission into the atmosphere of micron and submicron- 
sized particles composed by salt, sulfates or even organic compounds (Bigg & Leck 2008). 
It is well known that these particles act as condensation nuclei for rain and also contribute 
to the albedo effect, either directly, or favoring the formation of clouds which reflect the 
incident sunlight (de Leeuw et al. 2011). Drops are produced in bubble bursting events as 
a consequence of the rupture of either the bubble cap (cap drops) (Spiel 1998; Lhuissier 
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twenty times the capillary velocity σ/(ρ R) ' 0.5 ms−1. This striking result, together 

& Villermaux 2012) or of the Worthington-like jet (Worthington & Cole 1896) created 
after cavity collapse (jet drops) (MacIntyre 1972; Duchemin et al. 2002; Ghabache & 
Seon 2016; Walls et al. 2015). 

In this contribution we focus on the description of the  physical  processes governing 
the production of the violent Worthington jets ejected when a bubble, initially at rest 
at an interface, bursts –see figure 1–. The sequence of events following the breakup of 
the liquid film separating the  bubble from the  atmosphere reveals that,  as soon as a 
hole is nucleated at the bubble surface, capillarity widens the initial orifice, generating 
capillary waves propagating along the bubble interface (MacIntyre 1972; Duchemin et al. 
2002; Ghabache et al. 2014; Krishnan et  al. 2017). Once these waves reach the base of 
the bubble, a high speed Worthington jet is ejected vertically upwards and, usually, tiny 
droplets with diameters noticeably smaller than that of the bubbles from which they 
are produced, are issued from the tip of the highly stretched jet. Such micrometer-sized 
droplets are present in our daily life experience: indeed, they are felt at the instant they 
impact against our face when drinking a soda or another type of carbonated drink and are 
also perceived indirectly, through the aroma, which is enhanced thanks to mass tranfer 
from the drop to the atmosphere (Ghabache et al. 2016). 

Interestingly, the velocities of bubble bursting drops exceed, by far, the capillary 
velocity. Indeed, consider a bubble of radius R immersed in a liquid of density ρ, 
viscosity µ and interfacial tension coefficient σ such that the Bond number verifies 

the  condition  Bo  =  ρ g R2/σ        1.  For  bubbles  with  radii  R  =  3 × 10−4  m  in  water 
(ρ   =   1000  kgm−3,  µ   =   10−3   Pa·s  and  σ   =   0.072  Nm−1)  Bo   '  0.01      1  and 

the  velocity  of  the  first  drops  ejec√ted  is  '  10  ms−1  (Ghabache  et  al.  2014)  namely, 

with the additional finding in Ghabache et al. (2014) that the velocities of the drop 

produced could be fitted by a power law of the type    R−1, permits us to conclude 
that the scaling for the jet velocity proposed in the seminal work by Duchemin et al. 

(2002),     σ/(ρ R) ∝ R−1/2, cannot be valid along the whole range of values of the only 
dimensionless  parameter  characterizing  t√he  bursting  of  bubbles  in  the  limit  Bo  →  0 

 

namely, the Ohnesorge number, Oh = µ/   ρ R σ. Another relevant finding in Duchemin 
et al. (2002) and Ghabache et al. (2014) is that, for a given bubble radius, the velocities of 
the droplets ejected increase with µ for liquid viscosities below 10 times that of water. 
Not surprisingly, the same group of authors found that the jet velocity decreases for 
larger values of µ. Thus, the results in Duchemin et al. (2002) and Ghabache et al. (2014) 
indicate that, for a given value of Bo 1, there exists a range of values of the Ohnesorge 
number for which the bursting of bubbles in more viscous liquids produces faster jets. 
Another interesting result, reported by Walls et al. (2015), is that the main effect of 
the Bond number on the jet ejection process does not come through the deceleration of 
the vertical liquid column but from the initial shape of the bubble, which is uniquely 
determined by the value of Bo. Walls et al. (2015) also reported that the jet and drop 
ejection processes are favoured by low values of Bo, for which bubbles are spherical and 
the minimum depth of the cavity is located at a distance from the unperturbed free 
interface of, approximately, two times the bubble radius. 

In  two  recent  contributions  Gañán  Calvo  (2017,  2018)  provides  scalings  for  both  the 
velocities and diameters of the first jet drops produced after bubble bursting that agree 
fairly well with a set of experimental and numerical results reported in the literature. 
However,  as  it  is  explained  in  Gordillo  &  Rodŕıguez-Rodŕıguez  (2018),  this  model  rests 
on hypotheses that yield other predictions which are inconsistent with numerical results. 
Moreover, as it will be explained below, when extended to a wider range of conditions, 
the model exhibits singularities that are not consistent with observations. The reason 
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FIGURE 1. Sketch showing the sequence of events following the bursting of a bubble resting 
initially on a free interface. The retraction of the rim causes a convergent flow towards the base 
of the cavity that favors the formation of a fast jet of initial velocity Vjet and initial radius 
Rjet. The formation of a long liquid jet is the signature that the Weber number verifies the 
condition, ρ V 2 Rjet/σ     1, which implies that the tip of the jet is not appreciably decelerated 
by capillarity. 

 
behind these inconsistencies is that at the heart of the model is the assumption that the 
high-speed jet emerges as a consequence of viscous shear stress. Indeed, the equation for 
the jet velocity in Gañán Calvo (2017) reads, using our variables, 

 

Vjet ' 16 
σ   

Oh−2 (Oh∗ − Oh)
 −3/4 

= 16 
√

σ/(ρ R) Oh1/2 (Oh∗ − Oh)−3/4 , (1.1) 
 

with  Oh∗     0.043.  Notice  that  our  variables  R  and  Vjet  in  equation  (1.1)  are  used  to 
denote the initial bubble radius and the initial jet velocity, but these quantities are termed 
in  Gañán  Calvo  (2017,  2018)  R0  and  V   respectively  because  R  in  Gañán  Calvo  (2017, 
2018) denotes the jet radius at the ejection instant while we represent this variable here 
as  Rjet  (see  figure  1).  Moreover,  L  indicates  in  Gañán  Calvo  (2017,  2018)  an  arbitrary 
wavelength, a quantity which is termed here using Λ = λ R, with λ the corresponding 
dimensionless  wavelength.  Equation  (1.1)  was  deduced  in  Gañán  Calvo  (2017)  making 
use, among others, of momentum and mass balances which, using our variables, read 

 

ρ V 2 
VΛ 

∼ µ , V R ∼ V  ΛR 

 

, (1.2) 

 
 

with  VΛ  = σ/ (ρ Λ)  the  capillary  velocity  corresponding  to  the  wavelength  Λ  (Gañán 
Calvo 2018). The low Ohnesorge limit of equation (1.1), which expresses that 

Vjet ∝ 
√

σ/(ρ R) Oh1/2 , (1.3) 

combined  with  VΛ  √∝  
√

σ/ (ρ Λ)  and  the  momentum  balance  in  equation  (1.2)  yields 

the low Ohnesorge limit, viscosity sets in motion a region of width of the order of the 
radius of the bubble beneath the propagating wave and that the viscous shear stress 
accelerates the liquid beneath the bubble into a thin, fast jet. Indeed, notice that the 
physical  argument  provided  in  Gañán  Calvo  (2017)  to  recover  the  experimental  trend 
expressed by equation (1.3) in the limit Oh 1 –see equation (1.2)– is: 

 
ρV 2 ∼ µ 

√
σ/ (ρ R) 

, V
 R ∼ R R 

√
σ/ (ρ R) . (1.4) 

But this conclusion is in contradiction with boundary layer theory, from which it is well 
kn√own that the thickness of the region affected by viscosity beneath a shear-free interface 
is νTr, with ν = µ/ρ the kinematic viscosity and Tr ∼ Λ/VΛ the residence time (Moore 
1963).  Indeed,  since  the  theory  in  Gañán  Calvo  (2017,  2018)  predicts  that  Λ  ∝ R  and 
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VΛ ∝ 
√

σ/ (ρ R) for Oh      1, the boundary layer thickness corresponding to this limit is 

s 
µ 

  
ρ R3  

  1/2 
 

  

namely, the thickness of the region beneath the bubble which is affected by viscosity is 
much smaller than the initial bubble radius, a fact confirmed by the vorticity contours 
depicted  in  the  numerical  simulations  of  the  next  section  and  in  Gordillo  &  Rodŕıguez- 
Rodŕıguez (2018). To further support our claims, notice that a necessary condition for a 
long liquid jet to be formed in any physical context involving low viscosity liquids (low 
values of the Ohnesorge number) is that the momentum flux feeding the jet overcomes 

the capillary forces, i.e., ρV 2 Rjet/σ 4 O(1) (Eggers & Villermaux 2008), see figure 1. 
However, making use of the first equation in (1.4), the theory in Gañán Calvo (2017, 2018) 
predicts that, in contrast with experimental evidence, a long jet cannot be generated 
because 

ρ V 2 Rjet ρ V 2  R 
  jet 

< jet    ∼ Oh      1 . (1.6) 

It is the purpose of this contribution to present a theoretical framework that describes 
the formation of the high-speed Worthington jet ejected after bubble bursting. Our 
theory extends to all the range of Ohnesorge numbers where a droplet is ejected, in 
particular describing well the region of maximum jet speed, while recovering the limit of 
low Ohnesorge already described in the literature. We show that the dynamics of the jet 
are not driven by viscosity but by a purely inertial mechanism which is modulated by 
viscosity through the selection of the wavelength of the capillary waves excited during 
the rim retraction process. Our inertial theory not only recovers the low Ohnesorge 
limit expressed by equation (1.3), which reproduces experimental and numerical results, 
but also explains the abrupt decrease in jet velocity reported by Duchemin et al. (2002); 
Deike et al. (2018) above a certain value of the Ohnesorge number, a result that contrasts 
with  the  prediction  in  Gañán  Calvo  (2017)  that  jet  velocity  diverges  as  Oh  approaches 

Oh∗    0.043, see equation (1.1). 
The paper is structured as follows:  2 is dedicated to scale the wavelength of the 

capillary wave selected during the rim retraction process, section 3 is devoted to present 
a theory linking the jet ejection velocity with the wavelength of the selected capillary wave 
traveling towards the bottom of the collapsing cavity and the main ideas are summarized 

in §4. 

 
2. Wavelength selection during the rim retraction process 

In this contribution we will limit ourselves to describe the ejection of Worthington 
jets from the bursting of bubbles with characteristic radii  well  below  the  capillary 
length. We will perform numerical simulations fixing the value of the Bond number and, 
therefore, the results obtained will depend on just one dimensionless parameter, namely, 
the Ohnesorge number, Oh = µ/ ρ R σ. Along the text, dimensionless variables will be 
written using lower case letters to differentiate them from their dimensional counterparts 
(in capital letters). Distances, times and pressures will be made non-dimensional using 

as  characteristic  values,  R,       ρ R3/σ   and  σ/R;  hence,  veloc√ities  will  be  made  non- 

Axisymetric simulations have been performed using the open-source code Gerris 
(Popinet 2003; Deike et al. 2018) using as values for the density and viscosity ratios 

1.2 × 10−3  and  1.8 × 10−2  respectively,  corresponding  to  air  bubbles  in  water.  The 

σ ρ ∝ R Oh 
1/2 
  Λ ∼ R , (1.5) 
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FIGURE 2. Shape of the bubble at t = 0. The black thick lines correspond to the numerical 
solution of the hydrostatic equations describing a bubble resting on a free surface as described 
in Lhuissier & Villermaux (2012). The cyan dashed line corresponds to a sphere with a radius 
equal to that of the bubble at the apex. The figure also defines the angle θ used to characterize 
the propagation speed of the capillary waves. 

 

  
FIGURE 3. Shape of the collapsing cavity and contours of azimuthal vorticity at different instants 
of time for Bo = 0.05 and Oh = 0.012. The colour code in the figure indicates the value of the 
azimuthal vorticity in the liquid. See also the videos included as supplementary material. 

 
computations are started by suddenly removing the cap of a bubble resting statically 
on a free surface. The initial shape of the bubble, see figure 2, is found solving the Young-
Laplace equation for a constant value of the Bond number, Bo = ρgR2/σ = 0.05, which is 
sufficiently small so that the influence of gravity in the  jet ejection process comes only 
through the initial shape of the bubble (Walls et al. 2015). Simulations with different grid 
refinements have been carried out to check that the results presented here are 
independent of the numerical grid. The script used to determine the initial shape is 
provided in the supplementary material, along with the Gerris code used to perform the 
simulations. 

Capillary waves are excited during the capillary retraction of the liquid film that 
separates the bubble from the atmosphere, see figure 3 (MacIntyre 1972; Duchemin et al. 
2002). The description of the ejection of the Worthington jet depicted in the last panel in 

θ 
z 
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figure 3 requires, as a first step, to deduce the value of the dimensionless length scale λ∗ of 
the waves reaching the bottom of the cavity . It is known that the rim retraction excites 
capillary waves of wavelength proportional to the local thickness of the liquid film located 
upstream of the blob where the liquid is collected (Taylor 1959; Song & Tryggvason 1999). 

Hence, it could be thought that the dimensionless wavelength, λ∗, characterizing the 
first capillary wave reaching the bottom of the cavity, is proportional to the minimum 
thickness of the liquid film. However, the capillay waves of smallest wavelengths are 
rapidly attenuated by viscosity. Consequently, the capillary wave preceding the liquid 

blob depicted in figure 3 is the one with the shortest wavelength, λ∗, which is not 
attenuated by viscosity during the time interval characterizing the rim retraction process. 

Figure 4 shows that, after a hole is nucleated at the film, a wave of characteristic 

wavelength λ∗, which increases with Oh, propagates towards the bottom of the cavity at 
a constant angular velocity which is independent of the Ohnesorge number, a fact that 
was already noticed by Krishnan et al. (2017). Therefore, the time characterizing the rim 

retraction process is nothing but the capillary time ρR3/σ 
1/2 

and hence, the criterion 
that determines the wavelength of the wave depicted in figure 3 which propagates towards 
the base of the cavity can be written as 

    1 ρ R3 
 1/2

 

  

with 1/T (λ) the viscous attenuation rate, which increases with decreasing values of the 
dimensionless wavelength λ, as we will show next. Indeed, since the amplitude of capillary 

waves decreases exponentally in time as e−t/T (Batchelor 1967), and the time taken by 
capillary waves to reach the bottom of the cavity is the capillary time, see figure 4, the 

amplitude of the waves verifying  the  condition  ρR3/σ  
1/2  

4 T (λ)  will  be  negligible 
when they reach the base of the bubble. Hence, the waves with the shortest wavelengths 
that will reach the base of the cavity will be those verifying the condition expressed by 
equation (2.1) and these waves will control the jet ejection process as we will show in 
what follows. 

Two different scenarios must be considered for the calculation of the attenuation rate, 
depending on the ratio between the wavelength of a capillary wave excited during rim 
retraction, λ R, and the thickness of the boundary layer that develops around its crest, 
δR (see the vorticity fields in figure 3). This boundary layer appears to enforce the 
condition of zero shear stress on a surface with curvature, and it is entirely analogous to 
that developing around a translating spherical bubble, studied by Moore (1963). Making 
use  of  Moore’s  results,  the  boundary  layer  thickness  induced  by  on√e  of  the  capillary 
waves excited during the first instants of the rim retraction process is ν Tc, with Tc the 
residence time of fluid particles over a wave of wavelength Rλ, 

 
δ R ∝ 

s
 

ρ R3λ3 
 1/2 

 

 
. (2.2) 

If δ      λ, the dissipation of kinetic energy will take place in a spatial region surrounding 
the wave where the flow is irrotational but, if δ λ, the kinetic energy will be dissipated 
within the boundary layer developing around the wave. The balance of kinetic energy 
in the region where energy is dissipated yields two different expressions for 1/T : for the 
irrotational flow case, δ/λ 1, the attenuation rate is given by the well known result in 

Please, notice that the selected wavelength λ∗ must not be mistaken with λ, which denotes 
arbitrary values of the dimensionless wavelength 

σ 

σ T (λ∗) ' 1 , (2.1) 
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FIGURE 4. a) A wave of characteristic dimensionless wavelength λ∗ propagates along the cavity. 
The wavelength of the capillary wave measured at θ = π/2 increases with Oh. b) The selected 
waves propagate at a constant velocity 5 σ/(ρ R), which does not depend on the Ohnesorge 
number. The origin of times, t = 0, is fixed at the instant the bubble bursts. c) Time evolution 

of the wavelength λ∗ corresponding to the wave selected by viscosity for several values of the 
Ohnesorge number. 

 

Batchelor (1967) –see also the Appendix–, 

1 µ 

T  
∝ 

ρ R2λ2 
, (2.3) 

but, when δ  λ, the dissipation of kinetic energy takes place within the boundary layer 
of thickness δ, where the flow is no longer irrotational. In this latter case, the expression 
for the attenuation rate is –see the Appendix for details– 

1 µ    
Oh λ−5/2 . (2.4) 

T ρ R2 

Introducing equations (2.3)-(2.4) into the condition expressed by equation (2.1), we 

obtain the following scalings for the wavelength λ∗ selected by viscosity during the rim 
retraction process: 

 
If λ     δ : 

  µ  

ρ R2λ∗2 

  
ρ R3  1/2 

 

 

 ' 1 ⇒ λ∗ ∝ Oh1/2 . 

 

 
(2.5) 

If λ ∼ δ : 
   µ 

ρ R2 
Oh (λ∗)−5/2 × 

  
ρ R3  1/2 

 

 

 ' 1 ⇒ λ∗ ∝ Oh4/5 . 

The results in equation (2.5) are confirmed in figure 5, where it is also depicted that 

σ 

σ × 
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FIGURE 5. (a) The wavelength of the selected capillary wave scales as Oh1/2 for Oh 4 0.02 and 
as Oh4/5 for Oh 4 0.02. (b) Time evolution of the wavelengths of the waves excited during rim 
retraction. These evolutions, depicted in figure 4(c), collapse onto a single curve when rescaled 
with the fits shown in panel (a). Here, α = 1/2 for Oh ≤ 0.02 and α = 4/5 for Oh > 0.02. 

 
the transition between the two scalings provided in equation (2.5) takes place for a 

value of the Ohnesorge number Oh     0.02. The numerical value of λ∗ corresponding to 

Oh = 2     10−3  in figure 5 slightly deviates from λ∗     Oh1/2, being this fact associated 
with how the selected wavelength represented in figure 4 is measured numerically, as it 
is supported by the fact that it does not have any consequence in the scaling of the jet 
velocity, as we will show in what follows. Remarkably, figure 5 confirms the robustness 
of each of the scalings in equation (2.5), which are valid in approximately one decade in 

Oh, namely, in two decades in the Laplace number, defined as La = Oh−2, which is the 
dimensionless number used in other references (Deike et al. 2018; Lai et al. 2018). 

Let us point out that, by including the dissipation in the two fluids, the analysis leading 
to the scalings in (2.5) could be extended to predict the wavelength selected during the 
coalescence or partial coalescence between two drops (Gilet et al. 2007), which would 
then provide with the scaling of the diameter of the satellite drop produced (Zhang et al. 
2015). 

Figure 6 illustrates the way capillary waves excited during the rim retraction process 
deform the base of the cavity before the jet emerges. Indeed, the initially spherical 
cavity transforms into a  shape  that  can  be  approximated  by  a  truncated  cone  with 
an opening semiangle which hardly varies with Oh. However, the base of the truncated 
cone approximates the vertex as the Ohnesorge number increases. This is due to the fact 
that the maximum amplitude of the non-linear capillary waves is proportional to their 
wavelengths (Crapper 1957), with the wavelength increasing with Oh, as it is clearly 
depicted in figure 5. In addition, figure 6 also shows that, when Oh equals a critical value 
that, from now on will be termed Ohc, the amplitude of the selected wave is so large that 
its crest reaches the vertex of the cone. Therefore, for Ohnesorge numbers Oh > Ohc, a 
bubble is entrapped below the collapsing cavity. 

 
 

3. Scaling the jet speed 

Our model starts by noticing that when the capillary wave that propagates down the 
surface of the collapsing bubble reaches the base of the truncated cone, it lowers the 
bottom of the gas cavity to a point closer to the vertex, as illustrated in figure 6. Since 

the amplitude of the wave at the base of the collapsing cavity is proportional to λ∗, and 
λ∗ ∝ Oh1/2 for Oh < Ohc, the distance between the crest of the wave, nearly the base 
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FIGURE 6.  (a)  The  shape  of  the  collapsing  cavity  at  the  instant  of  jet  ejection  can  be 
approximated by a truncated cone for Oh < Ohc. For Oh > Ohc, the crest of the waves reach 
the vertex and a tiny bubble is entrapped below the collapsing cavity. (b) Zoom of the base of 
the collapsing cavity, from which the jet is issued, which can be approximated by a truncated 
cone, see the sketch in figure 7. Notice that, for the value of the Bond number considered here, 

Bo = 0.05, bubbles are entrapped for Oh 4 0.02. From that value onwards, the range of values 
for which a satellite bubble is formed, the jet velocity decreases, see figure 8(a). The bubble 
is entrapped as a consequence of the fact that the amplitude of the wave excited during the 
rim retraction process is such that the minimum height of this wave is below the vertex of the 
cone. Observe in this figure and in figure 8(a) that the maximum jet velocity is attained for the 
value of the Ohnesorge number for which the bottom part of the wave reaches the vertex of the 
truncated cone. 

 

 
of the cavity, and the vertex of the cone can be approximated as: 

lmin ∝ 1 − (Oh/Ohc)1/2 , (3.1) 

see figures 6 and 7. In addition, the shape of the cavity at the moment the jet eruption 
can be approximated by a cone of opening semiangle β and, therefore, the radius of the 
cavity can be expressed as 

h(z) = z tan (β) . (3.2) 

Moreover, the balance between capillary pressure and liquid inertia at the cone interface 
yields (Zeff et al. 2000; Sierou & Lister 2004) 

vr ∝ (cos β)1/2 h−1/2 , (3.3) 
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FIGURE 7. The image at the left is a sketch representing the zoomed view of the cavity base 
in figure 6(b) for a value of the Ohnesorge number below the one for which bubbles begin to 
be entrapped. The base of the cavity at the moment the jet is about to be ejected can be 
approximated in this case by a truncated cone. The sketch does not represent the top part of 
the jet, which is about to be issued in figure 6(b). The image at the right indicates that the 
velocity field can be approximated by a line of sinks with intensities dQ(z0) = 2π h(z0) vr (z0) d z0 

extending along the axis of symmetry a distance proportional to the wave amplitude, λ∗. 
The three horizontal lines in between the two images indicate that the image at the right is 
conceptually equivalent to that at the left in what refers to the velocity field generated at the 
base of the cavity, which can be described using a continuous line of sinks. 

 

 
with vr the radial component of the velocity field. Given the local radial velocity field 
(3.3) and making use of our ideas in Gekle et al. (2009) and Gekle & Gordillo (2010), we 
express the velocity field as the one created by a line of sinks of intensity 

dQ(z0) = 2π h(z0) vr(z0) d z0 ' 2π (sin(β))1/2 z1/2 dz0 (3.4) 

where use of equation (3.3) has been made. Indeed, the local radial velocity field at the 
base of the cavity is created by a line of sinks with the intensity at the height z0 calculated 
in (3.4) as the flow rate through a cylindrical surface of radius h(z0) and height dz0 at 
which the radial velocity is vr(z0), see figure 7. The line of sinks with intensities given 
by equation (3.4) extends along the axis of symmetry a distance proportional to the 

length scale of the flow in the vicinity of the base of the cavity, namely, λ∗. The axial 
component of the velocity, vz, at the vertical position z and the radial position ϵ can 
thus be expressed as 

√
sin(β) 

∫ zs+λ∗

 

 
 

z1/2 (z − z0) 
 

 

 

 

vz = − 
2

 zs 

h
 

0 
(z − z0) 

+ ϵ2 i3/2 dz0 (3.5) 

with zs =  klmin cos β  =  kzmin  the origin of the line of sinks and k  >  1 a constant 
that determines where the line of sinks starts (see figure 7). The integration by parts of 
equation (3.5) for ϵ = 0, yields 

∫ 
z1/2dz0

 
 

   1 2 x2 
= 

 
dx =    1  

 
   x  

 
— ln 

r 
1 + x 

!
  
, (3.6) 

(z − z0)2 z1/2 
(1 − x2)2 z1/2 1 − x2 1 − x 

with z0/z = x2. Since the velocity at a given location is mostly induced by nearby sinks, 

we can simplify this expression for x ≈ 1. Hence, 

∫ 
z1/2dz0

    1 x  1/2 
0 

 
 

 

 (z − z0) 2  ' z1/2 1 − x2 
= 

z − z . (3.7) 
0 

2 

0 z 



11 
 

c 

≈ 

∝ 
R

 ⇒ ∼ 

jet 

' 

jet min c 

  

Thus, the jet velocity at the axis of symmetry can be expressed as 

(kzmin)1/2 (kzmin  + λ∗)1/2
 

vjet ' vz(z = zmin) = 
(k − 1) z

  
min — 

(k − 1) z 
 
min 

. (3.8) 
+ λ∗ 

Two limits can be clearly distinguished in equation (3.8). If λ∗ zmin, which occurs 
only when the Ohnesorge number is such that Oh ≈ Ohc, 

v ∝ z−1/2 ∝ 
 

1 − (Oh/Oh )1/2
  −1/2  

. (3.9) 

If λ∗    zmin namely, if Oh    Ohc, 
 

vjet ∝ Oh1/2 
  

1 − (Oh/Oh )1/2
  −3/2 

' KOh1/2 . (3.10) 

Interestingly, equation (3.9), which covers the regime in which the maximum jet velocity 
is attained, expresses that the jet velocity  is proportional to the  maximum  velocity  at 
the cavity walls, a fact indicating that the inertial mechanism governing the jet ejection 
process for Oh     Ohc  is conceptually similar to the bazooka  effect  described in Birkhoff 
et al. (1948): indeed, the collapse of the conical cavity walls gives rise to the formation 
of the fast Worthington jet, in a manner similar that a fast thin metal jet is generated 
by the collapse of the conical walls of a metal-lined cavity. 

The expressions for the jet velocity in equations (3.9)-(3.10) can only be valid while 
Oh < Ohc. Indeed, for Oh > Ohc, the crest of the waves will reach the vertex, the cavity 
will adopt a purely conical shape, and hence the velocity predicted by equation (3.9) 
would tend to infinite. Therefore, for Oh > Ohc, the jet velocity is limited by viscous 
stresses and vjet can be determined making use of the ideas in Riboux & Gordillo (2014), 
where the authors described the splash of droplets impacting a smooth dry substrate, 
being the case of splashing droplets the two-dimensional analogue of the present physical 
situation. Riboux & Gordillo (2014) proposed a criterion that expresses that the jet will 
only be ejected at the instant when the deceleration caused to the emerging jet by viscous 
and capillary stresses is smaller than the deceleration experienced by the collapsing cavity 
walls. Applied to this particular physical situation, the criterion in Riboux &  Gordillo 
(2014) yields: 

V 2 V ρ V R 
ρ    jet 

Rjet 

    jet 
µ  2 

jet 

  jet    jet 

µ 
1 (3.11) 

with Rjet the radius of the base of the cavity at the instant of jet ejection. In equation 
(3.11) we have taken into account that, in the present case, the collapse of the bubble is 
driven by capillarity (Zeff et al. 2000; Sierou & Lister 2004) namely, ρV 2 ∝ σ/Rjet ⇒ 

Rjet ∝ σ/ 
 
ρ V 2  

 
; inserting this result into equation (3.11) yields 

σ  
Vjet ∝ 

µ ⇒ vjet = Vjet 

  σ −1/2 

ρ R ∝ Oh−1 . (3.12) 

The predictions for the jet velocity provided in equations (3.9)–(3.10) and (3.12) are 
confirmed in figure 8(a), where it can also be appreciated that the maximum jet velocity 
is reached for Oh = Ohc       0.02, namely, for the value of the Ohnesorge number for 
which the crest of the wave reaches the vertex of the cone, see figure 6(b). Equations 
(3.9)–(3.10), (3.12) as well as the results depicted in figure 6(b) and 8(a), reveal that the 
jet velocity decreases when a bubble is entrapped, a result which is identical to that found 
by Thoroddsen et al. (2018), who reported that the fastest Worthington jets produced 
by the collapse of the crater formed when a drop impacts a deep liquid pool, are those 

jet 
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FIGURE 8. (a) Equations (3.9)–(3.10) and (3.12) predict the values of the jet velocity calculated 
numerically. The velocity increases with Oh until the crest of the wave reaches the vertex of the 
cone for Oh = Ohc, see figure 5(b), and decreases for larger values of the Ohnesorge number. 
(b) Same figure as in (a), with large blue circles representing our numerical points, but showing 
also the data points of Deike et al. (2018) (blue and cyan small symbols, corresponding to 

Bo = 10−3 and 10−2 respectively), Ghabache et al. (2014) (green squares), and Krishnan et al. 
(2017) (purple triangles for water and black ones for Glycerine-Water with 48% glycerine). From 
all these references, only points corresponding to Bo < 0.05 are shown. 

 
 

that bypass the pinchoff of a bubble. In addition, Thoroddsen et al. (2018) also reported 
that the radius of the gaseous dimple formed at the bottom of the crater approaches the 
axis of symmetry with a power law of the type τγ, with τ the time to  singularity.  The 
value γ 0.5 reported in Thoroddsen et al. (2018) for the exponent of the power law 
describing the shrinking of the gas cavity, indicates that the velocity field around the gas 
thread is the one induced by a line of sinks located at the axis of symmetry (Gordillo 
2008). All these evidences point out to the fact that the physical model presented here 
can also be applied to describe the vertical jets commonly observed after a drop impacts 
on a deep pool of liquid. 

Finally, notice that the dependence of the jet velocity with viscosity expressed by 
equations (3.9)–(3.10) and (3.12), represented in figure 8(b), is in agreement with the 
numerical results in Deike et al. (2018) and is close to the experimental measurements 
reported in Ghabache et al. (2014) and Krishnan et al. (2017). Depending on the author, 
the experimental measurements show different values of vjet for exactly the same values 
of the Bond and Ohnesorge numbers, so the deviations observed in figure 8(b) with 
experimental data can be attributed to slight asymmetries and also to the fact that the 
values reported in Ghabache et al. (2014); Krishnan et al. (2017) refer to the velocity 
of the first drop ejected, which is smaller than the one reported here because of the 
capillary and viscous deceleration experienced by the jet tip before the drop is emitted. 
Indeed, notice that our numerical values represented in figure 8(b) have been calculated 
at the instant of inception of the jet (see figure 1 and at the last panel in figure 3). In 
addition, the small devitations appreciated in figure 8(b) between our results and those 
in Deike et al. (2018) can be attributed to the way the jet velocity is determined from the 
analysis of the numerical results: as it was pointed out above, here we report the initial 
jet velocity. Moreover, there exists another important difference between the results in 
Deike et al. (2018) and those reported here: the values of the Bond number are small 
but slightly different in both cases, and so are the initial shapes of the bubbles (Walls 
et al. 2015). Consequently, the tiny differences in Bo cause small differences in the initial 
static shape of the bubble and this fact influences the way the cavity deforms into a 
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  ' 

∝ 

c 

truncated cone, causing slight variations in the value of Ohc(Bo) for which a bubble 

is firstly entrapped. Indeed, for values of Bo  ≤ 0.01, Deike et al. (2018) found that 

Ohc ' 1000−1/2 ' 0.03, a value which is slightly larger than the one corresponding to 
the case considered here, Ohc(Bo = 0.05) 0.02. Since Ohc(Bo) decreases for increasing 
values of Bo, slightly smaller values of the Bond number, like the ones considered in 
Deike et al. (2018), cause the maximum jet velocity to be slightly displaced to larger 
values of the Ohnesorge number, as it can be clearly appreciated in figure 8b. 

Figure 8(b) also shows that the  jet velocity  calculated  using equation  (1.1)  follows 
the trend of the experimental measurements and of the numerical results in the limit 

Oh      1, but fails to predict the observed trends for Ohc < Oh < Oh∗, with Oh∗    0.043 
the  value  in  Gañán  Calvo  (2017).  Indeed,  figure  8(b)  shows  that,  while  the  jet  velocity 

decreases abruptly for Ohc  < Oh < Oh∗, the fit expressed by equation (1.1) predicts 
diverging jet velocities as Oh       Oh∗. Hence, equation (1.1) happens to predict well a 
limited range of values of Oh, a fact that could explain why the numerical results in figure 
3 in Lai et al. (2018) show a good collapse into an universal shape, but only for values 

of the Ohnesorge number in the range Oh < 5000−1/2 ' 0.014 < Ohc < Oh∗ ' 0.04. 
The results depicted in figure 8(b) are also in qualitative agreement with Ghabache & 

Seon (2016) and Thoroddsen et al. (2018) where it is shown that, for increasing values of 
the Ohnesorge number, the jet velocity increases with Oh until the maximum jet velocity 
is reached for Ohc and decreases for values of the Ohnesorge number larger than Ohc. We 
cannot show a direct comparison with the results in Ghabache & Seon (2016) because the 
authors only reported the diameters of the drops ejected and, in the case of Thoroddsen 
et al. (2018), the authors analyze jets ejected after the impact of a drop on a free surface, 
not being fully clear the relationship between the impact Weber number and the shape 
of the cavity before it collapses. 

 
 

4. Conclusions 

When a hole is nucleated at the thin film that separates a bubble resting on a gas- 
liquid interface from the atmosphere, the subsequent retraction of the rim generates 
capillary waves of characteristic dimensionless wavelengths that increase with viscosity 

as λ∗   Ohα, with α = 1/2 for Oh 4 0.02 and α = 4/5 for Oh 4 0.02. These waves 
propagate along the bubble interface towards the base of the collapsing cavity, which 
adopts the shape of a truncated cone. The vertical distance between the lower base of 

this cone and its vertex decreases linearly with λ∗. The radial flow field, which can be 
approximated by a line of sinks extending along the axis a distance proportional to λ∗, 
also induces vertical velocities that give birth to a fast and thin jet ejected upwards. 
The maximum jet velocity is attained for the value of the Ohnesorge number Ohc for 
which the crest of the propagating wave reaches the vertex of the truncated cone. For 
Oh       Ohc, vjet ∝ Oh1/2, for Oh ≈ Ohc the jet velocity is proportional to the maximum 

 

velocity of the collapsing cavity walls, v 
 

jet ∝ 
  

1 − (Oh/Oh  )1/2
   −1/2

, being this scaling 

analogous to that found  in lined cavities  that make use  of the bazooka effect (Birkhoff 

et al. 1948) and for Oh > Ohc, vjet ∝ Oh−1. 
Let us point out that, in this contribution, we have only carried out numerical 

simulations for Bo  = 0.05, a value which is sufficiently small to neglect the effect of 
gravity in the deceleration of the jet. However, the Bond number affects the initial shape 
of the bubble and hence, the opening semiangle of the cone and the value of Ohc as well. 
Then, although not considered in this work, the effect of the Bond number on the jet 
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ejection velocity can be straightforwardly rationalized using the theoretical framework 
presented here. 
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6. Appendix 

The expression for the viscous attenuation rate corresponding to the case δ λ can 
be found from the kinetic energy balance 

d 

dt  Ω 

ρ V 2 
dω µ 

Ω 

 
γ : γ dω , (6.1) 

  

with Ω the spatial region of characteristic volume R3λ2 surrounding the  wave and 
with 

γ = 
1 

V + T V  , (6.2) 
2 

the deformation rate tensor. Notice that the zero shear stress condition at the interface 
requires that the velocity gradients within the boundary layer to be of the order of the 
velocity gradients in the irrotational flow region, namely, 

V ∗ 

∇V ∼ 
Rλ 

, (6.3) 

with V ∗ the characteristic velocity. Therefore, since in the case δ λ most of the kinetic 
energy is dissipated within the boundary layer, of volume R3δ2, the balance of kinetic 
energy expressed by equation (6.1) yields 

ρV ∗2R3λ2 ∼ µ 
V ∗2 

R3δ2 ∼ µ 
V ∗2 µ R 

   
ρR3λ3 

  1/2
 

 
 

  

1 µ  
∼ 

 

Oh λ−5/2 ,  (6.4) 

where use of equation (2.2) has been made. It can be shown that the viscous dissipation 
rate corresponding to the irrotational flow limit in equation (2.3) can be recovered 
substituting δ2 in equation (6.4) by λ2. 
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GAÑÁN  CALVO,  A.M.  2018  Scaling  laws  of  top  jet  drop  size  and  speed  from  bubble  bursting 
including gravity and inviscid limit. Phys. Rev. Fluids 3, 091601. 

CRAPPER, G.D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. 
J. Fluid Mech. 2, 532–540. 

σ ρ T R2λ2 R2λ2 T ρ R2 

1 
⇒ 



15 
 

DEIKE, L., GHABACHE, E., LIGER-BELAIR, G., DAS, A.K., ZALESKI, S., POPINET, S. & SEON, 
T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603. 

DUCHEMIN, L., POPINET, S., JOSSERAND, C. & ZALESKI, S. 2002 Jet formation in bubbles 
bursting at a free surface. Phys. Fluids 14, 3000–3008. 

EGGERS, J. & VILLERMAUX, E. 2008 Physics of liquid jets. Reports on Progress in Physics 
71 (3), 036601. 

GEKLE, S. & GORDILLO, J.M. 2010 Generation and breakup of worthington jets after cavity 
collapse. part 1. jet formation. Journal of Fluid Mechanics 663, 293330. 
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