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Abstract—The ”Graphaviour” study addresses the challenge
of illicit activities in Bitcoin transactions by classifying behav-
iors based on graph topological similarities. Utilizing address-
transaction graphs and N-step concepts, it constructs unique
graphs per address to analyze Bitcoin behaviors through their
structural properties, employing clustering algorithms. The
methodology involves an extensive dataset of blockchain transac-
tions, evaluated for graph-based analysis specificity. It divides
the study into 1-Step and 2-Steps analyses to observe how
graph depth impacts clustering accuracy versus computational
load. Findings indicate that deeper graphs improve classification
precision but increase computational demands, highlighting a
crucial trade-off. This study not only emphasizes the importance
of graph depth in analyzing Bitcoin behaviors but also suggests
future research directions for diverse behavior exploration and
alternative validation models. Contributing significantly to Bit-
coin transaction analysis, it offers new insights into behavior
classification with graph-based methodologies.

Index Terms—Bitcoin, Graph Topology, Behaviour classifica-
tion, Clustering, Behaviour aggregation

I. INTRODUCTION

Over the last decade, blockchain technology has dramati-
cally reshaped the financial sector with its promise of trans-
parency and immutability, drawing interest from a wide array
of stakeholders. Yet, the same attributes that have fueled its
adoption—decentralization and anonymity—have also made
platforms like Bitcoin appealing to cybercriminals, creating a
digital realm where illicit activities can flourish with relative
impunity due to regulatory gaps.

The task of deanonymizing Bitcoin participants has thus
emerged as a crucial challenge, addressed by numerous studies
[10], [21], [26]. These efforts aim to enhance transparency
by linking blockchain activities to real-world identities, often
starting with heuristic and Open-source intelligence (OSINT)
gathered from various external sources. Despite the potential
of these methods, their reliance on extensive external data
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can make them resource-intensive. Moreover, leveraging data
mining and deep learning to predict Bitcoin entity behavior
and detect illegal transactions [27], as explored in the article
”Cascading machine learning to attack bitcoin anonymity”
where a graph construction approach based on N motifs is
used, examining the number of nodes and the academic in-
formation of each generated subgraph, represents a promising
but complex avenue.

Blockchain’s graph-like structure, particularly the address-
transaction graph, serves as the foundation for these inves-
tigations, allowing for the analysis of Bitcoin flow among
addresses. Inspired by such works, our paper proposes an inno-
vative approach that merges the address-transaction graph with
N-steps analysis to craft a unique graph per Bitcoin address.
This methodology enables the identification of topological
similarities across behaviors, utilizing various clustering algo-
rithms to analyze and aggregate these behaviors, with a focus
on how graph depth—from 1 to 2 hops—affects clustering
effectiveness and computational demand.

Preliminary results indicate that deeper graph analysis yields
more accurate clustering at the cost of increased computational
resources. This finding emphasizes the need for balanced
feature selection to maximize clustering efficiency.

Following this introduction, the paper is structured as fol-
lows: Section II outlines the clustering algorithms and graph
structures used, along with related work. Section III details our
methodology, while Section IV describes the dataset, model
configurations, and experiments conducted. The results and
their implications are discussed in Section V, and Section VI
concludes with insights and directions for future research.

II. PRELIMINARIES

This section introduces the key concepts considered in this
study, focusing on clustering within the Bitcoin transaction
network and the structural dynamics of Bitcoin graphs.
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A. Clustering
Our objective in clustering is to discern similar behavioral

patterns within the Bitcoin transaction network’s extracted sub-
graphs, particularly at each transaction hop. This analysis aims
to identify natural clustering formations without predetermin-
ing the number of clusters, offering an authentic unsupervised
exploration of the complex and diverse transaction patterns
in the Bitcoin network. The selected models, DBSCAN [12],
OPTICS [4], and HDBSCAN [9], are specifically chosen for
their capability to adapt to the data’s intrinsic structure, thereby
facilitating a more genuine discovery process. Below is a
detailed discussion on each model:

• DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise): DBSCAN is adept at identifying
clusters as regions of high density that are separated
by regions of low density. This ability is crucial for
discovering clusters of arbitrary shapes within the data.

• OPTICS (Ordering Points To Identify the Cluster-
ing Structure): An extension of DBSCAN, OPTICS
enhances the model’s capacity to detect clusters at various
scales of density. This feature is particularly useful for
the detailed exploration of subgraphs at different levels
of granularity.

• HDBSCAN (Hierarchical DBSCAN): By introducing a
hierarchical approach to density-based clustering, HDB-
SCAN is valuable for examining subgraphs with poten-
tially complex and layered clustering structures.

These density-based clustering models are preferred over
other methods, such as agglomerative hierarchical clustering
or K-means, due to their inherent flexibility in adapting to the
data’s natural structure and their ability to uncover clusters of
diverse shapes and sizes without prior assumptions [6]. This
approach ensures an unsupervised and authentic exploration of
the transactional behaviors within the Bitcoin network, laying
a solid foundation for a deep and precise understanding of its
transactional dynamics.

B. Bitcoin Graph Structure
Transactions in Bitcoin blockchain form naturally a directed

graph that can be represented by Bitcoin public key addresses
and transactions (nodes) and relations (edges). In particular,
edges going from an address to a transaction corresponds
to incoming relations and the oposite to outgoing relations.
This graph can be reconstructed directly from blockchain data
by the linkage of public key addresses, as it can be seen in
Figure 1. In turn, information about about relations can be
retrieved too. Examples of it is the amount of money sent or
timestamps, among others. This allows not only to build the
directed graph, but the extraction several characteristics of it
too. This graph can be modified to extract the directed address
graph, where the transaction nodes are converted to different
edges (subtransactions) and the remaining nodes correspond
uniquely to addresses. An example is shown in Figure 2

Having uniquely defined nodes (in this case corresponding
to addresses) in the graph allows to introduce the concept of
n-degree node neighbourhood.

Fig. 1. Example of local bitcoin transaction graph: blue circular nodes
correspond to addresses and yellow squared nodes to transaction nodes.

Fig. 2. Example of local bitcoin address graph: blue circular nodes correspond
to addresses whereas edges correspond to subtransactions in a transaction.

Definition 1 (Path). Let V be a set of nodes, E = {{u, v} |
u, v ∈ V } a set of edges and G = (V,E) the undirected graph
built from them. Then, a path between two nodes u0, un is a
sequence of edges (e1, ..., en) where e1, ..., en ∈ E, such that
ei = {ui−1, ui} for i = 1, .., n. Moreover, this path is defined
to have length |{e1, ..., en}| = n. The set of minimal paths
from u to v is defined such as the set of paths from u to v
where the length of the paths is minimal.

The definition of path allows to define n-step neighbour-
hood. But first, we need to provide the next lemma.

Lemma 1. Let V be a set of nodes, E = {{u, v} | u, v ∈ V }
a set of edges and G = (V,E) the undirected graph built
from them. Let v be a node and Pn,v the set of minimal paths
of length n. For a path, p = (e1, ..., en) define the set p̂ =
{e1, ..., en} and define E′ =

⋃
p∈Pn,v

p̂ ⊆ E. Then, there exists

V ′ ⊆ V such that E′ = {{u, v} | u, v ∈ V ′}. Moreover
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Gv,n = (V ′, E′) is a connected subgraph of G.

Proof. The first part can be trivially proved due to the fact
that e = (u, v) ∈ E, and in particular e ∈ E′, implies that
u, v ∈ V . The subgraph Gv,n connectivity is trivially proved
too, due to the way it is built.

Definition 2 (n-step neighbourhood). Let G = (V,E) be an
undirected graph with node set V and edge set E, and let
v a node in V and n > 0 be a natural number. Then, the
subgraph Gv,n ⊆ G constructed in Lemma 1 is called the n-
step neighbourhood of v (Figure 3 depicts an example of it.
Note that Gn,v ⊆ Gn+1,v).

Fig. 3. 3-step neighbourhood: The darkest blue node is the central node,
whereas lighter blue illustrate 1-step neighbourhood, the addition of gray
nodes and corresponding edges illustrate 2-step neighbourhood and the 3-
step neighbourhood is obtained by the addition of the white node.

In a directed graph, such as the address graph, directions
might be omitted to construct these neighbourhoods, this is,
incoming and outgoing n-steps are taken into account. An
example of that can be observed in Figure 4

C. Related work

The surge in Bitcoin activity from 2020 to 2021 fueled
extensive research into blockchain technology and cryptocur-
rency transactions, building on foundational studies. A promi-
nent focus has been on analyzing Bitcoin transactions, trans-
formed into graph structures, to explore user anonymity and
behaviors, as seen in the work by Gaihre et al. [14] and others
[5], [13]. Research has also extended to the structural analysis
of these transaction graphs for predicting economic behaviors,
employing feature maps, regression techniques, and neural
networks, notably in Greaves and Au’s 2015 study [15].

Furthermore, machine learning has been widely applied to
detect patterns in transactions between wallets, with the trans-
formation of data into Directed Acyclic Graphs (DAGs) [3],
[19], [23] showcasing its effectiveness for crypto-transaction

Fig. 4. 2-step neighbourhood in the address graph for address a0.

analysis. This approach not only aids in understanding transac-
tion behaviors but also supports the extraction and processing
of features [23], highlighting the adaptability and potential of
machine learning in blockchain and cryptocurrency research.

A recent approach to analyzing Bitcoin address behavior
is highlighted in the study ”Demystifying Bitcoin Address
Behavior via Graph Neural Networks” [16] which proposes
creating various graphs linking transactions (edges) to each
pair of involved addresses (nodes). A tool named BAClassifier
is utilized to classify Bitcoin addresses based on their trans-
action behaviors, as represented in these graphs, using Graph
Neural Networks (GNN). However, the study does not mention
augmenting graph structures using Network centrality metrics
as specified. The BAClassifier achieved a precision of 96% and
an F1-score of 95%, showcasing its effectiveness in classifying
Bitcoin addresses based on their transaction behaviors [16].
From an economic perspective, the study by Weber et al. [24]
assesses the implications of anti-money laundering regulations
in the context of cryptocurrencies, with this same approach of
classifying illicit transactions by applying a temporal GCN
model with an F1 score of 80.6% [2].

In the case of behavior clustering approaches, there are
prior cases with the use of density clustering algorithms such
as OPTICS, DBSCAN, and HDBSCAN achieving a total
clustering of 85.6%, 63.9%, and 68.78% respectively, based on
the behavior of temporal graphs [28] for the analysis of the
models’ ability in noise reduction through density clusters,
testing the behavior of these with ε = [0.2, 0.5, 0.8] [28].
Another feature clustering approach through the use of K-
means with k = 4, aims to represent different services within
transactions, where mixing services have been identified, based
on an exploratory validation of the distribution and character-
istics of each cluster [22].
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III. METHODOLOGY

Our methodology is designed to navigate through the pro-
cess of data preparation, transformation into a graph format,
extraction of subgraphs, and data analysis, specifically tailored
for transactions on the Bitcoin blockchain. We begin by
extracting transaction data, presented in a tabular format,
between wallet pairs. This data is then transformed into a
comprehensive graph structure where nodes represent individ-
ual addresses and edges symbolize transactions, incorporating
both temporal and economic information to streamline the
representation while preserving detailed transactional relation-
ships.

Upon establishing this general graph, we focus on extracting
subgraphs based on a predetermined central node, typically a
wallet address of interest. This involves querying the graph
to retrieve all related incoming and outgoing transactions as
a subgraph. The extraction process is defined by an N-Step
approach, where N determines the depth of connections to
explore from the central node, aiming to capture a thorough
transactional snapshot around it.

In the work Cascading Machine Learning to Attack Bitcoin
Anonymity, where this article is presented as a new approach
based on the previous method defined by Zola et al. [28],
it was explained how subgraphs were generated in N-Steps
based on a central address for N already declared behaviors,
but using as characteristics the economic information of each
of the nodes involved, as well as the number of unique nodes
involved in each subgraph.

To analyze these subgraphs, we select 10 structural features
to capture the transactional behaviors of the addresses, with
these features detailed in Table I. Each feature contributes
to a 25-element feature vector for every address analyzed,
reflecting a multifaceted view of its blockchain interactions.
These vectors include metrics such as degree centrality, square
clustering, and eccentricity, with statistical analyses (mean,
maximum, minimum, and standard deviation) applied for a
comprehensive understanding. Closeness centrality is analyzed
through its mean and standard deviation, while specific graph-
based features are directly incorporated into the vectors as
singular values.

The methodology advances by applying clustering algo-
rithms to these feature vectors, grouping them based on
similarities in the vector space. This clustering process is
critical for understanding the collective behaviors of addresses.
To validate the effectiveness and coherence of the clusters
formed, we employ two categories of evaluation metrics: one
assessing the structural quality of each cluster in relation to
the entire dataset, and another focusing on the identification
of outliers and the clarity of cluster definitions. This dual-
evaluation approach ensures a robust analysis of the transac-
tional dynamics within the Bitcoin blockchain.

IV. EXPERIMENTAL FRAMEWORK

This section delineates the experimental setup utilized in
our study, detailing the dataset specifications, the method-
ologies for data analysis, and the metrics for evaluating the

Metric Description Value
Degree
Centrality

Measures the importance of a node
based on the number of links it has
[18].

v=[max, min, std,
mean]

Closeness Measures the average closeness of
a node to all other nodes in the
graph [18].

v=[std, mean]

Transitivity Reflects the likelihood that the ad-
jacent vertices of a vertex are con-
nected to each other, capturing the
degree to which nodes in a graph
tend to cluster together.

v=[transativity]

Number of
Loops

Counts the number of edges that
connect a node to itself [1].

v=[number loops]

Number of
Nodes

Counts the total nodes in the graph
[1].

v=[number nodes]

Number of
Edges

Counts the total edges in the graph
[1].

v=[number edges]

Average
Clustering
Coefficient

The average clustering coefficient
is a global measure of network
segregation and reflects the clus-
tered connections around individ-
ual nodes.

v=[average clustering]

Harmonic
Centrality

Summarizes the inverse of the
shortest distances from a node to
all other nodes in the graph [7].

v=[max, min, std,
mean]

Square
Clustering

Measures the tendency of nodes to
form quadrangles in the graph [25].

v=[max, min, std,
mean]

Barycenter Represents the set of nodes that
minimizes the sum of distances to
all other nodes in the graph, essen-
tially representing the ”center” of
the graph in terms of distance.

v=[barycenter]

Eccentricity Measures the maximum distance
between a node and any other node
in the graph.

v=[max, min, std,
mean]

Diameter Measures the maximum distance
between any pair of nodes in the
graph [17].

v=[diameter]

TABLE I
EXPLANATION OF METRICS

Fig. 5. Methodology Diagram

performance and accuracy of our results within the Bitcoin
blockchain.

A. Dataset

In terms of the dataset, our analysis considered blockchain
data up to March 2019, including a total of 566,000 blocks.
Within this extensive dataset, we examined approximately
3,300,000,000 transactions and tracked over 450,000,000
unique Bitcoin addresses. To obtain the labeled data, we
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leveraged WalletExplorer1, a comprehensive platform designed
for Bitcoin exploration, enabling address aggregation and
wallet tagging capabilities. Subsequently, with the help of
GraphSense2, a cryptoasset analytics platform, we categorized
the data into 16 distinct groups according to the Interpol3

taxonomy. Some of the behavior were not treated due to the
small amount of data related them:

• Exchange: Facilitates fiat-to-Bitcoin conversions and
cryptocurrency trading for customers.

• Service: Provides Bitcoin payment solutions to various
industries for seamless transaction integration.

• Gambling: Offers Bitcoin-based games of chance, includ-
ing casinos, betting, and roulette, allowing users to wager
and potentially win Bitcoin.

• eWallet: A digital tool for storing, managing, and con-
ducting Bitcoin transactions securely.

• Market: Platforms for purchasing goods and services,
including illegal ones, using Bitcoin as payment.

• Mixing Service: Provides anonymity to cryptocurrency
transactions by mixing them with others.

• Miner: Collaborative miners working together to stabilize
earnings while verifying transactions.

• Loan Service: Involves Bitcoin loans, with one party
lending Bitcoin to another under agreed terms, often with
interest.

• Coinjoin: A method of mixing tokens or coins to obscure
the link between input and output in Bitcoin transactions.

• Ransomware: Transactions where victims pay Bitcoin to
ransomware attackers in exchange for decryption keys,
often in cyber extortion cases.

• Other: Encompasses Bitcoin transactions not fitting
into predefined categories, requiring further analysis for
proper classification.

Table II details the amount of data used for each behaviour
for the study. In addition to the behaviours indicated, there
were others that were discarded due to the small amount
of data on each of them, such as ponzi scheme, scam,
BtcDice.com, Mt.Gox Hacker or sextortion. For this study,
we have excluded the Coinjoin class previously explained, as
the majority of the samples are post-March 2019, and will
be explored further when blockchain information is expanded,
another class discarded for the study, which has been previ-
ously mentioned, is the Other class, as it is less deterministic
and can group together different types of behaviors which may
add noise to the study. For the study, small amounts of data for
each class have been used to simplify the experiments, taking
approximately 5,000 addresses for each class.

B. Evaluation Metrics

Evaluating the quality of generated clusters is a challenging
task, especially in the context of undefined groupings based on
the structural behavior of each subgraph, as the groupings are

1https://www.walletexplorer.com/
2https://graphsense.info/
3https://interpol-innovation-centre.github.io/DW-VA-Taxonomy/

Class # Address % Address # Amount
Exchange 12,288,433 47.84 5,000
Service 4,287,915 16.69 5,000
Gambling 3,323,767 12.94 5,000
eWallet 2,080,803 8.1 5,000
Market 2,025,747 7.89 5,000
Mixing Service 167,328 0.65 5,000
Miner 132,482 0.52 5,000
Loan service 116,900 0.46 5,000
Coinjoin 36,550 0.14 0
Ransomware 8,075 0.03 5,000
Other 1,156,955 4.5 0
Total 25,624,955 100 45,000

TABLE II
OVERVIEW OF DATA USED FOR THIS STUDY

based on this information where examples of similar labels can
be joined in different clusters. For this reason, we first propose
to use three common metrics, i.e., Silhouette Coefficient,
Calinski-Harabasz Index, and Davies-Bouldin Index that help
to evaluate the structure of clusters in the vector space.

More specifically, the Silhouette Coefficient measures (or
SC) the cohesion and separation of clusters, providing an
indication of the distance between the resulting clusters [20].
It takes values between -1 and 1, where a high value indicates
that the point is well clustered. The Calinski-Harabasz Index
(or CH Index) evaluates the dispersion within and between
clusters [8]. The values can range from near 0 to very high
values (no upper limit), with higher values being preferable as
they indicate denser and well-separated clusters. The Davies-
Bouldin Index (or DB Index) evaluates the average of the
similarities between each cluster with its most similar cluster,
where similarity is the ratio of the distance between clusters
and the sum of the dispersions within the clusters [11]. The
values oscillate between 0 and higher values, with lower values
being preferable as they indicate a better separation between
clusters.

Then, we define three new metrics that we called Homo-
geneous Cluster (or HC), Noisy Cluster (or NC) and Outliers
Cluster (or OC), for evaluating the cluster composition based
on the grouped labels.

The objective of these metrics is to classify the quality
of clusters based on their heterogeneity, with those having
a higher diversity of labels in their composition being rated
lower. To define these metrics, we have created a threshold that
ensures the predominant class has at least 10% more samples
than the second most populous class. Clusters meeting this
sample volume that exceeds the threshold are grouped into
Homogeneous Clusters. Those that do not reach this threshold
are grouped into Noisy Clusters, which also includes clusters
with less than three samples in their composition. Lastly, those
grouped in cluster -1 by the employed algorithms are classified
as Outlier Clusters.

To enhance confidence in the metrics generated to evaluate
the label-based composition of each cluster, we have intro-
duced two additional metrics termed as ”Cluster Confidence”.
These metrics assess the consistency of clusters identified as
Homogeneous Clusters. They involve calculating the Mean
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value of the percentage of samples from the specified class
in each cluster relative to the total samples of that cluster, as
well as the Standard Deviation of these calculated values.

C. Experiments

The main objective of the experiments is to understand the
clustering behavior, performance, and effectiveness of these
models in segmenting similar behaviors within the subgraphs,
without requiring a predefined number of clusters. To obtain
the subgraphs for each recognized entity in both 1-Step and 2-
Step categories, we used a machine dedicated to the generation
and preprocessing of subgraphs, as well as the analysis and
execution of the models. The specifications of the machine
defined 3T of disk memory, 64GB of RAM, and 40 available
CPU cores. For the preprocessing and generation of the
subgraphs, the capacity of these cores was used, parallelizing
both processes.

The experiments are divided into 1-Step and 2-Step cate-
gories because even though the same perspectives are used,
an individual approach is necessary for each new depth level
within the subgraphs. The time for extraction and preprocess-
ing of each subgraph varies depending on the load on the
database, the volume of the subgraph, and its depth. In the case
of 1-Step graphs, the fastest extracted subgraph took about 3
seconds, and the longest took approximately 2 hours. For the
2-Step subgraphs, the smallest took around 7 seconds but could
take more than a day for the extraction and preprocessing
of those with a substantial volume of nodes. The growth in
preprocessing time is exponential and difficult to calculate
precisely.

To conduct various experiments, we established an initial
configuration for each model used in this paper. Table III
provides a comprehensive explanation of the chosen parameter
configurations for these models.

Model Configuration
DBSCAN1 min samples: 5 (ϵ: 0.5)
DBSCAN2 min samples: 10 (ϵ: 0.5)
DBSCAN3 min samples: 20 (ϵ: 0.5)
HDBSCAN1 min samples: 5
HDBSCAN2 min samples: 10
HDBSCAN3 min samples: 20
OPTICS1 min cluster size: None (ϵ: 0.5)
OPTICS2 min cluster size: 10 (ϵ: 0.5)
OPTICS3 min cluster size:20 (ϵ: 0.5)

TABLE III
MODEL PARAMETERS CONFIGURATION

1) 1-Step: In the 1-Step experiments, two different per-
spectives were employed for the subgraphs generated. These
perspectives were based on the number of structural graph
features to extract, and they aimed to provide a more compre-
hensive understanding of the subgraph behavior.

The initial approach considered only 10 metrics which
included Degree Centrality, Closeness Centrality, Transitivity,
Number of Loops, Number of Nodes, and Number of Edges.
Another approach was defined to provide a more detailed

insight into the sub-graph structure, incorporating the rest of
metrics providing 25, all detailed on Table I.

Using the feature vectors generated by the reduced met-
rics, 3 density-based clustering models were implemented to
perform clustering while exploring different parameters as
shown on Table III to determine an optimal model for the 1-
Step. To validate the formation of clusters in terms of their
structural composition, we used metrics such as Silhouette
Coefficient (SC), Calinski-Harabasz Index (CH Index), and
Davies-Bouldin Index (DB Index).

After cluster validation with structural composition metrics,
we decided to validate the formation of the clusters using
label-based metrics, specifically applied to data generated
with extended features. This decision was made because we
aimed to understand the composition of the clusters from
the perspective of labels, and extended features offer more
structural information and a better understanding of label-level
composition.

2) 2-Steps: In the 2-Step experiments, a similar approach
was followed as in the 1-Step experiments, but this time, we
extended the analysis to a deeper level of subgraph features.
Based on the results obtained from the experiments conducted
with the reduced structural features, which are available in
Table I, the decision has been made to utilize the approach
with 25 characteristics with all detailed model configurations
on Table III.

Each of the best configurations per model, as determined
by the cluster evaluation metrics, has been further evaluated
using label-based metrics detailed on Subsection IV-B.

Additionally, two metrics based on the mean value of the
winning label percentages in their cluster and the standard
deviation of the obtained values have been applied. The goal
is to determine the internal quality of the cluster composition,
providing more information about their homogeneity and
confidence in the label-based metrics.

V. RESULTS

A. 1-Step Analysis

The results for 1-Step Sub-Graph experiments are shown on
Table IV with previous detailed points on Subsection IV-C.

Model 10 Features 25 Features
SC CH Inx DB Inx SC CH Inx DB Inx

DBSCAN1 0.9509 294.9165 1.2409 0.9463 44.5253 1.2859
DBSCAN2 0.9473 321.1931 1.6354 0.9247 54.2147 1.2593
DBSCAN3 0.9440 334.4038 1.0986 0.8945 48.3408 1.2534
OPTICS1 0.9707 128.9586 2.2995 0.9568 110.8129 1.5871
OPTICS2 0.9471 123.5622 4.6214 0.9340 56.3546 1.5305
OPTICS3 0.9260 88.8228 2.2883 0.8995 75.5074 1.3032

HDBSCAN1 0.2532 89.0173 2.1068 0.1510 75.9186 1.4392
HDBSCAN2 0.2556 52.7525 1.8184 0.1549 40.1424 1.4164
HDBSCAN3 0.2676 68.6815 1.8221 0.1426 48.8047 1.3862

TABLE IV
PERFORMANCE METRICS OF CLUSTERING ALGORITHMS ON 1-STEP

SUB-GRAPHS.

As demonstrated in the presented results, the models exe-
cuted with extended features showcase superior performance
across all the models used, rendering the reduced approach
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inadequate due to its limited information regarding the be-
havior of each sub-graph. In the case of extended features,
the OPTICS1 model emerged as the most robust, while in the
case of reduced metrics, the DBSCAN3 model demonstrated
superior robustness when examining cluster formation metrics.

Model Features HC NC OC Mean Standard
Deviation

DBSCAN3 10 28 14 736 0.2859 0.1062
OPTICS1 25 257 52 823 0.4881 0.1933

TABLE V
COMPARISON OF THE BEST ALGORITHMS FOR THE TWO APPROACHES TO

1-STEP GRAPH FEATURE CHARACTERISTICS.

To determine which of the two approaches, based on the
number of features to be extracted from graphs, is superior, we
evaluated the best models using label-based evaluation metrics
and their validation metrics. As we can see in Table V, the
model based on extended features turns out to be the one that
can generate the most clusters, with greater homogeneity in
the data that constitute them. It establishes that the average
cluster has a predominant class that makes up at least 0.4881
of the samples comprising it, with a standard deviation of
0.1933. In contrast, the approach with 10 features offers lower
performance and fewer clusters, creating very heterogeneous
clusters in terms of different behaviors or labels, forming 28
versus 257 in the case of extended metrics, as seen in Table
V.

B. 2-Steps Analysis

The predefined models in the configuration Table IV have
been applied in this perspective, and the results of the con-
ducted experiments can be observed in the following table VI.

Model SC CH Inx DB Inx
DBSCAN1 -0.6250 0.0256 1.6699
DBSCAN2 -0.6931 0.0463 1.5928
DBSCAN3 -0.7387 0.0264 1.6175
OPTICS1 -0.3347 0.0317 1.8937
OPTICS2 -0.4789 0.0602 1.8823
OPTICS3 -0.6119 0.0962 1.8626

HDBSCAN1 -0.3752 0.0408 1.8681
HDBSCAN2 -0.4661 0.0871 1.8256
HDBSCAN3 -0.5368 0.1123 1.8295

TABLE VI
PERFORMANCE METRICS OF CLUSTERING ALGORITHMS ON 2-STEP

SUB-GRAPHS WITH EXTENDED FEATURES.

In Table VII, we can visualize the label-based metrics of
the top 3 models generated with 2-step graphs.

Model N-steps HC NC OC Mean Std
OPTICS1 1 257 52 823 0.4881 0.1922
OPTICS2 2 742 76 31,631 0.6828 0.2557

TABLE VII
RESULTS OF THE LABEL-BASED METRICS FOR THE BEST MODEL ON

1-STEP WITH EXTENDED FEATURES AND 2-STEPS MODEL.

C. Discussion
The results obtained offer a broad perspective on the depth

of the approach maintained in this study. On one hand, we
have the approach based on the number of features extracted
from subgraphs, aiming to extract as much information as
possible while reducing computational cost. We can observe
very similar results in terms of cluster formation metrics, with
slightly better performance in the reduced feature approach as
seen in the Table IV.

However, if we look at the formation of the clusters and
the metrics generated in this study to determine their quality
through the labels of each of the employed directions, we can
see that despite having better results in the cluster formation
metrics, the results obtained in the label-based metrics for
graphs with extended features show a higher number of
generated clusters, with greater confidence in those clusters
that are deterministic. This is relevant to the focus of the study,
which aims to explore an approach to extract the behavior of
subgraphs, Table V.

The results obtained appear to be clearly dependent on the
depth of the subgraphs, as well as the quantity of features
provided by each subgraph to achieve more precise clustering
based on their unique behavior.

As we can observe in Table VI, on one hand, we again
have the metrics for cluster formation, where we see much
worse results compared to those obtained by 1-step depth
graphs, Table IV. In the three metrics, we can highlight very
low results. However, if we pay attention to the metrics that
evaluate the formation of the clusters and their homogeneity,
the results are much more promising.

We obtain a higher number of homogenous and determined
clusters, with a greater presence of unique classes within them,
offering higher values between 0.67 and 0.68 for the presence
of deterministic classes in each cluster, with a standard devi-
ation between 0.23 and 0.25 among the values, as shown in
Table VII. This is offered by the models with the highest scores
in the cluster formation metrics. the performance is significant
compared to the values offered by normal 1-step graphs, where
we have the highest performing model, DBSCAN3, Table V,
in the cluster formation metrics, offering an average value of
0.28 in the predominant class and a Standard Deviation of
0.10.

Therefore, we can determine that the greater the depth and
the number of extracted features, the higher the homogeneity
of the clusters based on the labels of the addresses that
comprise them. As can be seen in Table VII o OPTICS2
model, there is a considerable increase in the global percentage
presence of the dominant class. Consequently, there is also a
slight increase in the standard deviation, but with very solid
numbers in the groupings of behaviors. These are grouped into
a greater number of Homogeneous Clusters than those offered
by 1-step graphs.

Another relevant point is the distribution of deterministic
classes among these, as we have 9 different classes, it is
important to know how the models not only generate clusters
and their internal homogeneity but also how they distribute
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Fig. 6. Distribution of Homogeneous Clusters Across the 9 Explored Labels.

these among the different labels. In Figure 6, generated from
the distribution obtained by the model with the best perfor-
mance in the cluster generation metrics, OPTICS2, we achieve
a fairly homogeneous distribution among the classes. We
have a predominant class, mixing service, with 128 samples,
followed by a selection of classes ranging between 120 and
60 samples. Lastly, there are 3 labels, market, exchange, and
eWallet with a lower sample count, this can determine a greater
number of homogeneous behaviors and a higher aggregation
into fewer clusters.

The distributions obtained in the different labels demon-
strate that, despite having classes with a higher count, a
certain balance can be observed in the complete distribution
of deterministic clusters, closely related to the depth of the
graphs and the number of features.

VI. CONCLUSION

This study provides an insight into the significance of
depth and volume of graphs for analyzing the behavior of
a central node that interconnects the said graph. From this
perspective, several avenues are opened for consideration.
The first and most relevant of these is that this approach
offers a straightforward relationship between the information
on the behavior of graphs based on the specified depth of
relationships. It is evident that the greater the depth N of the
graphs, the more the computational cost and the time required
to extract and process each graph increases.

Another important aspect to highlight is the volume of
data to be managed. When working with density algorithms,
a larger sample space, especially at greater depths in the
graphs, could provide relevant information for making more
precise groupings. This also allows for the extraction of
more heterogeneous information within the same cluster about
different behaviors for similar samples.

In this study, three metrics were selected for evaluation:
the Silhouette Coefficient (SC), the Calinski-Harabasz Index
(CH Index), and the Davies-Bouldin Index (DB Index). These

metrics assess the formation of clusters by different models.
However, in cases of greater depth, such as two-step graphs,
these metrics do not seem to provide values consistent with
the quality of the clusters formed if we focus on label-based
metrics, or even in the distribution of homogeneous clusters
among the labels. This is the case with OPTICS2, which shows
very low values in the formation metrics as seen in Table VI.
However, it performs well in label-based metrics VII and in
verifying the distribution across different labels as shown in
Figure 6.

In future work, there is an intention to further explore this
approach with a larger sample space, aiming for a greater
heterogeneity of behaviors through an increased number of
labeled samples. Perhaps exploring other validation metrics
or models, which may or may not be density-based, could
also be considered. However, with a clear focus on increasing
the sample size in the case of 2-step graphs to gain a more
comprehensive insight into their behavior, aiming to obtain
more information on the behavior of the transactions.
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